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Objective: We aimed to reduce the complexity of the 52-channel

functional near-infrared spectroscopy (fNIRS) system to facilitate its usage in

discriminating schizophrenia during a verbal fluency task (VFT).

Methods: Oxygenated hemoglobin signals obtained using 52-channel fNIRS

from 100 patients with schizophrenia and 100 healthy controls during a VFT

were collected and processed. Three features frequently used in the analysis of

fNIRS signals, namely time average, functional connectivity, and wavelet, were

extracted and optimized using various metaheuristic operators, i.e., genetic

algorithm (GA), particle swarm optimization (PSO), and their parallel and serial

hybrid algorithms. Support vector machine (SVM) was used as the classifier,

and the performance was evaluated by ten-fold cross-validation.

Results: GA andGA-dominant algorithms achieved higher accuracy compared

to PSO and PSO-dominant algorithms. An optimal accuracy of 87.00% using 16

channels was obtained by GA and wavelet analysis. A parallel hybrid algorithm

(the best 50% individuals assigned to GA) achieved an accuracy of 86.50% with

8 channels on the time-domain feature, comparable to the reported accuracy

obtained using 52 channels.

Conclusion: The fNIRS system can be greatly simplified while retaining

accuracy comparable to that of the 52-channel system, thus promoting its

applications in the diagnosis of schizophrenia in low-resource environments.

Evolutionary algorithm-dominant optimization of time-domain features is

promising in this regard.
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Introduction

Schizophrenia is a chronic, frequently disabling mental

disorder (1). Patients with schizophrenia (SZs) can display

both visual and phonological impairments (2), which are vital

for the successful development/attainment of literacy skills,

resulting in deficits in rapid naming and phonological awareness

(3, 4). Schizophrenia results in mixed deficits in morphological,

orthographical, and phonological processing skills (5–8)

depending on their native language. Therefore, the verbal

fluency task (VFT), a language-related neuropsychological task,

has been employed for discriminating schizophrenia (9). During

the VFT, the participant was asked to make as many phrases as

possible, starting with the character or letter appearing on the

screen. The phrases could be made based on the semantic or

phonological approach. Neuroimaging techniques were used

to detect the hemodynamic changes or neuronal firing during

the task. Among them, functional near-infrared spectroscopy

(fNIRS) can noninvasively measure hemodynamic signals from

the cortex (10), and derive underlying neuronal networks and

functional connectivity (11). Although the spatial resolution

of fNIRS is relatively low (most current fNIRS system has 52

channels), it has advantages on portability and cost, which make

fNIRS popular in schizophrenic studies, especially in developing

countries with poor medical resources.

Signals from multiple channels enhance the classification

capability but at the cost of increased complexity, making

it difficult to move and preventing its extensive usage in

clinical situations of low-resource environments. Therefore,

researchers have attempted channel simplification. Our group

obtained a classification accuracy of 85.83% [120 SZs and

120 healthy controls (HCs)] with 11 components by using

principal component analysis on time-varying features (12);

however, each component was a linear combination of signals

from dozens of channels. In this study, the performance of

four machine-learning classifiers, namely linear discriminant

analysis, k-nearest neighbors, Gaussian process classifier, and

support vector machine (SVM), were assessed; the results

revealed that SVM performed the best. By using the same

dataset, Ji et al. (13) and Yang et al. (14) conducted seed-based

analysis on functional connectivity (FC) for classification and

achieved an accuracy of 89.67% with 26 channels. Einalou et al.

(15) and Dadgostar et al. (16) achieved an accuracy exceeding

84.00% with eight channels after selecting from a 16-channel

fNIRS by using genetic algorithm (GA) and wavelet analysis.

However, these studies involved only 16 participants. Chen

et al. (17) achieved an accuracy of 89.5% with 39 channels by

using the general linear model on time-domain features. These

results indicate that redundancy exists in multichannel signals,

and this redundancy can be reduced by applying appropriate

optimization methods.

