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Objective: Schizophrenia (SCH) is primarily diagnosed based on specific

clinical symptoms, with the lack of any objective SCH-related biomarkers

often resulting in patient misdiagnosis and the underdiagnosis of this

condition. This study was developed to assess the utility of amplitude of low-

frequency fluctuation (ALFF) values analyzed via support vector machine (SVM)

methods as a means of diagnosing SCH.

Methods: In total, 131 SCH patients and 128 age- and gender-matched

healthy control (HC) individuals underwent resting-state functional magnetic

resonance imaging (rs-fMRI), with the resultant data then being analyzed using

ALFF values and SVM methods.

Results: Relative to HC individuals, patients with SCH exhibited ALFF

reductions in the left angular gyrus (AG), fusiform gyrus, anterior cingulate

cortex (ACC), right cerebellum, bilateral middle temporal gyrus (MTG), and

precuneus (PCu) regions. No SCH patient brain regions exhibited significant

increases in ALFF relative to HC individuals. SVM results indicated that

reductions in ALFF values in the bilateral PCu can be used to effectively

differentiate between SCH patients and HCs with respective accuracy,

sensitivity, and specificity values of 73.36, 91.60, and 54.69%.

Conclusion: These data indicate that SCH patients may exhibit characteristic

reductions in regional brain activity, with decreased ALFF values of the

bilateral PCu potentially offering value as a candidate biomarker capable of

distinguishing between SCH patients and HCs.
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Introduction

Schizophrenia (SCH) is a psychological disorder
characterized by progressive changes in brain function that
result in symptoms including reduced social function, decreased
motivation and emotion, hallucinations, and delusions (1).
Currently, SCH diagnoses are primarily made based on the
symptoms and clinical signs that patients exhibit (2). As other
psychiatric conditions including bipolar disorder and major
depressive disorder (MDD) can exhibit symptoms similar to
those of SCH, this can often result in patient misdiagnosis,
underscoring the need for the establishment of objective
biomarkers capable of aiding in SCH diagnostic efforts.

Resting-state functional magnetic resonance imaging (rs-
fMRI) has emerged as a powerful tool that offers a potential
means of identifying novel, sensitive biomarker signatures
associated with specific brain disorders (3–6). A growing
body of evidence suggests that abnormal changes in patients
with SCH are primarily found in the striatum (7), temporal
lobe (8), default-mode network (DMN) (9), and frontoparietal
network (10), although the specific nature of these changes
has varied across studies, with some reporting functional
signal increases (11–13), decreases (14), or both (15). These
discrepant findings may be attributable to the differences
in sample size, disease course, and the analytical methods
employed (16,17). Researchers have focused on these regional
brain abnormalities when seeking to define biomarkers of SCH
(17,18). Li et al., for example, utilized volumetric decreases
in the left insula as a potential diagnostic endophenotype
for SCH (19), while others have reported early decreases in
global-brain functional connectivity in the bilateral anterior
cingulate cortex (ACC) as a promising predictor of SCH
patient therapeutic outcomes (20). In a recent article, Li
et al. established a novel hypothesis-driven neuroimaging
biomarker of SCH through a comparison of these patients
and healthy control (HC) individuals, achieving > 80%
accuracy (17). However, their developed biomarker necessitated
the integration of several functional indicators, making
it impractical for routine or urgent clinical use in a
diagnostic or therapeutic setting. Ideally, a biomarker of
SCH should be readily obtained, non-invasive, and associated
with a high degree of diagnostic accuracy, although no such
biomarkers have yet been identified despite decades of intensive
research (21).

