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Introduction: 3,4-methylenedioxymethamphetamine-assisted therapy

(MDMA-AT) for post-traumatic stress disorder (PTSD) has demonstrated

promise in multiple clinical trials. MDMA is hypothesized to facilitate the

therapeutic process, in part, by decreasing fear response during fear memory

processing while increasing extinction learning. The acute administration of

MDMA in healthy controls modifies recruitment of brain regions involved in

the hyperactive fear response in PTSD such as the amygdala, hippocampus,

and insula. However, to date there have been no neuroimaging studies aimed

at directly elucidating the neural impact of MDMA-AT in PTSD patients.

Methods: We analyzed brain activity and connectivity via functional MRI

during both rest and autobiographical memory (trauma and neutral) response

before and two-months after MDMA-AT in nine veterans and first-responders

with chronic PTSD of 6 months or more.

Results: We hypothesized that MDMA-AT would increase amygdala-

hippocampus resting-state functional connectivity, however we only found

evidence of a trend in the left amygdala—left hippocampus (t = –2.91,

uncorrected p = 0.0225, corrected p = 0.0901). We also found reduced

activation contrast (trauma > neutral) after MDMA-AT in the cuneus. Finally,

the amount of recovery from PTSD after MDMA-AT correlated with changes

in four functional connections during autobiographical memory recall: the left

amygdala—left posterior cingulate cortex (PCC), left amygdala—right PCC, left

amygdala—left insula, and left isthmus cingulate—left posterior hippocampus.

Discussion: Amygdala—insular functional connectivity is reliably implicated in

PTSD and anxiety, and both regions are impacted by MDMA administration.

These findings compliment previous research indicating that amygdala,
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hippocampus, and insula functional connectivity is a potential target of

MDMA-AT, and highlights other regions of interest related to memory

processes. More research is necessary to determine if these findings are

specific to MDMA-AT compared to other types of treatment for PTSD.

Clinical trial registration: https://clinicaltrials.gov/ct2/show/NCT02102802,

identifier NCT02102802.

KEYWORDS

PTSD, MDMA, amygdala, hippocampus, insula, fMRI, functional connectivity,
autobiographical memory

1. Introduction

Post-traumatic stress disorder (PTSD), which can arise
following exposure to a traumatic event or repeated stressful
events and is a debilitating social and economic burden on
individuals and their families (1, 2). PTSD is associated with
an increased fear response (3) and distressing and intrusive
re-experiencing of traumatic memories (4) that often serves
as a barrier to the therapeutic process. This may explain why
individuals with the most severe PTSD symptoms after trauma
are more likely to end up with chronic PTSD durations (5,
6). Lifetime occurrence of PTSD in the general population is
around 8%, and, prevalence is significantly higher in military
personnel (17.1%) and first responders (10–32%), individuals
on the front lines of societal trauma (7, 8). A meta-analysis of
trials for military-related PTSD found that cognitive behavioral
therapy and prolonged exposure therapy delivered clinically
meaningful symptom improvements in 49–70% of patients,
however 60–72% of veterans receiving these therapies still
retained their PTSD diagnosis (9). Adverse outcomes such as
increased symptoms and disengagement from treatment cause
many current psychological therapies for PTSD to have high
dropout rates (10), especially trauma focused therapies (11, 12).

One approach to developing more effective
psychotherapies for PTSD is to administer a drug
alongside psychotherapy to aid the therapeutic process
(13). 3,4-methylenedioxymethamphetamine-assisted therapy
(MDMA-AT) is hypothesized to reduce the fear response
associated with re-experiencing traumatic memories, and
therefore may facilitate tolerable processing of traumatic
content in patients with PTSD (14). Phase 2 and 3 trials have
demonstrated promise for MDMA-AT as a viable treatment
for PTSD (15–18). MDMA, particularly the R-enantiomer,
increases pro-social behavior and enhances fear extinction in
mice and this effect appears to be mediated by serotonergic
mechanisms (19, 20). In healthy humans, acute administration
of MDMA has been shown to enhance positive and reduce
negative affect during the recollection of autobiographical
memories, while preserving vividness and emotional intensity
(21). In another study, MDMA was found to preserve the
memory accuracy when administered during both encoding

and retrieval phases, while attenuating the recollection of salient
details for both positive and negative memories, suggesting
that MDMA alters emotional memory representations (22).
Again in healthy controls, MDMA was found to enhance
fear extinction learning/retention rates compared to placebo
when administered during extinction training phases (23,
24). These findings suggest that MDMA may aid the
therapeutic process, in part, by enabling patient access to
emotionally challenging material and facilitating memory
reconsolidation/fear extinction processes (25).

Functional magnetic resonance imaging (fMRI) measures
changes in regional blood oxygenation over time and is
thus used as a proxy for fluctuating neuronal activity. In-
scanner environments can be absent of stimuli (resting-state
fMRI—thought to measure intrinsic brain activity), or tasks or
stimuli may be presented to study the regional brain dynamics
underlying specific cognitive processes (26). In addition to
the study of isolated regional activation changes, functional
connectivity (FC) can be assessed to infer interaction between
two or more brain regions. FC is defined as the statistical
relationship (Pearson correlation in the case of the present
study) between two brain regions’ activity over time. These
tools have been used to study functioning of brain regions
and their networks in a wide range of neuropathology and
psychiatric disorders (27–29). PTSD patients have shown
altered functioning of the precuneus, posterior cingulate cortex
(PCC), anterior cingulate cortex (ACC), insula, prefrontal
and frontoparietal regions, as well as the hippocampus and
amygdala (30–43), suggesting augmented recruitment of brain
regions involved in self-referential processing (44), salient
autobiographical memory (45–49), and fear and emotion (50).