Metaheuristic optimization is based on functional

evaluation and relies less on the properties of objective

functions and constraints. This method does not take advantage

of the specificity of the targeted problem and is thus widely used

in physiological signal processing. These optimization processes

generally use a set of solutions inspired by a certain natural

analogy or philosophy. As mentioned earlier, a preliminary trial

with GA, an evolutionary algorithm, was carried out for 16

participants (15, 16). In effect, the searching process employed

by GA is, to some extent, omnidirectional because the crossover

and mutation are randomly initiated. This may degrade the

exploration ability, although a faster convergence can be

achieved. In nature, animals’ foraging behavior is not only

under genetic control but also changes by interactive learning

within the population. Inspired by the biological mechanism,

integrating GA with a swarm intelligence-based method [e.g.,

particle swarm optimization (PSO)] might further reduce the

channels for diagnosing schizophrenia by using fNIRS.

In this study, GA, PSO, and their parallel and serial hybrids

were proposed with SVM for identifying schizophrenia during

a VFT. This is the first study on optimizing the channels of

fNIRS for diagnosing schizophrenia. The features derived by

time-domain, FC, and wavelet analyses were considered. The

results showed that GA and GA-dominant algorithms yielded

better results, where an accuracy of 87.00% was achieved with

16 channels by using GA and wavelet feature. The use of a

parallel algorithm reduced the number of channels (8 with an

accuracy of 86.50% by a parallel GA–PSO optimizer on the

time-domain feature). The obtained accuracy was close to that

of the 52-channel system. Time-domain and wavelet features

demonstrated advantages over FC feature due to schizophrenic

hypofrontality, a salient characteristic in the time domain.

Therefore, our findings facilitated the development of a portable

fNIRS system for the diagnosis of schizophrenia during a VFT

in low-resource environments.

Materials and methods

Participants

The dataset was provided by Peking University Sixth

Hospital, Beijing, China (18). It consists of 100 SZs (male/female:

48/52, age: 30.45 ± 10.45 years) and 100 HCs (male/female:

65/35, age: 34.43 ± 12.36 years). They were all right-handed

native Chinese speakers with minimum education as high

school degree. Each patient was diagnosed independently by

two clinical psychiatrists according to the Structured Clinical

Interview for DSM-IV (19). The study was approved by the

Ethics Committee of Peking University Sixth Hospital, and all

participants provided written informed consent.
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FIGURE 1

The paradigm of the VFT. During the VFT, three Chinese characters were displayed on the screen for making as many phrases as possible.

Verbal fluency test

The Chinese version of the VFT (18) is illustrated in

Figure 1. It included an initial 30-s pre-task baseline period,

followed by a 60-s VFT period, and finally by a 30-s post-

task baseline period. During the pre-task and post-task baseline

periods, the participants were asked to gaze at the center

of the screen, which was placed 1m in front of them, and

continuously repeat the numbers from one to five. During the

VFT, three Chinese characters—“中”, “日” and “蓝”, which

indicate middle, sun, and blue, respectively—were displayed on

the screen successively, each for 20 s. The participants were

instructed to orally coin as many phrases as possible starting

with these characters, and the oxygenated hemoglobin (oxy-

Hb) signal, due to its better signal-to-noise ratio (20, 21), was

measured throughout the three periods.

ETG-4000 (Hitachi Medical Co., Japan) with 52 channels

was used in the experiment. As shown in Figure 2, 17 emitters

and 16 detectors were positioned on the prefrontal and temporal

regions based on the international 10–20 system. The sampling

rate was 10Hz. Raw signals of a randomHC and a random SZ in

channel 19 are shown in Figure 3 for example. The 60-s oxy-Hb

signals recorded during the VFT were organized as a matrix of

200 × 52 × 600 (number of participants × number of channels

× number of signal points) for further analysis.

Signal processing pipeline

A low-pass filter with a cutoff frequency of 0.6Hz was used

to remove non-physiological noises and motion artifacts (22).

Consequently, temporal average, channel-wise FC of oxy-Hb

within the 60-s task period were calculated. Raw signals (without

prefiltering) were used for wavelet analysis. Based on the features

calculated using time-domain, FC, and wavelet analysis, GA,

PSO, and their parallel and serial hybrids were employed to

optimize channel selection. SVM was the most suitable classifier

in discriminating schizophrenia (12). The performance of the

methods (including the selected features and the classifiers) was

evaluated by ten-fold cross-validation. The pipeline for signal

processing is shown in Figure 4.

Feature extraction

Time-domain analysis: Mean values of the signals from each

channel recorded during the VFT for each participant were

computed. The results were normalized by subtracting the mean

and dividing the standard deviation from all the participants.

