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Background: Previous studies have probed the brain static activity pattern in

bipolar disorder across different states. However, human intrinsic brain activity

is time-varying and dynamic. There is a lack of knowledge about the brain

dynamical pattern in bipolar disorder across different mood states.

Methods: This study used the dynamical degree centrality (dDC) to investigate

the resting-state whole-brain dynamical pattern voxel-wise in a total of 62

bipolar disorder [28 bipolar depression (BD), 13 bipolar mania (BM), 21 bipolar

euthymia (BE)], and 30 healthy controls (HCs). One-way analysis of variance

(ANOVA) was applied to explore the omnibus differences of the dDC pattern

across all groups, and Pearson’s correlation analysis was used to evaluate

the relationship between the dDC variability in detected regions with clinical

symptom severity.

Results: One-way ANOVA analysis showed the omnibus differences in

the left inferior parietal lobule/middle occipital gyrus (IPL/MOG) and right

precuneus/posterior cingulate cortex (PCUN/PCC) across all groups. The

post hoc analysis revealed that BD showed decreased dDC in the IPL/MOG

compared with all other groups, and both BD and BM exhibited decreased

dDC in the PCUN/PCC compared with BE and HCs. Furthermore, correlation

analysis showed that the dDC variability of the IPL/MOG and PCUN/PCC

negatively correlated with the depression symptom levels in all patients with

bipolar disorder.

Conclusion: This study demonstrated the distinct and shared brain dynamical

pattern of the depressive, manic, and euthymia states. Our findings provide

new insights into the pathophysiology of bipolar disorder across different

mood states from the dynamical brain network pattern perspective.

KEYWORDS

bipolar disorder, dynamical degree centrality, inferior parietal lobule, precuneus,
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Introduction

Bipolar disorder (BD) is a mood disorder with alternating
periods of depression (hypo) mania [bipolar mania (BM)],
and euthymic mood states [bipolar euthymia (BE)] (1). It
affects > 1% of the global population and is a leading cause
of disability worldwide (2). Previous studies have reported
the abnormal structural, activation, and functional connectivity
underlying bipolar disorders (3–6). However, limited studies
have considered the various mood episodes in bipolar disorders.
Therefore, further research is needed to investigate the
pathophysiological mechanisms of bipolar disorder across
different mood states (7, 8).

Previous studies have explored the distinctive neural
mechanism underlying different mood states of bipolar
disorder. For example, Martino et al. have reported the
sensorimotor and default-mode networks (DMNs) showed
opposite variation patterns in BD and BM (9). Russo et al. have
documented that BD showed the altered regional homogeneity
in the primary sensorimotor cortex, and BM showed altered
regional homogeneity and degree centrality (DC) in the
medial prefrontal cortex (10). These findings may indicate
that the functional connectivity imbalance pattern between the
sensorimotor and DMN is related to the clinical mood state of
bipolar disorder. Meanwhile, a prior study has reported that
both BD and BM showed higher activation in the right insula,
right putamen, and left lateral prefrontal cortex when inhibiting
sad faces compared with BE and healthy controls (HCs) (11). In
addition, compared with HCs, both BD and BM showed reduced
activation in the dorsolateral prefrontal cortex during an N-back
working memory task, but there were no differences manifested
compared with BE (12). These findings indicated that they have
shared and distinct brain patterns among the different mood
states of bipolar disorder.

It has been reported that the human brain is a highly
dynamic and time-varying system and maintains a dynamic
balance to ensure effective communication between various
brain regions (13–15). The analysis methods of looking into
the brain dynamical pattern have been adopted for investigating
neural mechanisms of mental disorders (16–18). For example,
Fu et al. have reported the dynamical pattern in patients with
schizophrenia by using the dynamical low-frequency fluctuation
amplitude and dynamical functional connectivity (16), and our
prior studies also have investigated the differences between
BD and unipolar depression by using the dynamical fractional
amplitude of low-frequency fluctuations and dynamical regional
homogeneity, respectively (19, 20). However, to the best of
our knowledge, no study has investigated the brain dynamical
pattern in bipolar disorder across three different mood states.
Thus, this study aimed to fill this blank.