The specific effects of MDMA-AT on brain function
in individuals with PTSD have not been characterized, but
several studies suggest the amygdala and hippocampus may
play an important role. The amygdala is broadly associated
with fear response, and the hippocampus, associated with
learning and memory, may provide contextual information
necessary for cognitive-affect during memory recall (31, 36,
50). Sripada et al. (43) found combat veterans with PTSD
have decreased amygdala-hippocampal resting-state functional
connectivity (RSFC) compared to combat veterans without
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PTSD, which the authors speculate may represent an inability
to contextualize affective information in PTSD. Increased
amygdala-hippocampal RSFC following stress/trauma exposure
has been shown to correlate with recovery from stress or
trauma symptoms (51–53), suggesting a possible adaptive
mechanism to threat exposure. In healthy volunteers, the acute
administration of MDMA increases amygdala-hippocampal
RSFC (54). Intranasal oxytocin also increases amygdala-
hippocampal RSFC (53), and this effect appears to be mediated
by serotonin system signaling (55)—two neuromodulators
that MDMA significantly increases in the extracellular/plasma
concentration of, and that play a crucial role in its effects on
pro-social behavior and fear extinction (20, 56–61). Despite
evidence that RSFC between the amygdala and hippocampus
is implicated in PTSD and that this connection may be
modulated by MDMA, no study to date has shown relationships
between changes in these regions’ functional connectivity and
the therapeutic effects of MDMA-AT.

Herein, we describe results from a study of combat veterans
and first-responders undergoing MDMA-AT for PTSD in a
randomized, double-blind, dose-response phase 2 clinical trial
(62). The Clinician-Administered PTSD Scale (CAPS-IV) (an
hour-long, semi-structured interview centered around an index
trauma) (63) was assessed throughout the study to track PTSD
severity. Enrolled individuals had moderate-to-severe PTSD
with a chronic PTSD duration of 6 months or more. Both
resting-state and task-fMRI data, acquired while individuals
listened to trauma-related and neutral audio scripts, were
collected before and two months after MDMA-AT (follow-up
scans were collected after the blind was broken).

Prior to analysis, we hypothesized that MDMA-AT would
increase RSFC between the amygdala and hippocampus (43,
52–55, 64). We further hypothesized that, at baseline, brain
activity would be higher during the trauma-related listening task
compared with the neutral listening task in regions associated
with autobiographical memory, fear, and emotion, and that this
effect would be reduced post-treatment (30). In a final set of
analyses, we assessed pre-to-post treatment change in the FC of
several regions of interest contained within the limbic, salience,
and default mode networks known to be hyperactive in PTSD
(65) during the trauma and neutral autobiographical memory
task-fMRI scans. FC changes were then correlated with the pre-
to-post treatment recovery in overall PTSD symptomatology—
as measured by decreases in CAPS-IV total severity scores.

2. Methods

2.1. Trial design

The present study analyzed data from a sub-study
(NCT02102802) of a Phase 2 randomized, double-blind, dose-
response trial of MDMA-AT in veterans and first responders

with severe and chronic PTSD (NCT01211405) (62). A detailed
study description of the parent study can be found in (62),
and we summarize the study design in the Supplementary
material. Here, we provide a description of the MRI-based
sub-study design.

Participants in the parent study were able to opt into
the MRI-based sub-study after which they provided written
informed consent approved by the Medical University of South
Carolina Institutional Review Board. They were screened for
additional neuroimaging related eligibility criteria and were
excluded for any conditions that could render MRI unsafe.
A script-driven autobiographical memory paradigm was used
to assess brain activity during symptom provocation (66–68).
Following baseline CAPS-IV assessment in the parent study,
sub-study participants worked with investigators to create two
scripts: one describing a personally traumatic event and one
reflecting their typical morning routine at home. Two audio
recordings, each six minutes in length, were created from
the participant’s reading of each script. Each audio recording
was divided into two 3-minute blocks for the task-fMRI. All
participants, in all arms, were imaged at baseline, prior to
therapy, and again at the follow-up visit two months after
their final dosing session (Figure 1). LD (N = 2) and MD
(N = 2) participants were additionally imaged after the primary
endpoint visit in Stage 1 (one month following their second
dosing session), however the small sample sizes prevented any
meaningful analysis with these scans. The present analysis
focuses on the pre- and post-therapy effects of MDMA-AT on
fMRI biomarkers, and thus uses the scans collected at pre-
treatment (baseline) and at least 2 months after the largest dose
of MDMA (follow-up).

2.2. MRI acquisition

At each scanning session, participants underwent MRI on
a 32 channel 3T Siemens system. T1 anatomical scans with
TR/TE = 1,900/2.34 ms and 0.9 mm × 0.9 mm × 1.0 mm voxel
size were collected, followed by two identical task fMRI (design
described below) (TR/TE = 2,200/35 ms, 3.0 mm isotropic voxel
size, length of each scan = 14:25 min) and one resting state fMRI
(TR/TE = 2,000/30 ms, 3.3 mm × 3.3 mm × 3.0 mm voxel size,
length = 5:00 min).