FC analysis: Pearson’s correlation coefficient was calculated

to evaluate the FC between two channels.

Wavelet analysis: A three-level decomposition tree was

used for discrete wavelet transform. Daubechies 5 was

selected as the mother wavelet because of its similarity

to hemodynamic response (23). As the sampling rate was

10Hz, the frequency range for the investigation was 0–5Hz.

The procedure is illustrated in Figure 5. Time-domain and

wavelet features were provided in the Supplementary Material

(Supplementary Tables 1, 2, respectively).

Encoding scheme

For feature selection by using GA and PSO, the individuals

in GA and particles in PSO needed to be encoded properly. In

GA, each individual was represented by a binary string of length
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FIGURE 2

The positions of fNIRS probes and channels according to the international 10–20 system. rSFC, right superior frontal cortex; rDLPFC, right

dorsolateral prefrontal cortex; lDLPFC, left dorsolateral prefrontal cortex; lSFC, left superior frontal cortex; rSTC, right superior temporal cortex;

rVLPFC, right ventrolateral prefrontal cortex; mPFC, medial prefrontal cortex; lVLPFC, left ventrolateral prefrontal cortex; lSTC, left superior

temporal cortex.

D = 52, where “0” and “1” indicated that the corresponding

channel was removed and selected, respectively. In PSO, the

position of each particle was represented by a D-dimensional

vector (D = 52) in which each element was distributed in [0,1]

and changed into a binary format according to the threshold of

0.5, with “1” denoting the selection of the corresponding channel

and “0” indicating the removal of the channel.

Canonical GA, PSO, and their hybrids

GA

GA is inspired by evolution (24). In each generation,

better-performing individuals are selected as parents to produce

offspring by crossover (crossover rate = 0.8), thereby providing

individuals with higher fitness. In addition, mutation (mutation

rate = 0.01) is applied to increase the individual diversity. The

fitness of every individual is evaluated by the fitness function,

which is defined as

Fitness value = Classification accuracy

+ 0.01× (Number of “0”) (1)

where the weight of the number “0” is set as 0.01 to facilitate the

selection of fewer channels when two solutions have the same

classification accuracy.

PSO

PSO simulates the social behavior of bird flocks, with

the concept extended to particles flying to potential solutions

through hyperspace and accelerating toward “better” solutions

(25). Let Pbest denote the previous best positions of the particles,

and Gbest denotes the global best position found by the swarm.
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FIGURE 3

Raw signals of a random HC and a random SZ in channel 19 for example.

FIGURE 4

Pipeline for signal processing. GA, PSO and their parallel and serial hybrid optimizers were used for channel optimization on three fNIRS

features, respectively. SVM was chosen as the classifier. The classification performance of the selected features and classifiers was evaluated by

ten-fold cross-validation. Statistical analysis was performed on the accuracy and the number of channels.

Let pi,d represent the Pbest of particle i at dimension d (d = 1,

2, . . . , D) and gd represent the Gbest of particle i at dimension d.

The velocity and position of i-th particle (i = 1, 2, . . . , N, where

N is the population size) at dimension d are represented as vi,d
and xi,d, respectively. Then, the update for the d-th dimension

of particle i can be defined as

vi,d = ω • vi,d + c1•r1,d•(pi,d−xi,d)+ c2•r2,d•(gd−xi,d)(2)

xi,d = xi,d + vi,d (3)

where ω = 0.9 is the inertia weight, c1 = c2 = 2, and r1,d and

r2,d are random numbers uniformly distributed in [0,1]. The

velocities of particles are limited to [−0.5, 0.5].
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FIGURE 5

The three-level decomposition tree for discrete wavelet transform. A3 with the frequency range of 0–0.625Hz was selected to compute

wavelet energy.

Hybrid of GA and PSO

In reality, animals’ foraging behavior is controlled by

interactive social learning and genetics, and can be explained

by its evolutionary history (26). For example, bees’ foraging

paths are optimized according to sensitivity to the color

and smell of flowers. A hybrid of GA and PSO, combining

the biological natures of both, can facilitate the optimization

process. To specify, the hybrid algorithms can take either serial

or parallel forms.