In this study, we used the voxel-wise dynamic degree
centrality DC (dDC) approach to explore the dynamical pattern
of the resting-state whole-brain functional connectome in

bipolar disorder across three states. DC is an index of the total
weight of connections for a given node (15) and has been widely
used in psychiatric disorders as an analytic measurement to
reveal the core-hub architecture of brain networks (21–23). The
dDC approach adds the sliding-window step to measure the
time-varying features of the DC maps (24). By adopting this
method, we first hypothesized that the dynamical pattern of the
whole-brain functional connectome will be distinctive across
three mood states (i.e., mania, depression, euthymia), and it
will be strongly related to the severity of the clinical symptoms.
We further hypothesized that the distinctive dDC value across
three states would tend to be distributed in the DMN and
sensorimotor areas that have been repeatedly reported in
previous studies. By studying the differences in bipolar disorder
across different mood states in terms of dDC, we can have a
more comprehensive understanding of the bipolar disorder.

Materials and methods

Participants

A total of 77 patients with bipolar disorder were enrolled
in this study, including 32 patients with BD, 20 patients with
BM, and 25 patients with BE. All patients were recruited
from the inpatient or outpatient department of the Second
Xiangya Hospital, Central South University. To reduce the
heterogeneous impact of different typing patients with bipolar
disorder, our study only included patients with type I bipolar
disorder (25). They were diagnosed as bipolar disorder type I
(including the BD, BM, or BE) using the Structured Clinical
Interview for DSM-IV Axis I Disorders, Patient Edition
(SCID-I/P) (26). The clinical symptoms were comprehensively
assessed by two experienced psychiatrists using the Hamilton
Depression Scale (HAMD) (27), Young Mania Rating Scale
(YMRS) (28), Hamilton Anxiety Rating Scale (HAMA) (29),
and Brief Psychiatric Rating Scale (BPRS) (30), respectively.
HAMD is the most commonly used scale to clinically assess
depression status and its severity. HAMA is mainly used
to assess the severity of anxiety symptoms in patients.
YMRS is mainly used to assess manic symptoms and their
severity. BPRS is mainly used to assess the severity of the
patient’s psychiatric symptoms. The inclusion criteria were
the HAMD score ≥ 17 and the YMRS score < 6 for BD;
the YMRS score ≥ 12 and the HAMD score < 8 for BM;
the HAMD score < 8 and the YMRS score < 6 for BE
(31, 32).

A total of 35 HCs were recruited from the local universities
and communities through advertisement and using the
Structured Clinical Interview for DSM-IV, Non-patient Edition
(SCID-I/NP). To better understand our sample, all participants
were assessed by using the Wechsler Adult Intelligence Scale
(WAIS) (33), including WAIS-Knows and WAIS-Digit symbol.
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FIGURE 1

Illustration of analysis steps. dDC, dynamical degree centrality; BD, bipolar depression; BM, bipolar mania; BE, bipolar euthymia; HCs, healthy
controls.

All participants were excluded if they had any of the
following: (1) < 18 years old or > 45 years old; (2)
previous neurological diseases or serious physical illness;
(3) previous alcohol or other psychoactive substance abuse;
(4) previous electroconvulsive therapy; and (5) had taken
benzodiazepines within 24 h before scanning or any other
contraindications to MRI.

This study was conducted in accordance with the ethical
guidelines of the medical ethics committee of the Second
Xiangya Hospital, Central South University, and in strict
accordance with the Declaration of Helsinki. Participants were
informed and agreed to participate in the study and were free to
withdraw from the research at any time.