Participants’ 6-minute trauma and neutral audio scripts
were divided into two three-minute trauma and neutral
blocks each (see “2.1 Trial design” for description of audio
recordings). During fMRI, participants were presented with
the visual cue “allow” and instructed to allow themselves to
experience the scripts as their audio recordings were played
for both neutral and trauma blocks. Each task scan had
an alternating block design (neutral 1, trauma 1, neutral 2,
trauma 2) with an 18 second “rest” period at the start of
the scan and between each block, and about a minute of
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FIGURE 1

Simplified study design. Subjects were assessed and imaged at the start of the study (baseline). All subjects [low dose (LD; 30 mg MDMA),
medium dose (MD; 75 mg MDMA), and high dose (HD; 125 mg MDMA)] underwent three non-drug preparatory therapy sessions prior to their
first MDMA dosing session. Each MDMA session was followed by three non-drug integration therapy sessions. After MDMA session 2 and the
subsequent integration sessions, subjects were assessed and the dosing blind was broken. HD subjects completed their final set of drug and
non-drug therapy sessions unblinded, and LD/MD subjects crossed over into the HD arm where they completed three sets of drug and
non-drug sessions, now with the higher dose and unblinded. All subjects were assessed and underwent MRI approximately two months
following their last HD MDMA session. See “2. Methods” section for a full description of study design and scanning protocols.

rest at the end of the scan. The precise length of each audio
block was 2.95 min.

2.3. Image preprocessing

FreeSurfer (69) was applied to the T1s to create white
matter (WM), gray matter (GM) and cerebrospinal fluid (CSF)
segmentations. FMRIB Software Library (FSL) (70) was used for
(1) brain extraction, (2) registration between T1s and fMRI’s
(brain-boundary registration, non-linear, full-search), (3) high-
pass filtering (4) slice-time and (5) motion correction.

2.4. Motion

High-motion frames [defined as >0.9 mm relative
framewise displacement (FD); CONN Toolbox standard
parameter (71)] were counted as outlier volumes and scrubbed
from functional connectivity and activation analyses. The
percentage of scrubbed volumes for resting-state scans ranged
from 0 to 6.8% (mean = 2.1%) of total volumes. The percentage
of scrubbed volumes for task scans ranged from 0 to 11%
(mean = 1.7%) of total volumes. The mean composite FD
(72) for each condition (rest and task) was calculated and
compared across time-points using two-sided, paired t-tests.
Mean FD during resting-state fMRI scans at baseline and
follow-up were 0.12 (±0.06 s.d.) mm and 0.12 (±0.07 s.d.)

mm, respectively, and were not significantly different from one
another (t-statistic = –0.02; p = 0.99). Mean FD during task
fMRI scans at baseline and follow-up were 0.22 (±0.16 s.d.)
mm and 0.17 (±0.09 s.d.) mm, respectively, and were not
significantly different from one another (t-statistic = 1.23,
p = 0.25).

2.5. Activation analysis: Brain response
to trauma versus neutral audio
listening

FSL’s fMRI Expert Analysis Tool (FEAT) (73) was used
for fitting a general linear model (GLM) to the voxelwise
timeseries for each task scan after spatial smoothing using a
Gaussian kernel function [6 mm full width at half maximum
(FWHM)]. For 1st- level analysis, models were generated for
the neutral block, the trauma block, and a contrast of the
two (trauma > neutral). Confound explanatory variables (EVs)
included the temporal derivative of each block, 5 nuisance
regressors each for WM and CSF signal, outlier volumes
[spikes in global signal (>5 standard deviations) and motion
(>0.9 mm FD); CONN Toolbox standard parameters (71)],
and 24 motion confounds (74). Second-level analysis averaged
the models from each of the two task scans performed at
each time point. Third-level analyses, using a two-sided, one-
sample t-test [FSL randomize; (75)] identified group-level
response for the contrast model (i) at baseline, and (ii) at
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the two-month follow-up. A final third-level analysis (iii)
compared the group-level responses to the contrast model
at baseline and follow-up using a two-sample, two-sided,
paired t-test (FSL randomize; (75)). Third-level results were
corrected for multiple comparisons using threshold-free cluster
enhancement (TFCE; alpha = 0.05) (76) which identifies
significant clusters based on the extent of local support from
surrounding voxels.

2.6. RSFC analysis

Prior to extraction of RSFC, in addition to the preprocessing
steps taken in “2.3 Image preprocessing,” fMRI data were
further denoised using an in-house pipeline.1 FMRIs were
bandpass filtered and regressed for 24 motion confounds (74),
5 nuisance regressors each for WM and CSF, and one for global
GM signal. The first five frames (scanner start-up noise) and
confound frames (spikes in global signal and motion) were
discarded. RSFC (Fisher Z-transformed Pearson correlation
values) between the right and left amygdala and right and left
hippocampus (77) was calculated for each resting-state scan.
For the supplemental RSFC analysis, each hippocampus was
further segmented into head and tail portions using FreeSurfer’s
hippocampal subregion segmentation tool (78). Two-tailed,
paired t-tests were used to compare the 4 RSFC measures before
and after MDMA-AT. Baseline to follow-up changes in these 4
measures were also correlated (Pearson’s) with individual level
reductions in CAPS-IV using participant’s age and mean FD
changes (follow-up—baseline) as covariates of non-interest. All
statistical tests were performed at an alpha level of 0.05. P-values
were corrected for multiple comparisons using the Benjamini-
Hochberg algorithm (79) where indicated (pFDR).