Parallel algorithms

The parallel hybrid algorithms might differ at two stages,

i.e., the population partition and information exchange between

two optimizers. Therefore, three variants have been considered

as pGAPSO-I/II/III. To specify, in pGAPSO-I, the best 50%

individuals were assigned to GA, and the best 20% individuals

were allocated to PSO in pGAPSO-II, while in pGAPSO-III the

individuals were randomly distributed to GA and PSO. The

specific partition of the individuals in I and II was adopted

from the optimized parameters from previous studies (27, 28).

The pipelines of the parallel GA-PSO algorithms are shown in

Figures 6A–C.

Serial algorithms

The sequence of GA and PSO may vary as the population is

firstly transferred to GA or PSO.

In particular, by mimicking the maturing phenomenon

in nature, serial PSO-GA (sPSOGA) adopts half of the best-

performing individuals for updating by PSO, whereas the other

half is discarded. The updated Pbest individuals are then used

for GA operation to generate better offspring. Both Pbest

individuals and their offspring constitute the next population.

The paradigm of sPSOGA is shown in Figure 6D.

Alternatively, inspired by the foraging behavior of birds,

which is influenced by genetic control and learned from

peers (29), GA was implemented before PSO (serial GA-PSO,

sGAPSO): GA was first implemented using Pbest and Gbest to

construct exemplars, which were then used for PSO operation to

overcome premature convergence, as shown in Figure 6E.

Parametric setting

The maximum number of iterations was 200 for all

algorithms. The population size N was 50 because previous

studies demonstrated that population size close to the dimension

of the problem (52 in this study) worked well (30). The

parameters of GA and PSO were adopted from previous studies

(29, 31) and used for optimizing real-life problems.

Evaluation

The number of participants correctly classified as patients

(TP) and healthy controls (TN) and then incorrectly classified

as patients (FP) and healthy controls (FN) were calculated. The

classification accuracy, sensitivity and specificity were defined as

Accuracy =
TP+TN

TP+TN+FP+FN
(4)

Sensitivity =
TP

TP+FN
(5)

Specificity =
TN

TN+FP
(6)
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FIGURE 6

The paradigms of five hybrid algorithms. (A) pGAPSO-I: the best 50% individuals were assigned to GA; (B) pGAPSO-II: the best 20% individuals

were allocated to PSO; (C) pGAPSO-III: the individuals were randomly distributed to GA and PSO with equal chance; (D) sPSOGA: PSO was first

executed and then GA was applied; (E) sGAPSO: GA was implemented before PSO.

The accuracy/number of channels were subjected to two-way

(feature × optimizer) analysis of variance (ANOVA). The

variable “feature” included three levels: time-domain feature,

FC feature, and wavelet feature. The variable “optimizer”

consisted of seven levels: GA, PSO, pGAPSO-I/II/III, sGAPSO,

and sPSOGA. Bootstrap was used for statistical inferences if

normal distribution with equal variance was not achieved (32).

When a statistically significant difference was detected, multiple

comparisons were performed for each factor. Bonferroni

correction was applied to minimize the likelihood of a type

I error. SPSS 21.0 (IBM, Endicott, NY, USA) was used for

statistical analysis in the study.

Implementation

The parallel computing strategy of MATLAB was employed

to reduce the calculation time. Codes of GA and PSO were

adopted from theWrapper-Feature-Selection-Toolbox (33). The

in-house codes for the parallel and serial hybrid algorithms

were available online (https://github.com/Xiadonn/Channel-

Reduction-of-fNIRS). SVM was realized using the LIBSVM

library, and the parameters of SVM were determined by

performing a grid search (34). Two units of Intel Xeon CPU

E5-2640 v4 @ 2.40GHz (20 cores in total) with 64-GB memory

involved in the calculations.
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TABLE 1 Accuracy and the number of channels of di�erent features and optimizers by 10-fold cross-validation, with the best results in the

parathesis.