The amplitude of low-frequency fluctuations (ALFF) in
the BOLD signal measured during rs-fMRI analyses can
provide insight into spontaneous brain functional activity,
and it is thus commonly used when evaluating patients
with diseases including cervical spondylotic myelopathy (22),
SCH (17), and depression (23). ALFF values have been
shown to offer great promise as diagnostic biomarkers
owing to their high degree of high temporal stability. Using
an ALFF approach, SCH showed some abnormalities in

spontaneous brain activity in parietal and occipital lobes
(24). Furthermore, Kirino et al. (15) determined that SCH
patients exhibited changes in spontaneous brain activity in
two separate frequency bands. In addition, a large number
of previous studies have found that the age of publication,
the course of the disease, and the drug have some effects
on brain function. Therefore, we selected patients with
SCH with an earlier age of onset and a shorter course
of disease as the study subjects to reduce confounding
factors in this regard.

The application of support vector machine (SVM)-based
artificial intelligence methods has been increasingly used to aid
in predicting therapeutic outcomes or accurately diagnosing
specific conditions (25,26). Multivariate pattern recognition-
based SVM methods allow for the detection of patterns
within a given dataset, and are well-suited to analyzing
high-dimensional data in which there are more features
than there are observations, as is common in experimental
settings (27). SVM approaches enable optimal hyperplane
separation in high-dimensional space, with samples closest
to this hyperplane being defined as support vectors. When
performing fMRI studies, SVM weights can be overlapped
with the original brain space to generate a discriminative
map by visually tracing the most important weights to the
regions of the brain with the most discriminative value.
SVM strategies have been shown to offer great clinical utility
in the context of high-dimensional neuroimaging data-based
decision-making (28,29). Here, rs-fMRI data from SCH patients
were examined and ALFF values from abnormal regions of
the brain were extracted and evaluated for their potential
utility as neuroimaging biomarkers of SCH through the
use of SVM methods. Together, the results of this study
have the potential to aid in the more reliable and efficient
diagnosis of SCH.

Materials and methods

Subjects

For this analysis, 131 patients diagnosed with SCH
and 128 age- and gender-matched HC individuals were
consecutively recruited from the inpatients or outpatients of
the Wuhan Mental Health Center and Renmin Hospital of
Wuhan University. Patients were diagnosed with SCH in
accordance with the criteria established in the Diagnostic and
Statistical Manual of Mental Disorders—Fourth Edition (DSM-
IV). Prior to screening, all study participants were assessed
with the Chinese MINI version of the Concise International
Neuropsychiatric Interview, and two psychiatrists with different
professional titles independently diagnosed all patients. While
5 participants (2 HCs, 3 SCH patients) exhibited excessive
head movements during initial imaging, they were rescreened
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on the same day such that no data needed to be excluded
from this study. All enrolled SCH patients experienced auditory
hallucinations, reference delusions, persecutory delusions,
and were 18–64 years of age. Participants were excluded
from this study if they exhibited a history of substance
abuse, electroconvulsive therapy, left-handedness, neurological
disease, or severe illness. Prior to scanning, SCH symptoms
were assessed based upon the Chinese versions of the Positive
and Negative Symptom Scale (PANSS) and the Repeatable
Battery for the Assessment of Neuropsychological Status
(RBANS) before scanning (30,31). After scanning, patients
were successfully followed for 3 months and the diagnosis
of SCH was confirmed. HC participants were recruited from
universities and the community, were free of any history of
severe medical or neuropsychiatric illnesses, and did not exhibit
any family history of neuropsychiatric disease among first-
degree relatives.

Magnetic resonance imaging scanning
procedures

Philips Ingenia 3.0 T scanners in the Mental Health
Center of Wuhan Affiliated with Huazhong University of
Science and Technology were used to conduct rs-fMRI
scanning for all study participants. Participants were directed
to close their eyes, remain awake, and avoid thinking about
anything in particular to the greatest extent possible. Functional
images were captured using a gradient-echo—echo-planer
imaging sequence to acquire data with the following settings:
TR/TE = 2,000 ms/30 ms, thickness (mm) = 60, 35 slices,
64∗64 element matrix, a flip angle of 78, 22.4 cm field
of view, 3.5 mm slice thickness, 0.6 mm gap and 1 mm
pitch, total scan duration“09:17.7.” 3D_T1 scanning parameters:
repetition time (TR) = 8.4 ms, echo time (TE) = 3.2 ms,
slice thickness = 1 mm, slice spacing = 0 mm, Number of
slice = 33, and field of view (FOV) = 256 × 256 cm, total scan
duration“04:17.7.”