Data acquisition and preprocessing

All MRI data were collected as soon as possible after
the patient’s first visit to the clinic using a 3.0 Tesla Philips
Gyrosan Achieva (Amsterdam, The Netherlands) scanner. In

the scanning, all participants were explicitly instructed to keep
their eyes closed and stay awake. A gradient-echo echo-planar
imaging sequence was used with the following parameters: axial
slice = 36, matrix = 64 × 64, repeat time = 2,000 ms, echo
time = 30 ms, field of view = 240 mm × 240 mm, flip angle = 90◦,
slice thickness = 4 mm, scanning interval = 0 mm, in a total of
250 total volumes.

Data preprocessing was carried out using DPABI1 (34). The
first 10 volumes were removed to allow magnetization balance
and adaptation to the environment (35). The remaining 240
functional scans were done with the following analyses: all
participants had < 3 mm maximum displacement in x, y, or
z and less than 3◦ of angular rotation about each axis, spatial
normalization of the Montreal Neurological Institute (MNI),
resampled to the voxel size of 3 × 3 × 3 mm3 then the
BOLD signal of each voxel was detrended to abandon linear
trends and passed through a bandpass filter (0.01–0.08 Hz).

1 http://rfmri.org/dpabi
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We also employed the scrubbing step by removing outlier
volumes with frame-wise displacement (FD) > 0.5 mm. Finally,
interference covariates were regressed out from the BOLD
signals, including six head motions and their temporal first
derivatives (36), global mean signals, white matter signals, and
cerebrospinal fluid signals.

A total of 20 participants were excluded due to their
excessive head movement or inability to cooperate during fMRI
scanning. After data quality control, 92 subjects (including 28
patients with BD, 13 patients with BM, 21 patients with BE, and
30 patients with HCs) participated in the following analyses.

Temporal variability of the dynamical
degree centrality

As mentioned earlier, DC is a widely used method to
describe intrinsic brain connectivity at a global level (37).
In this study, by using the Dynamic Brain Connectome
(DynamicBC) toolbox, the temporal variability of voxel-wise
dDC was calculated according to the sliding-window approach.
According to the recommendations of the previous studies (38),
we used a window length of 50 TRs (100 s) to calculate the
temporal variability of dDC. We obtained a dDC map for each
sliding window and then computed the coefficient of variation
across all sliding windows to explore the dDC variability of the
four groups. Finally, the dDC map was smoothed with full-
width at half maximum = 6 mm. The analytical steps of this
study are illustrated in Figure 1.

Validation analyses

To validate our main findings, we reperformed the analysis
by using a sliding-window length of 70 TRs (140 s).

Statistical analysis

The demographic and clinical characteristics of the four
groups have been analyzed using SPSS 21.0. Differences in
age, education, illness duration, age of onset, manic episodes
times, depressive episodes times, mean FD, WAIS–Knows,
WAIS-Digit symbol, HAMD, YMRS, HAMA, BPRS, and
chlorpromazine (CPZ) equivalents (39) were analyzed with a
one-way analysis of variance (ANOVA). A chi-square test was
used to calculate the differences in gender across all groups.

The dDC variability among the four groups was performed
using Statistic Parameter Mapping 8 software.2 One-way
ANOVA was carried out to compare the dDC variability among

2 www.fil.ion.ucl.ac.uk/spm

the due groups voxel-wise with age, gender, and education
years as nuisance covariates. Then, by applying the significant
voxels that survived in one-way ANOVA analysis as the mask,
the post hoc t-tests were performed between any two groups.
The threshold was set at voxel-level pvoxel < 0.005 and cluster
size > 60 (AlphaSim corrected, pcluster < 0.05).

Finally, Pearson’s correlation analysis was used to evaluate
the relationship between the altered dDC variability with the
HAMD score and YMRS score.