Optimizer Time-domain feature FC feature Wavelet feature

Accuracy No. channels Accuracy No. channels Accuracy No. channels

GA 84.75± 1.44%

(86.50%)

16.80± 2.66 (13) 82.30± 1.32%

(84.50%)

23.30± 2.91 (24) 84.50± 1.65%

(87.00%)

13.80± 2.62 (16)

PSO 83.75± 1.18%

(86.00%)

18.10± 2.77 (15) 79.40± 1.39%

(81.50%)

23.60± 3.95 (17) 82.00± 1.11%

(84.50%)

14.90± 1.97 (17)

pGAPSO-I 84.90± 1.15%

(86.50%)

10.10± 3.67 (8) 81.25± 1.46%

(83.50%)

17.20± 4.87 (16) 82.35± 0.75%

(83.50%)

9.90± 1.45 (9)

pGAPSO-II 84.65± 0.67%

(86.00%)

9.30± 2.11 (11) 81.45± 1.46%

(83.50%)

13.50± 3.98 (11) 82.50± 1.37%

(84.50%)

9.50± 1.43 (11)

pGAPSO-III 84.65± 1.06%

(86.50%)

7.40± 2.27 (9) 80.75± 2.54%

(84.00%)

19.80± 5.05 (15) 81.85± 0.71%

(83.00%)

9.10± 2.23 (10)

sPSOGA 83.25± 1.59%

(85.50%)

18.60± 4.06 (19) 80.75± 1.96%

(85.00%)

20.40± 3.37 (19) 81.45± 1.34%

(85.00%)

15.90± 2.85 (15)

sGAPSO 84.65± 1.42%

(86.50%)

15.70± 2.54 (15) 81.80± 1.27%

(84.00%)

24.10± 3.03 (21) 83.20± 1.53%

(85.00%)

15.40± 2.84 (13)

TABLE 2 The specific channels corresponding to the best results obtained by di�erent features and optimizers.

Optimizer Time-domain feature FC feature Wavelet feature

GA 3 5 12 14 19 25 31 32 34 39 41 43 48 2 5 7 8 11 12 13 15 17 18 19 20 22 24 25 27 30 31 36

45 48 50 51 52

1 3 6 7 9 10 13 16 19 29 30 32 34 39 45 48

PSO 3 5 14 19 27 30 31 34 39 40 41 43 44 45 47 2 5 6 7 9 10 12 13 15 17 20 22 25 45 46 47 51 1 2 6 8 9 11 14 16 19 24 29 30 32 34 39 45 48

pGAPSO-I 3 4 19 26 30 39 47 51 2 7 9 13 14 15 16 17 20 25 26 30 36 45 51 52 3 6 7 10 19 34 39 46 48

pGAPSO-II 2 6 16 19 30 37 39 43 44 47 50 2 5 6 8 13 15 17 19 20 30 45 1 3 6 19 27 30 32 35 39 45 48

pGAPSO-III 4 13 14 19 20 31 39 47 48 2 4 7 12 14 15 16 17 25 26 31 45 48 50 51 1 2 6 15 19 30 39 45 47 48

sPSOGA 2 4 6 7 8 10 16 18 19 25 31 34 36 37 39 43 44 47 50 2 7 8 9 11 12 13 15 16 17 18 19 20 25 28 30 45 49 50 1 3 6 9 10 13 19 26 30 32 34 39 40 45 48

sGAPSO 2 5 8 12 16 19 20 24 25 39 43 44 47 48 50 2 5 7 8 9 11 12 13 15 17 18 19 20 25 30 42 45 46 48

50 51

1 3 6 9 12 13 24 29 30 32 39 45 48

FIGURE 7

The overlay heatmap of the channels in Table 2 according to the number of their occurrences. The specific 8 channels of the optimal

combination were marked.
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TABLE 3 Sensitivity and specificity of di�erent features and optimizers by 10-fold cross-validation.

Optimizer Time-domain feature FC feature Wavelet feature

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

GA 87.40± 1.43% 82.10± 2.96% 80.80± 2.04% 83.80± 1.69% 91.70± 1.70% 77.30± 2.06%

(91.00%) (82.00%) (84.00%) (85.00%) (94.00%) (80.00%)

PSO 85.40± 2.01% 82.10± 2.77% 78.50± 2.46% 80.30± 3.33% 90.40± 1.51% 73.60± 2.37%

(87.00%) (85.00%) (80.00%) (83.00%) (91.00%) (78.00%)

pGAPSO-I 86.20± 1.40% 83.60± 2.55% 79.00± 2.94% 83.50± 2.32% 88.90± 2.08% 75.80± 1.99%

(86.00%) (87.00%) (85.00%) (82.00%) (90.00%) (77.00%)

pGAPSO-II 85.30± 1.16% 84.00± 1.76% 80.10± 3.38% 82.80± 3.36% 89.60± 2.22% 75.40± 3.24%

(85.00%) (87.00%) (80.00%) (87.00%) (90.00%) (79.00%)