Data processing

The pre-processing of rs-fMRI data was conducted in Matrix
Laboratory (MATLAB) using Data Processing Assistant for
Resting-State fMRI (DPARSF). The impact of initial signal
instability on the resultant analyses was reduced by discarding
the first 10 time points. Data were corrected for head movement
and slice time. Any participants that exhibited > 2 mm
maximum displacement in the x-, y-, or z-axis or > 2◦

maximum rotation underwent rescanning on the same day until
meeting these criteria. Corrected imaging data were subjected to
spatial normalization to the T1 imaging and standard Montreal
Neurological Institute space. The resultant images were then

resampled at 3 × 3 × 3 mm3, band-pass filtered (0.01–0.08 Hz),
and linearly detrended. Spurious covariates were eliminated,
including the signal from a region centered in the white matter
and the signal from a ventricular seed-based region of interest.
The resultant data were then smoothed using a Gaussian kernel
of 6 mm full-width at half-maximum.

Amplitude of low-frequency
fluctuations analyses

ALFF analyses were proposed by Jia et al. (32), and were
conducted in MATLAB with the REST software (33). ALFF
values were based on measurements of the rs-fMRI signal for
each voxel, and were sensitive to the scale of the raw signal.
Time series data for each voxel were subjected to fast Fourier
transformation into the frequency domain, with the power
spectrum then being calculated and subjected to square root
transformation for each voxel. Average square root values were
measured as the ALFF across the 0.01–0.08 Hz range for each
voxel, with the ALFF then being calculated.

Statistical analyses

Differences in age, years of education, PANSS, and RBANS
results were compared between SCH patients and HCs using
two-sample t-tests, while chi-square tests were used to assess
differences in gender distributions between these groups using
SPSS 23.0. Age, gender, years of education, and frame-wise
displacement were used as covariates. Correlations between
abnormal ALFF values and clinical variables were assessed
through Spearman’s correlation analyses. P < 0.05 was the
threshold of significance. Differences between groups were
identified through a voxel-by-voxel analysis of covariance using
individual whole-brain ALFF maps for these two groups.
Results were thresholded at P < 0.01 and GRF-corrected via
cluster-extent-based thresholding with a primary threshold of
P < 0.01 in REST.

Classification and receiver operating
characteristic analyses

SVM methods were implemented in MATLAB with a library
for support vector machine (LIBSVM) software package. At
first, two-sample t-tests were conducted to identify significant
regions between the patient and control groups, and then SVM
was used based on the ALFF values of the identified regions.
A grid of parameters was evaluated using LIBSVM, with the
accuracies of all parameter settings being acquired after which
the highest cross-validation accuracy for these parameters was
established (for more detailed procedures, see Supplementary
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Material). ROC curves were used to analyze the ALFF values in
abnormal brain regions.

Results

Participants

In total, this study enrolled 131 patients diagnosed with
SCH and 128 age- and gender-matched HCs. Participant clinical
and demographic data are summarized in Table 1, revealing no
differences among these groups with respect to age, gender, or
years of education.

Schizophrenia-related differences in
amplitude of low-frequency
fluctuations values

Initially, differences in ALFF values were compared between
SCH patients and HC individuals using two-sample t-tests,
revealing significant decreases in these values in the left
angular gyrus (AG), ACC, fusiform, right cerebellum, bilateral
precuneus (PCu), and middle temporal gyrus (MTG) in SCH
patients relative to HCs (Figure 1 and Table 2).