Results

Demographic and clinical
characteristics

No significant differences were detected for age
[F(3,91) = 0.710, p = 0.548], gender (χ2 = 0.174, p = 0.677),
education [F(3,91) = 2.440, p = 0.070], mean FD [F(3,91) = 1.517,
p = 0.216], and WAIS-knows [F(3,91) = 1.216, p = 0.309]
in all groups. However, WAIS-Digit symbol score of
the three patient groups was lower than that of HCs
[F(3,91) = 11.507, p < 0.001]. Three patient groups were
matched with illness duration [F(3,91) = 1.374, p = 0.261],
age of onset [F(3,91) = 0.116, p = 0.891], manic episodes
times [F(3,91) = 0.576, p = 0.565], and depressive episodes
times [F(3,91) = 1.153, p = 0.323]. In addition, BD showed a
higher score of HAMD [F(3,91) = 122.500, p < 0.001], HAMA
[F(3,91) = 33.129, p < 0.001], BPRS [F(3,91) = 13.874, p < 0.001]
than that of BM and BE, while BM showed a higher score of
YMRS [F(3, 91) = 140.063, p < 0.001] than that of BD and
BE. Moreover, significant differences were found for CPZ
equivalents [F(3,91) = 7.413, p = 0.001] in three patient groups,
and BE took more antipsychotics than that of BD (t = 2.80,
p = 0.014) and BM (t = 1.917, p = 0.073). Detailed results are
shown in Table 1 and Supplementary Table 1.

Temporal variability of the dynamical
degree centrality

One-way ANCOVA showed significant dDC variability
differences among the four groups in left inferior parietal
lobule/middle occipital gyrus (IPL/MOG; MNI [x = −36,
y = −72, z = 33]; F(3,91) = 9.58; see Figure 2 and Table 2) and
right precuneus/posterior cingulate (PCUN/PCC; MNI [x = 15,
y = −60, z = 15]; F3,91 = 9.04; see Figure 2 and Table 2). The
post hoc t-tests revealed that BD showed decreased dDC in the
IPL/MOG compared with BM (t = −3.76), BE (t = −4.66),
and HCs (t = −4.77). The post hoc t-tests revealed that BD
showed decreased dDC in the PCUN/PCC compared with BE
(t = −4.26) and HCs (t = 4.21), and BM showed decreased dDC
in the PCUN/PCC compared with BE (t = −3.85). In addition,
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TABLE 1 Cohort demographics and clinical characteristics.

Characteristics BD
(n = 28)

BM
(n = 13)

BE
(n = 21)

HCs
(n = 30)

F/χ 2 P

Age (years) 26.50 ± 6.76 27.69 ± 7.34 26.95 ± 6.25 24.93 ± 6.17 0.710 0.548b

Gender (M/F) 12/16 5/8 11/10 15/15 0.174 0.677a

Education (years) 13.04 ± 3.05 11.31 ± 3.01 13.98 ± 2.60 12.73 ± 2.69 2.440 0.070b

Illness duration (months) 52.83 ± 53.16 78.38 ± 91.57 42.86 ± 40.47 N/A 1.374 0.261b

Manic episodes (times) 2.32 ± 2.93 3.38 ± 3.20 2.67 ± 2.82 N/A 0.576 0.565b

Depressive episodes (times) 3.54 ± 3.17 2.08 ± 2.33 4.05 ± 4.92 N/A 1.153 0.323b

Age of onset (years) 21.43 ± 4.29 21.75 ± 6.59 22.15 ± 5.25 N/A 0.116 0.891b

WAIS-Knows 19.64 ± 4.74 18.05 ± 4.98 20.37 ± 4.38 20.69 ± 4.33 1.216 0.309b

WAIS-Digit symbol 65.29 ± 18.29 62.83 ± 14.87 73.33 ± 13.39 84.97 ± 10.31 11.507 <0.001b

CPZ-equivalents (mg) 13.10 ± 51.39 50.00 ± 99.54 149.89 ± 188.18 N/A 7.413 0.001b

Mean FD 0.12 ± 0.36 0.12 ± 0.03 0.14 ± 0.59 0.15 ± 0.10 1.517 0.216b

ap-value for chi-square test.
bp-values for one-way ANOVA. Values are presented by mean ± standard deviation. BD, bipolar depression; BM, bipolar mania; BE, bipolar euthymia; HCs, healthy controls; WAIS,
Wechsler Intelligence Scale; CPZ, chlorpromazine; FD, frame-wise displacement; N/A, not available.