2.7. Task FC analysis

Prior to extraction of task FC, the preprocessed residuals
from the task activation analysis (section “2.5 Activation
analysis: Brain response to trauma versus neutral audio
listening”) were further denoised with bandpass filtering and
regressed for global GM signal. The first five frames (scanner
start-up noise) and confound frames [spikes in global signal
(>5 standard deviations) and motion (>0.9 mm FD); CONN
Toolbox standard parameters (71)] were ignored. Functional
connectivity (Fisher Z-transformed Pearson correlation values)
during each task fMRI scan (task FC) was calculated between
18 regions of interest (ROIs): the right and left hippocampus
head, hippocampus tail, amygdala, precuneus, caudal anterior
cingulate cortex (ACC), rostral ACC, posterior cingulate cortex
(PCC), isthmus cingulate, and insula. All ROIs were extracted

1 https://github.com/kjamison/fmriclean

from the Disikan–Killiany cortical atlas (see Supplementary
Figures 7, 8 for ROI definitions) (77), and head and tail
portions of the hippocampus were created using FreeSurfer’s
hippocampal subregion segmentation tool (78). Two identical
task scans were collected at each time point, thus FC values
obtained from both scans were averaged to give a single value
for each connection per subject. Group-level changes from pre-
to post-therapy in the strength of functional connections were
assessed using two-tailed, paired t-tests. Pearson correlations
were calculated between individuals’ changes in functional
connection strength and change in CAPS-IV total severity
scores (follow-up—baseline) using participant age and mean FD
changes between baseline and follow-up as covariates of non-
interest. All statistical tests were performed at an alpha level of
0.05. P-values were corrected for multiple comparisons using the
Benjamini-Hochberg algorithm (79) where indicated (pFDR).

3. Results

3.1. CAPS-IV total severity scores
significantly decreased after HD
MDMA-AT

Ten participants enrolled in the sub-study, and one
withdrew consent after baseline due to anxiety in the MRI
scanner, leaving nine participants with MRI data at both
time points (6 male, 3 female, aged 41.3; standard deviation
(SD) = ±10.9 years; 8 veterans and 1 first-responder;
see Supplementary Table 1 for additional demographic
information). All participants had chronic PTSD (mean
duration = 84 (±45) months). One participant’s baseline resting-
state fMRI was truncated due to technical issues, leaving eight
participants for resting-state analysis and nine for the task
fMRI analysis. One participant began the trial with moderate
PTSD (CAPS-IV > 39), while the remaining eight presented
with severe PTSD (CAPS-IV > 59). Mean (SD) CAPS-IV total
severity scores of the nine individuals pre- and post-MDMA-
AT were 86 (±16) and 39 (±25), respectively, representing a
significant decrease in PTSD symptom severity between the
two time points (Figure 2; N = 9, t = 6.36, p = 0.00022). The
average percent decrease in CAPS was 57 (±26)%. Results on
all participants enrolled in the Phase 2 parent trial have been
previously reported (62).

3.2. Baseline versus two-month
follow-up amygdala-hippocampal
RSFC

The RSFC was assessed between the amygdala and
hippocampus before and after MDMA-AT and the strengths of
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FIGURE 2

Patient CAPS-IV total severity scores at the baseline (pre-therapy) and two-month follow-up (post-therapy) scanning sessions. Black solid and
dashed lines indicate group means and medians, respectively. Blue marker = male. Red marker = female. A significant reduction is PTSD severity
was observed after MDMA-AT (baseline > follow-up; N = 9, t = 6.36, p = 0.00022).

these connections are illustrated in Figure 3. All connections
trended toward increased RSFC after therapy compared to
before therapy (using a two-sided paired t-test), with left
amygdala to left hippocampus having a significant increase prior
to (but not after) corrections for multiple comparisons (N = 8,
t = –2.91, uncorrected p = 0.0225, pFDR = 0.0901).

Individual-level pre-to-post-therapy changes between
the strength of these functional connections were then
correlated (two-sided Pearson’s) with changes in CAPS scores
(Supplementary Figure 1). Only one of these correlations
(right amygdala to left hippocampus FC versus CAPS) was
significant before correction (N = 8; R = –0.820, uncorrected
p = 0.0460, pFDR = 0.183).

3.3. Brain activation during symptom
provocation

A script-driven autobiographical memory paradigm was
used to assess brain activity during symptom provocation
(66–68). We compared whole-brain, script-driven activations
(trauma > neutral) at baseline and follow-up (Figure 4).
Before therapy (baseline), there tended to be larger magnitude
activation in response to the trauma script versus the neutral
script, as evidenced by the generally positive t-statistics

(Figures 4A–D). After correction using threshold free cluster
enhancement (TFCE), there was significantly greater activation
during the trauma scripts compared to the neutral scripts in
four separate areas (see Figure 4 caption for details of each).
After therapy, there were smaller magnitude differences between
brain activity in response to the two scripts, with no significant
clusters (Figure 4E). Finally, we assessed the differences in
the contrast before and after therapy (follow-up > baseline).
There was generally greater contrast between the trauma and
neutral scripts at baseline compared to at follow-up, with one
cluster in the bilateral cuneus and lingual gyrus demonstrating
significance after correction using TFCE (Figure 4F).

3.4. Baseline versus two-month
follow-up changes in task FC

We compared the pre- and post-therapy FC strength
between 18 brain regions of interest (ROIs) during the task
fMRI scans involving neutral and traumatic autobiographical
audio recordings (Figure 5A). The ROIs are as follows: the
right and left hippocampus head, hippocampus tail, amygdala,
precuneus, caudal anterior cingulate cortex (ACC), rostral
ACC, posterior cingulate cortex (PCC), isthmus cingulate, and
the insula. Only one functional connection was significantly

Frontiers in Psychiatry 06 frontiersin.org

https://doi.org/10.3389/fpsyt.2022.947622
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/


fpsyt-13-947622 January 6, 2023 Time: 19:13 # 7

Singleton et al. 10.3389/fpsyt.2022.947622

FIGURE 3

Resting-state functional connectivity between the amygdala and hippocampus before and after MDMA-AT. P-values from a two-sided, paired
t-test. Blue = male. Red = female. Black solid and dashed lines indicate group means and medians, respectively (N = 8; t-statistics indicate
baseline > follow-up; *uncorrected p < 0.05).

modified at follow-up compared to baseline: the right amygdala
to left caudal ACC (N = 9; t-statistic = 3.04, p = 0.0148). This
finding was no longer significant after corrections for multiple
comparisons, however (pFDR = 0.9875).