pGAPSO-III 85.70± 0.95% 83.60± 2.22% 78.90± 3.14% 82.60± 3.34% 90.40± 1.58% 73.30± 2.11%

(87.00%) (86.00%) (79.00%) (89.00%) (88.00%) (78.00%)

sPSOGA 86.20± 2.25% 80.30± 2.91% 78.00± 3.56% 83.50± 3.78% 89.90± 1.52% 73.00± 2.16%

(90.00%) (81.00%) (84.00%) (86.00%) (92.00%) (78.00%)

sGAPSO 85.90± 2.08% 83.40± 2.95% 81.20± 2.20% 82.40± 0.97% 90.30± 1.70% 76.10± 2.96%

(86.00%) (87.00%) (85.00%) (83.00%) (91.00%) (79.00%)

The values in parathesis corresponded to the results using optimal channel combination.

TABLE 4 Comparison of the 10-fold cross-validation results using

di�erent features before and after channel optimization.

Time-domain

feature

FC feature Wavelet

feature

Accuracy 76.50/86.50% (8) 66.00/85.00% (19) 74.00/87.00% (16)

Sensitivity 83.00/86.00% 66.00/84.00% 86.00/94.00%

Specificity 70.00/87.00% 66.00/86.00% 62.00/80.00%

The data were organized as: result with 52 channels/the best result by channel

optimization, with the number of channels in the parathesis.

Results

Performance of di�erent features and
optimizers

Table 1 shows the accuracy and the number of channels

obtained using different features and optimizers. The optimized

channels of the best results obtained by different features

and optimizers are detailed in Table 2. Figure 7 depicts the

overlay heatmap of these channels according to the number

of their occurrences. The best results were obtained by GA

and wavelet feature, with the highest accuracy of 87.00% by

using 16 channels. Furthermore, the number of channels was

reduced to eight, and an accuracy of 86.50% was achieved by

using pGAPSO-I on the time-domain feature. Table 3 shows the

sensitivity and specificity by different features and optimizers.

The comparison for sensitivity and specificity by channel

optimization is in Table 4. It was found that accuracy, sensitivity

and specificity were improved by channel optimization.

Statistical analysis of accuracy with
di�erent features and optimizers

As the interaction between the feature and optimizer was not

statistically significant (F = 1.427, p = 0.156, η
2 = 0.083), the

additive model was used for statistical analysis of classification

accuracy. Results showed that both feature (F = 92.215, p <

0.001, η2 = 0.479) and optimizer (F = 8.476, p < 0.001, η2 =

0.202) significantly affected the accuracy. Among three features,

the time-domain feature performed better than the wavelet

feature (p < 0.001, mean difference (MD) = 1.821%), which, in

return, performed better than the FC feature (p < 0.001, MD =

1.450%). In the case of optimizers, GA performed better than

PSO (p < 0.001, MD = 2.133%), pGAPSO-III (p = 0.003, MD

= 1.433%), and sPSOGA (p < 0.001, MD = 2.033%), while no

significant difference was noted between GA and pGAPSO-I/II

(p = 0.134/0.174) and between GA and sGAPSO (p = 1.000).

sGAPSO performed significantly better than PSO (p = 0.001,

MD = 1.500%) and sPSOGA (p = 0.004, MD = 1.400%),

and no significant difference was found between sGAPSO

and pGAPSO-I/II (p = 1.000 for both) and between sGAPSO

and pGAPSO-III (p = 0.656). No significant difference was

observed between sPSOGA and PSO (p = 1.000) and between

sPSOGA and pGAPSO-I/II/III (p = 0.134/0.102/1.000). No

significant difference was noted between pGAPSO-I/II/III (p

= 1.000 for all). However, pGAPSO-II performed significantly

better than PSO (p = 0.044, MD = 1.150%), and no significant

difference was found between PSO and pGAPSO-I/III

(p= 0.058/1.000).

In conclusion, the time-domain feature yielded the best

accuracy, followed by the features from wavelet and FC.
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GA, pGAPSO-II, and sGAPSO exhibited similar performances

in terms of accuracy, outperforming PSO, pGAPSO-I/III,

and sPSOGA.