FIGURE 2

Brain regions showed significant omnibus differences of the dDC variability among four groups. (A) The BD group showed a decreased dDC
variability compared with all other groups in IPL/MOG. (B) Both the BD and BM groups exhibited decreased dDC compared with BE in
PCUN/PCC. *p < 0.05. dDC, dynamical degree centrality; BD, bipolar depression; BM, bipolar mania; BE, bipolar euthymia; HCs, healthy
controls; IPL/MOG, inferior parietal lobule/middle occipital gyrus; PCUN/PCC, precuneus/posterior cingulate cortex.

we did not observe any significant correlations between the dDC
variability of areas with omnibus differences and mean FD in all
participants (see Supplementary Figure 1).

Validation results

We also observed the omnibus dDC differences in
IPL/MOG and PCUN/PCC using 70 TRs. The results were
essentially in agreement with that of 50 TRs, and the details are
summarized in Supplementary Table 2.

Correlation analysis

Correlation analyses revealed significant negative
correlations between the HAMD score and the dDC variability
of the IPL/MOG (r = −0.439, p < 0.001) and PCUN/PCC
(r = −0.458, p < 0.001), but no significant correlation was

found between the YMRS score and the dDC variability of the
IPL/MOG (r = 0.192, p = 0.138) and PCUN/PCC (r = 0.177,
p = 0.172) (see Figure 3 and Table 3).

Discussion

To the best of our knowledge, this is the first study to
investigate the dDC variability of the whole-brain functional
connectome at the voxel-wise across all diagnostic groups.
We found significant dDC differences among all groups in
the IPL/MOG and PCUN/PCC. More specifically, the BD
group showed a decreased dDC in the IPL/MOG compared
with all other groups. Both the BD and BM groups exhibited
decreased dDC in PCUN/PCC compared with BE. Furthermore,
correlation analysis showed that dDC variability of the
IPL/MOG and PCUN/PCC negatively correlated with scores of
depressive symptoms in all patients.
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TABLE 2 Brain regions with significant dDC difference among the four groups.

One-way ANOVA F Post hoc analysis

Brain region MNI BA Voxels Comparisons T

X Y Z

IPL/MOG −36 −72 33 19 62 9.58 BD < BM
BD < BE

BD < HCs

−3.76
−4.66
−4.77

PCUN/PCC 15 −60 15 30 63 9.04 BD < BE
BD < HCs
BM < BE

−4.26
−4.21
−3.85

dDC, the dynamical degree centrality; BD, bipolar depression; BM, bipolar mania; BE, bipolar euthymia; HCs, healthy controls; MNI, Montreal Neurological Institute; BA, Brodmann
area; IPL/MOG, inferior parietal lobule/middle occipital gyrus; PCUN/PCC, precuneus/posterior cingulate cortex.

FIGURE 3

Correlation analysis of the dDC variability with manic/depressive symptoms in all patients with bipolar disorder. (A) Pearson’s correlation
between the altered dDC variability in the IPL/MOG with HAMD score. (B) Pearson’s correlation between the altered dDC variability in
PCUN/PCC with the HAMD score. dDC, dynamical degree centrality; BD, bipolar depression; BM, bipolar mania; BE, bipolar euthymia; HCs,
healthy controls; IPL/MOG, inferior parietal lobule/middle occipital gyrus; PCUN/PCC, precuneus/posterior cingulate cortex.