Individual-level pre-to-post therapy changes in these
functional connections were then correlated (two-sided,
Pearson’s) with the individual-level reductions in CAPS-IV
scores (Figure 5B). Most correlations were positive, meaning
that larger reductions in connectivity from pre- to post-therapy
corresponded to larger improvements in PTSD symptoms. Four
correlations between FC and CAPS-IV changes were significant
following multiple comparisons correction: the left amygdala
and left PCC (N = 9; Pearson’s R = 0.951, pFDR = 0.0462),
the left amygdala and right PCC (N = 9; Pearson’s R = 0.972,

pFDR = 0.0197), the left amygdala and left insula (N = 9;
Pearson’s R = 0.977, pFDR = 0.0197), and the left isthmus
cingulate and left hippocampal tail (N = 9; Pearson’s R = 0.947,
pFDR = 0.0462) (Figure 5C).

3.5. Supplemental analyses

Although not the primary focus of our analysis, we
also repeated the previous correlations using other secondary
outcome measures in place of CAPS-IV total severity scores.
Namely, changes between baseline and follow-up in the
BDI-II (depression symptoms), the PSQI (sleep quality),
the PTGI (perceived growth following trauma), the DES-II
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FIGURE 4

Group-level activation contrasts for trauma versus neutral script listening tasks (N = 9). All panels show t-statistics for corresponding contrasts.
Analyses were performed in 3 mm MNI standard space, however results here are interpolated into 1 mm MNI standard space and clipped to only
show t-statistics greater than ± 1 for visualization purposes. Statistics reported below (voxels, volume, t-statistic, corrected p-value) were
calculated from original 3 mm results. P-values were corrected using threshold-free cluster enhancement (TFCE; see section “2. Methods”). For
panels (A–E), positive t-statistics indicate greater activation to trauma scripts compared to neutral. For panel (F), sign indicates the direction of
change in trauma > neutral contrast from baseline (i.e., negative t-statistics indicate the contrast between trauma and neutral scripts was
decreased at the two-month follow-up compared to baseline). Crosshairs are located on the center of gravity (c.o.g.) of significant clusters.
(A) Cluster 1 for the baseline contrast is located primarily in the right and left isthmus cingulate, with some overlap into the right and left
precuneus (c.o.g. MNI152 [0, –48, 24]; 6 voxels (162 mm3); c.o.g. t = 9.61, p(TFCE) = 0.0293). (B) Cluster 2 for the baseline contrast is located in
the left caudal middle-frontal gyrus (c.o.g. MNI152 [-36, 21, 51]; 3 voxels (81 mm3); c.o.g. t = 9.01, p(TFCE) = 0.0234). (C) Cluster 3 for the
baseline contrast is located in the right medial prefrontal cortex (c.o.g. MNI152 [6, 57, 30]; 2 voxels (54 mm3); c.o.g. t = 7.41, p(TFCE) = 0.0488).
(D) Cluster 4 for the baseline contrast is located in the left rostral middle frontal gyrus (c.o.g. MNI152 [-21, 54, 15]; 1 voxel (27 mm3); c.o.g.
t = 9.45, p(TFCE) = 0.0312). (E) There were no significant activation contrasts at the two-month follow-up (crosshairs shown at MNI152 [0, 0, 0]).
(F) Comparing the group-level contrasts between time points (follow-up > baseline), there exists one significant cluster located primarily in the
right and left cuneus, with some overlap into the right and left lingual gyrus (c.o.g. MNI152 [3, –90, 3]; 47 voxels (1,269 mm3); c.o.g t = –9.31,
p(TFCE) = 0.0391).

(symptoms of dissociation), and the GAF (general psychological
function) were used (Supplementary Figure 2). Following
correction for multiple comparisons, none of these correlations
were significant.

We also replicated our a priori analyses of amygdala-
hippocampal RSFC using head (anterior) and tail (posterior)
sub-regions of the hippocampus (Supplementary Figure 3).
The left hippocampal head to left amygdala RSFC was increased
at follow-up compared to baseline (N = 8; t = –2.593,
uncorrected p = 0.0358), as was the RSFC between the left
hippocampal tail and right amygdala (N = 8; t = –3.00,
uncorrected p = 0.0199). Neither of these effects were significant
after corrections for multiple comparisons.

Lastly, we replicate our main functional connectivity
analyses without the use of global signal regression and find
that these results largely show the same trends, however

there is less significance in some cases (Supplementary
Figures 4–6). The correlation between the left amygdala and
left insula task functional connectivity change and CAPS
reductions was significant both with and without the use of
global signal regression (Supplementary Figure 6; N = 9;
R = 0.971, pFDR = 0.0229).