Statistical analysis of the number of
channels between di�erent features and
optimizers

As the interaction between the feature and optimizer

was significant (F = 3.588, p < 0.001, η
2 = 0.186), the

interaction model was applied for statistical analysis of the

number of channels. Both feature (F = 121.452, p < 0.001,

η
2 = 0.562) and optimizer (F = 39.280, p < 0.001, η

2 =

0.555) significantly influenced the number of channels. Among

different features, FC feature utilized more channels than time-

domain and wavelet features (p < 0.001 for both; MD =

6.56 and 7.63, respectively), and no significant difference was

observed between time-domain andwavelet features (p= 0.134).

No significant difference was found between the serial hybrid

algorithm and GA and between the serial hybrid algorithm and

PSO (p= 1.000 for both), while all of them required much more

channels than pGAPSO-I/II/III (p < 0.001, MD ≥ 5.57). No

significant difference was noted between pGAPSO-I and II (p =

0.946) and between pGAPSO-I/II and III (p= 1.000 for both).

To summarize, channel reduction by using time-domain and

wavelet features was similar, and both of them were superior to

the FC feature. The ability of channel reduction by pGAPSO-

I/II/III was similar and outperformed the other optimizers.

Discussion

Accuracy achieved using di�erent
features and optimizers

Temporal average, pair-wise FC, and wavelet feature are

shown in Figures 8–10, respectively. The results were averaged

for the HCs and SZs during the VFT. The reduced activation

within SZs was salient in time-domain and wavelet features.

The results were consistent with hypofrontality (reduced

frontal cortical activation), which is frequently reported in

schizophrenia (35). This has been demonstrated by many

practices as the primary hemodynamic effect was widely used in

identifying schizophrenia. In contrast, FCmeasured the regional

and interregional interactions. We hypothesized that SZs were

incapable of modulating the segregation and integration of

hemodynamic activities from various brain regions, seemingly

indiscernible compared to time-domain and wavelet features

(Figure 9 vs. Figures 8, 10). Moreover, the difference between

HCs and SZs in terms of wavelet features was significant,

resulting in the analysis based on wavelet features yielding the

highest accuracy.

Both GA and PSO are based on nature-inspired stochastic

searching techniques. GA is popular for its superior global

searching ability and PSO for its local exploration ability.

However, GA and PSO have certain limitations, such as

a lack of diversity resulting in a suboptimal solution or

a slow convergence rate (30). In this study, GA and GA-

dominant (pGAPSO-II and sGAPSO) optimizers exhibited

superior performances than PSO-dominant optimizers in terms

of accuracy, indicating that the search volume might contain

many local optima, thus being liable to trap the PSO particles

during local exploration. A previous study substantiated this

assumption: the discriminating ability achieved by signals from

an individual channel was rather similar; for example, the

highest accuracy of the first five channels ranged from 77.50 to

82.50% (12). Thus, different combinations can achieve similar

performances. Serial algorithms performed worse compared

with parallel algorithms. This can be attributed to the PSO

process leading to premature convergence of the individuals,

which can be avoided in parallel algorithms, or the diversity

produced by GA getting obscured by the follow-up PSO

step (36).

Parallel algorithms achieved higher accuracy compared to

GA while using fewer channels, thereby showing the importance

of incorporating PSO in the optimizer because it facilitates

local exploration in a feature hyperspace comprising very

subtle differences.

The analysis provided insights on future work of

discriminating schizophrenia with fewer fNIRS channels

during a VFT by using time-domain/wavelet features

and evolutional algorithm-dominated parallel algorithms

while achieving an overall accuracy comparable to

that of contemporary 52-channel fNIRS [70–90%

(12–14, 37–40)]. Furthermore, Table 5 lists the detailed

comparison between this work and similar studies aiming

at channel reduction. We achieved an accuracy of 86.50%

with 8 channels by using pGAPSO-I, SVM, and time-domain

average features derived from oxy-Hb signals during the

VFT, outperforming other studies. This result demonstrates

the effectiveness of discriminating SZs and HCs with fewer

channels, promoting the application of portable fNIRS devices

in clinical scenarios. By then, for people with developmental

dyslexia/specific language impairment the Structured Clinical

Interview for DSM-IV will be used for co-diagnosis.

Tables 3, 4 indicates enhanced classification performance

by optimization. It could be attributed to the elimination of

the irrelevant features (e.g., noise, outliers, redundant features),

which affected the system performance (41).