We observed decreased dDC variability of the IPL/MOG
in BD compared with other groups, and the dDC variability
negatively correlated with the HAMD scores. The IPL/MOG
involves emotion regulation, reaction inhibition, and self-
circulation processing (40). Qiu et al. have reported that both
patients with BD and patients with major depressive disorder
showed abnormal fractional ALFF in the IPL/MOG compared
with HCs (41). Zhang et al. have documented those patients
with BE and BD manifested disrupted functional connectivity
in IPL/MOG during resting-state (42). Furthermore, consistent
with this study, Luo et al. have adopted the dynamical functional
connectivity and observed that both patients with BD and
patients with major depressive disorder displayed reduced
dynamical functional connectivity between the IPL/MOG and
precuneus (43). These studies may suggest that deficits of
the static or dynamical regional activity or distal functional
connectivity in the IPL/MOG are more pronounced in
the depressive state. Accordingly, we speculate that the
IPL/MOG would be a potential biomarker that distinguishes
BD from BM and BE.

Compared with BE, both BD and BM exhibited decreased
dDC in the PCUN/PCC, while no significant difference

was found for BD and BM. Consistent with our results,
a meta-analysis based on large samples reported that both
BD and BM presented decreased connectivity within the
DMN, but BE showed increased connectivity (44). The
PCUN/PCC is a crucial component in the DMN and acts
as an intermediate hub with other networks (45). Previous
studies have documented patients with bipolar disorder
manifested imbalanced functional connectivity between DMN
and salience network (46). It was reported that BD showed
decreased functional connectivity between the perigenual

TABLE 3 Correlation analysis of dDC variability with
manic/depressive symptoms in all patients with bipolar disorder.

Variable IPL/MOG PCUN/PCC

HAMD r -0.439 −0.458

p 0.000** 0.000**

YMRS r 0.192 0.177

p 0.138 0.172

**p < 0.001. dDC, the dynamical degree centrality; HAMD, 17-item Hamilton
Depression Rating Scale; YMRS, Young Mania Rating Scale; IPL/MOG, inferior parietal
lobule/middle occipital gyrus; PCUN/PCC, precuneus/posterior cingulate cortex.
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anterior cingulate cortex and anterior cingulate cortex, and
BM showed decreased functional connectivity between the
perigenual anterior cingulate cortex and PCUN/PCC.

We also observed the abnormal dDC in the PCUN/PCC
correlated with depressive symptoms. Zhong et al. have
documented that patients with BD showed intrinsic activity
abnormalities under specific frequency bands in the PCUN/PCC
and MOG (47). A prior study has reported that patients with
BM showed decreased connectivity within the PCUN/PCC, and
it correlated with clinical severity scores (48). Combining with
our findings of the shared decreased dDC in the PCUN/PCC
between the BD and BM groups, we speculate that this area may
have important implications to be a potential intervention target
for bipolar disorder during active phases (i.e., BD and BM).

It should be noted that this study has some limitations.
First, our small sample size, especially the BM group (the
sample size is 13), which may limit the statistic power and
easily cause the type I and II errors, and the results should
be considered preliminary. In addition, this is a cross-sectional
study that can only observe the current time measurements
of the brain dynamical connectivity pattern, and we did not
collect the longitudinal data of patients with bipolar disorder
in different mood states. Therefore, further longitudinal studies
with larger samples are needed to verify our results, and any
generalization of the findings of this study needs to be carefully
made. Finally, considering the drugs taken by the patients at
the time of enrollment, we cannot ignore the possible impact
of drugs on our results.

Conclusion

Our study investigated the brain dynamical pattern in
bipolar disorder across different mood states by using the dDC
variability index. We observed the detected dDC abnormalities
in IPL/MOG were unique to BD, and the dDC abnormalities
PCUN/PCC both manifested in BD and BM. It may indicate that
there are common and different patterns of the dynamic brain
connectome pattern of bipolar disorder in different states. Our
findings provide an insight into the resting-state global brain
network dynamics in bipolar disorder.
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