4. Discussion

We report signatures of brain response during rest and
audio listening task in eight veterans and one first-responder
with clinically diagnosed chronic and severe PTSD before
and two-months after MDMA-assisted therapy. We found a
significant reduction in CAPS-IV total severity scores after
therapy (Figure 2), indicating our sub-study participants
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FIGURE 5

(A) Paired t-statistics shown for differences in functional connectivity between all brain regions of interest during the task fMRI scan involving
neutral and trauma memory audio listening (N = 9; baseline > follow-up; *two-sided uncorrected p < 0.05; **pFDR < 0.05, corrected).
(B) Pearson correlation values between changes in ROI functional connectivity and reduction in CAPS scores. Changes were calculated as
follow-up values minus baseline values. (N = 9; *uncorrected p < 0.05; **pFDR < 0.05) Age and mean FD difference between baseline and
follow-up were included as covariates of non-interest. (C) Scatter plots of the three correlations that remained significant after corrections for
multiple comparisons (i.e., pFDR < 0.05). Red marker = female. Blue marker = male.

mirrored the results from the parent study (62). We found
a trend suggesting that RSFC between the amygdala and
hippocampus was strengthened post-therapy, particularly in
the left hemisphere (Figure 3). Prior work suggests that
modulation of amygdalae-hippocampal RSFC may be an
important component of MDMA-AT for PTSD (43, 51–55),
thus investigating this connection in future studies is warranted.
We also found participants had increased activation in areas

involved with self-referential processing and autobiographical
memory while listening to traumatic versus neutral memory
narrations pre-therapy (Figures 4A–D), and that no significant
contrast existed after MDMA-AT (Figure 4E). Comparing
trauma versus neutral contrasts between baseline and follow-
up revealed a significant decrease in cuneus contrast after
MDMA-AT (Figure 4F). Finally, the pre- to post-therapy
reductions in FC during the script listening task between the
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left amygdala and right PCC, left PCC, and left insula, as well
as FC between the left isthmus cingulate and left hippocampal
tail strongly and significantly correlated with PTSD symptom
improvement (Figure 5C). These results begin to shed light on
the neurological mechanisms that may drive MDMA-AT for
PTSD.

Previous work quantifying functional connectivity in
PTSD and in stress exposure (43, 51–53) and acute MDMA
administration in controls (54) suggests one mechanism
of MDMA-AT may be to increase pathologically lowered
amygdala-hippocampal RSFC (25). The amygdala is associated
with fear expression, threat recognition, and heightened
response to emotional memories and is often dysregulated in
patients with PTSD (31, 36, 50, 65, 80, 81). The hippocampus
also plays a central role in PTSD as it is thought to provide
contextual information important for cognitive-affect during
memory recollection (31, 36). Sripada et al. (43) found combat
veterans with PTSD had reduced amygdala-hippocampal
RSFC compared to combat-exposed controls, leading them to
speculate that this may relate to an inability to contextualize
affective information in PTSD. Carhart-Harris et al. (54)
demonstrated that amygdala-hippocampal RSFC is increased
acutely in MDMA administration compared to placebo and
this increase occurred in a manner that correlated with the
drug’s subjective effects at a near-significant level, leading
these researchers to propose that this functional connection
was a primary target of MDMA-AT. Increased amygdala-
hippocampal RSFC has also been linked to intranasal oxytocin
administration after stress exposure (53) and this effect was
mediated by serotonin signaling (55)—two neuromodulators
that play a significant role in the pro-social and fear extinction
effects of MDMA (20, 56–61). Prior to our analysis (although
after the study was designed and the data collected), we
hypothesized that the RSFC between the amygdala and
hippocampus would be higher after MDMA-AT compared to
pre-therapy levels. Only the RSFC between the left amygdala
and left hippocampus was significantly increased (Figure 3)
however, this finding no longer met thresholds for significance
after multiple comparisons correction (pFDR = 0.09). We
also found that the amount of increased right amygdala—
left hippocampal RSFC after MDMA-AT positively correlated
with PTSD symptom improvement at a near-significant level
(Supplementary Figure 1; R = –0.820, uncorrected p = 0.046,
pFDR = 0.183). Our current findings, though inconclusive, are
suggestive of a trend toward moderate increases in amygdala—
hippocampal RSFC two-months after MDMA-AT. It is possible
that more significant changes would have been observed with
a larger sample size, longer resting-state scans, or imaging
performed closer to MDMA administration. These findings
justify the continued investigation of amygdala-hippocampal
RSFC in the therapeutic mechanisms of MDMA-AT in future
studies.

We next sought to study brain response during
autobiographical memory listening to draw additional
conclusions about MDMA-AT’s effects in individuals with
PTSD. Before therapy, participants had larger activation in
four areas during an individualized trauma script listening
task compared to neutral script listening: the right and left
isthmus cingulate and precuneus, the left caudal middle frontal
gyrus, the right medial prefrontal cortex, and the left rostral
middle frontal gyrus (Figures 4A–D). These regions are
broadly involved in self-processing operations (e.g., first-person
perspective taking), episodic memory retrieval, visual-spatial
imagery, auto-biographical memory recollection, and are
included in or interact with the default mode network (44,
46, 49, 82–85). The retrosplenial cortex—located within the
isthmus cingulate—is also found to be consistently activated
by emotionally salient stimuli, and has been proposed to play
a role in the interaction between emotion and memory (48).
We conjecture that increased activation in these regions during
traumatic compared to neutral audio listening (Figures 4A–D)
could be related to an increased intensity of the recollection or
re-experiencing of traumatic memories compared to neutral
ones for patients before therapy. At 2-month follow-up to
MDMA-AT, there was no significant difference in the trauma
vs neutral script activation (Figure 4E). The longitudinal
comparison of these two time points indicated that the contrast
between trauma and neutral was larger at baseline, particularly
in a significant cluster in the right and left cuneus/lingual
gyrus (Figure 4F). Cuneus activity during autobiographical
memory tasks often coincides with activity in the frontal
regions highlighted by the baseline contrast, and has been
found to correlate with memory recall accuracy (49, 83, 84).
Cuneus activity is thought to enhance the visual imagery of
autobiographical memory recollection (86), therefore decreased
contrast in this area at follow-up suggests that intensity of visual
imagery contrast between trauma and neutral memories may
be decreased after MDMA-AT. Larger studies may allow more
statistical power to identify additional longitudinal differences.
Other longitudinal studies of individuals with PTSD have
found that decreases in precuneus, isthmus cingulate, and
middle frontal gyrus activation during symptom provocation is
correlated with reductions in PTSD symptom severity (87, 88).