Optimized channel combinations

The best channel sets (Table 2) varied for different features

and optimizers, but some common points existed. First,
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FIGURE 8

Time-domain feature of 52 channels averaged for the HCs and SZs during the VFT, respectively. The error bars were drawn with standard errors.

FIGURE 9

FC feature of 52 channels averaged for the HCs and SZs during the VFT, respectively.

channels in lDLPFC and mPFC were manifested in every

combination; in particular, most cases contained no less

than two channels in mPFC, with one exception (sPSOGA

on FC feature). Second, lDLPFC acted as key nodes in

FC analysis because more than two channels in lDLPFC

were included in the results of the analysis. Third, lDLPFC,

mPFC, and rDLPFC appeared in most of the cases (with

the exception of pGAPSO-II in the time-domain feature).

Fourth, channels in ISTC were found in most of the cases

(with exceptions of sGAPSO in the time-domain feature and
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FIGURE 10

Wavelet feature of 52 channels averaged for the HCs and SZs during the VFT, respectively. The error bars were drawn with standard errors.

TABLE 5 Comparison between this study and similar 52-channel fNIRS studies aiming at channel reduction in schizophrenic identification.

References Task Signal Feature Feature selection

method

Classifier Accuracy Number of

channels

Specific

channels

Chuang et al. (39) VFT oxy-Hb Time-domain average Two-sample

Kolmogorov–Smirnov

test

K-means

clustering

71.72% 6 23 29 31 40 42 52

Ji et al. (13) VFT oxy-Hb FC Seed-based FC analysis SVM 89.67% 26 3–4, 15–18, 24–29,

34–38, 43–50 and 52

Chen et al. (17) One-back

memory

task

total-Hb Activation degree in time

domain

Independent sample

t-test

SVM 89.50% 39 1–17, 19–21, 26,

30–31, 33, 35, 37,

39–50 and 52

Ours VFT oxy-Hb Wavelet energy GA SVM 87.00% 16 1 3 6 7 9 10 13 16 19

29 30 32 34 39 45 48

Time-domain average pGAPSO-I SVM 86.50% 8 3 4 19 26 30 39 47 51

total-Hb, relative concentration of total hemoglobin.

pGAPSO-I in the wavelet feature), while channels in lVLPFC

were missing in FC analysis (PSO and pGAPSO-I/II). The

results were consistent with the neurophysiological function of

the individual cortex; for example, mPFC plays an important

role in decision making and short- and long-term memory

(42). It coordinated bilateral DLPFC and VLPFC functions

(43), which were recruited in cognitive control and self-control

(44–46), response inhibition, and goal-appropriate response

selection (47). Further, dysfunction in lDLPFC is related

to the severity of schizophrenic symptoms and conceptual

disorganization, which are not related to antipsychotic treatment

(48). Therefore, it was reasonable to observe abnormalities

in these cortices and the importance of lDLPFC as a key

node for FC feature. In addition, because lSTC was critical

for language ability (49), the dysfunction of this region could

be manifested in the VFT. Remarkedly, its absence was

observed only in two cases with mediocre accuracy (sGAPSO

on the time-domain feature and pGAPSO-I on the wavelet
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feature). The abovementioned findings correlated with the

cortical abnormalities of schizophrenia observed across different

imaging modalities.

Limitations

This study has some limitations. Firstly, the staging of

schizophrenia was not conducted due to the lack of labels on the

stages of schizophrenia. Secondly, most of the parameters were

adopted from previous studies and were not further fine-tuned.

Further extensive tuning of the parameters can be conducted in

future work.

Conclusion

In this paper, two nature-inspired optimizers, GA and PSO,

as well as their parallel and serial hybrid combinations, were

used to simplify the number of fNIRS channels employed for

discriminating schizophrenia during a VFT. The optimization

was conducted on time-domain, FC, and wavelet features of

52-channel fNIRS signals. By using the time-domain feature,

pGAPSO-I, and SVM, we achieved an accuracy of 86.50%

(ten-fold cross-validation) with 8 channels. Based on the

results, the impact of specific features and optimizers on

the classification results was discussed. Furthermore, the

results provided insights into identifying patients with

schizophrenia by using fewer channels, thus promoting

the development of portable fNIRS diagnostic systems in

low-resource environments.
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