PTSD is often associated with hyperactivity in the amygdala
(36); the acute administration of MDMA in healthy volunteers
decreases blood flow to the amygdala during rest (54)
and attenuates its response to angry faces (89). We had
hypothesized that we would observe hyperactivity of the
amygdala to trauma versus neutral scripts at baseline and
that MDMA-AT would attenuate this response, however we
observed neither. It is important to note inconsistencies in
the literature here. Amygdala hyperactivity in PTSD is not
always observed, possibly due to differences in subtypes, sex,
cultural representations, or choice of paradigm (66, 90–94).
Additionally, while MDMA did suppress amygdala activity
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during rest and in response to angry faces as previously
mentioned, there was no observed impact on its response
to autobiographical memories (21). While activation-based
analyses deserve continued attention in future studies to
rectify these inconsistencies, functional connectivity is a
complimentary approach we can use to extract additional
information from fMRI.

Functional connectivity analyses in individuals with PTSD
have revealed aberrant connectivity between several regions
within default mode, limbic, and salience networks, and
more broadly, regions involved in emotional and self-
referential processing (32–35, 37–41, 43, 67), and, further, the
administration of MDMA in healthy volunteers has been shown
to disrupt the functional integrity of these networks (54, 95–
98). Here, we measured functional connectivity during script-
driven autobiographical memory recall between the right and
left hippocampus head, hippocampus tail, amygdala, precuneus,
caudal ACC, rostral ACC, PCC, isthmus cingulate, and the
insula. Our ROIs were defined and labeled based on the
Desikan-Killiany (DK) brain atlas (Supplementary Figures 7, 8)
(77). We chose to segment the hippocampus into anterior
(head) and posterior (tail) ROIs based on recent work showing
that the two portions’ FC are differentially effected by PTSD
(34). We assessed group-level changes in the strength of these
functional connections and found no significant differences
between baseline and follow-up after corrections for multiple
comparisons (Figure 5A). However, we did find that greater
recovery (larger decreases in CAPS-IV at follow-up) was
associated with reductions in FC between the left amygdala and
the right and left PCC, as well as the left insula (Figure 5C). The
acute effects of MDMA in healthy volunteers has been shown to
decrease the FC of the PCC (96, 97) and insula (95), and alter
amygdala and hippocampus FC (54), highlighting the potential
relevance of our current findings. Amygdala to posterior and
mid-cingulate cortex FC has been shown to be associated
with PTSD severity at different stages of disease progression,
although differing patient populations and assessment time-
lines lead to conflicting results (40, 99–102). One finding in
healthy adults shows increased amygdala—PCC FC following
the acute exposure to stress (103), thus the association between
recovery and reduced amygdala—PCC task FC at follow-up
possibly relates to reduced stress response to trauma memories
(although the finding by Veer and colleagues is more posterior
to the ROI used here). Amygdala and insula RSFC is increased
in PTSD (39, 43) [except in one study which finds the opposite
(38)], and reduced amygdala-insula FC during negative image
reappraisal is associated with larger improvements in PTSD
symptoms (101). The strength of left amygdala-insula FC also
positively correlates with the amount of acute anxiety measured
in participants just before scanning (104). Attenuated functional
connectivity of these two regions at follow-up in the present
study possibly suggests a decreased intensity of recalled events,
less “re-experiencing,” or reduced anxiety during the script-
driven memory recall (65). Lastly, we found that reductions

in CAPS-IV at follow-up were associated with reduced FC
between the left isthmus cingulate and left hippocampal tail
(Figure 5C). The isthmus cingulate labeled here consists of the
most posterior potions of the PCC (Supplementary Figure 7).
Increased FC between these two regions has previously been
reported in PTSD patients compared to trauma-exposed health
controls (33, 34), and the present finding is possibly indicative
of changes in memory contextualization and reduced threat
sensitivity at two-month follow-up to MDMA-AT compared to
baseline (100).

PTSD is characterized by decreased fear extinction
in response to trauma-related stimuli. One possible
mechanism through which MDMA-AT operates is enhanced
reconsolidation and/or fear extinction processes (25). Several
studies with MDMA implicate reconsolidation or fear extinction
processes, and while it is currently unclear whether MDMA
acts on only one or both, it is important to note that the two
interact (105). Rodent models have demonstrated that the
administration of MDMA prior to extinction learning enhances
extinction retention (tested 48 h after learning) and this effect
is blocked by acute and chronic treatment with a serotonin
transporter inhibitor (20, 106). Hake et al. (107) found that
MDMA administered during extinction learning phases did not
enhance fear extinction memory, while MDMA administration
during reconsolidation phases resulted in prolonged reductions
in conditioned fear. In addition, MDMA administered prior
to trauma-cue exposure (reconsolidation phase) in rodents
resulted in reduced stress-related behavioral responses 7 days
later (108). Two recent trials in healthy humans found that
MDMA (100 and 125 mg, respectively) administered prior to
extinction learning resulted in improved extinction learning
at extinction recall phases (48 and 24 h later, respectively)
compared to the placebo group (23, 24). Doss et al. (22)
found that 1 mg/kg of MDMA in healthy humans attenuated
the encoding and retrieval of salient details from positive
and negative stimuli (but not neutral stimuli), suggesting an
ability for MDMA to alter emotional memory representation.
Interestingly, a fMRI study in healthy humans found decreased
activation in the precuneus/PCC during fear extinction learning
(109), regions highlighted by our present study and others in
PTSD (87, 88).

5. Limitations

The small sample size of the present study and the
lack of a control population (e.g., trauma-exposed healthy
controls) may decrease the generalizability of these findings.
The trial design was placebo-controlled for dose-response (low,
medium, and high), however, the follow-up scans used in this
study were after the breaking of the blind and dose cross-
over (low/medium to high) had occurred. For neuroimaging
studies, comparisons with control populations are helpful
for contextualizing longitudinal changes in brain response
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and provide information about whether changes in patient
populations represent an abnormal response being restored to
normality or a compensatory mechanism. In addition, multi-
point imaging of healthy control or non-treatment (placebo)
groups allow for the quantification of test-retest variability.
Lastly, had we imaged a cohort that received therapy without
MDMA, we would have been able to assess longitudinal brain
changes that were unique to or enhanced by MDMA.

Here it must be discussed that PTSD is a disorder
exhibiting at least two major sub-types (dissociative and non-
dissociative) with characteristically opposing phenomenological
and physiological responses to symptom provocation, which
may explain inconsistencies in the PTSD neurobiology literature
(90). PTSD sub-type information was not collected in the
present study. In addition to sub-type heterogeneity, males and
females may also differ in their adaptive neural responses to
trauma (92). Limited by our sample size, we did not investigate
differences between males and females in this study.

The accepted standard for assessing PTSD severity is the
Clinician-Administered PTSD Scale (63). Specifically, CAPS-
IV was used in this study. CAPS-IV involves an hour-
long semi-structured interview with a clinician and, though
comprehensive, faces limitations. In their baseline CAPS-IV
assessment, and subsequently thereafter, patients were asked
to refer to an index trauma that was measured throughout
the study. This may present an issue in accurately assessing
global PTSD severity if an adjacent or un-related trauma
surfaces during therapy and becomes the prominent driver
of their symptoms. These issues, combined with difficulty in
blinding and expectancy effects, present additional challenges in
accurately mapping fMRI metrics to clinical outcomes.

The task design used in this study examined differences in
brain response to personalized audio scripts generated from
narrations of traumatic and neutral memories. Many different
stimuli have been used in fMRI studies of PTSD (30, 42, 110),
each providing its own unique advantages and disadvantages.
Our present design optimizes personal relevance of the stimuli;
however, this has the consequence of presenting each subject
with a different set of stimuli, whereby brain responses within
each block are not time-locked across participants. Also, it
has previously been shown that PTSD survivors take longer to
retrieve unrelated autobiographical information when listening
to taped imagery scripts of their traumatic memories (111). This
suggests the possibility that those with the most severe PTSD
will take the longest to cognitively transition to the neutral
block from the trauma block. If this is true, then there would
perhaps be an inverse-“U” relationship between PTSD severity
and contrast between the trauma and neutral conditions, if
the blocks are not spaced far enough apart to allow adequate
time for patients to return to a baseline level of cognitive
functioning. Additionally, because our repeated task fMRI scans
were identical (rather than counterbalanced for condition),
there could be primacy effects in the neutral condition (which

was always first) and/or fatigue effects in the trauma condition
(which was always last).

We did not aim to characterize lateralization in our findings,
and though most of our significant FC results were found in the
left amygdala, we did not test for statistical interaction effects
between hemispheres. While lateralization of the amygdala
remains debated, it has been suggested by early work that the
left amygdala is more strongly related to conscious (versus
unconscious) perception and emotional regulation (112).

Finally, the pre-specified aim of this study was to estimate
longitudinal (baseline to 2-months after final MDMA session)
changes in ROI response to traumatic audio scripts. Between
the start of data collection and analysis, new literature
emerged (54, 55) implicating amygdala-hippocampus RSFC as
a potential target of MDMA-AT, compelling us to expand our
analysis beyond the pre-specified aims. Functional connectivity
estimates from shorter scans (e.g., five minutes in the
case of our resting-state data) can have lower reliability
(113) and therefore the trends in increased RSFC between
amygdala and hippocampal regions reported here should be
considered preliminary.

6. Conclusion

We report functional brain changes associated with MDMA-
AT in veterans and first responders with moderate-to-severe
and chronic PTSD. We had hypothesized that MDMA-AT may
act through strengthening the RSFC between the amygdala
and hippocampus, a connection which is weaker in PTSD
populations (43) and increased acutely by MDMA in healthy
volunteers (54). The trends found here are suggestive of such
in the left amygdala—left hippocampus, however larger studies
are needed. We also provide preliminary evidence that MDMA-
AT alters brain response during symptom provocation in
regions associated with fear response, anxiety, self-referential
processing, and salient autobiographical memory, and are
commonly found to be hyperactive in PTSD patients (30, 110).
Finally, the reduction of several functional connections during
autobiographical memory audio co-varied with symptom
reduction in PTSD. Of these connections, the left amygdala—
left insula is perhaps the most interesting, due to the role of
amygdala-insular FC in anxiety and PTSD symptomatology
(39, 43, 101, 104). More research is necessary to confirm these
results and to disentangle effects specific to MDMA and its
combination with psychotherapy.
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