Support vector machine results

Next, abnormal ALFF values in different regions of the
brain were used to classify individuals in these two groups. The
bilateral PCu and left AG in SCH patients were individually
analyzed using the SVM method, revealing that reduced
ALFF values in the bilateral PCu could readily differentiate
between SCH patients and HCs with good accuracy (73.36%),
specificity (54.69%), and sensitivity (91.60%) (Figures 2A,
3). Similarly, decreased ALFF values in the left AG were
capable of discriminating between these two groups of patients
with satisfactory accuracy (73.36%), specificity (52.34%), and
sensitivity (93.89%) (Figures 2B, 3).

Receiver operating characteristic
results

Next, ROC curve analyses were employed as a means of
comparing the accuracy for analyses of region 6 and region
7, revealing that ALFF values for these two regions could be
effectively applied to differentiate between SCH patients and
HCs while achieving good sensitivity and specificity. Through
this analysis, abnormal ALFF values in the bilateral PCu were
found to be superior as a candidate biomarker for distinguishing
between SCH patients and HCs (Figures 4, 5 and Table 3).

Correlations between amplitude of
low-frequency fluctuations values and
clinical variables

Abnormal ALFF values in the identified brain regions
were not found to correlate with any clinical variables in
this patient cohort.

Discussion

Here, reduced ALFF values were observed in the left AG,
ACC, fusiform, right cerebellum, bilateral PCu, and MTG of
SCH patients relative to HCs. When ALFF values for these
abnormal brain regions were utilized as candidate biomarkers
to differentiate between SCH patients and HCs via an SVM
approach, decreased ALFF values in the bilateral PCu were able
to discriminate between these two groups (accuracy: 73.36%,
specificity: 54.69%, sensitivity: 91.60%), as were decreased ALFF
values in the left AG (accuracy: 73.36%, specificity: 52.34%,
sensitivity: 93.89%). Subsequent ROC analyses indicated that
abnormal ALFF values in the bilateral PCu may offer value as an
SCH-related neuroimaging biomarker, with an AUC of 72.47%.

The PCu is a critical component of the DMN, which
corresponds to a series of functionally consistent networked
brain regions (the medial prefrontal cortex, posterior cingulate
cortex/PCu, medial parietal cortex, lateral parietal cortex,
inferior parietal cortex, and cerebellum) that exhibit high
activity levels at rest (34), with activity levels being reduced
when the brain is engaged in non-specific attention task
execution. A growing body of evidence supports a close
relationship between the DMN and mental activity (35,36),
with abnormal network homogeneity having been reported
in the DMN of drug-naïve, first-episode adolescent SCH
individuals (37). Additionally, different SCH subtypes have
been found to exhibit significant differences in resting-state
DMN activity (38). Researchers have also found that there are
similar situations in different types of other mental diseases.
For example, Chen et al. Found that bipolar depression
and MDD have common abnormal brain activity (increased
dynamic functional connectivity variability between the left
dorsal rostral putamen and the left supplementary motor area,
and between the right VRP and the right inferior parietal
lobe), Had specific increased dynamic functional connectivity
variability between the right dorsal caudal putamen and
the left central gyrus compared with MDD and HCs (39).
A multimodal meta-analysis of resting-state studies showed
that bipolar disorder was characterized by hypo-connectivity
within the default network, the affective network, and ventral
attention network etc., and decreased gray matter volume in
the insula, inferior frontal gyrus, and ACC (40). Recently,
increased functional connectivity was observed between the
right PCu and cerebellum, temporal lobe, and left superior
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TABLE 1 Characteristics of the participants.

Demographic data Patients (n = 131) HCs (n = 128) T (orx2) P-value

Gender (male/female) 131 (76/55) 128 (75/53) 0.35 0.85a

Age (years) 26.34 ± 10.39 30.33 ± 7.90 3.04 0.08b

Education (years) 9.50 ± 2.64 9.30 ± 2.61 0.61 0.34a

Onset (years) 19.42 ± 12.21

Illness course (years) 6.92 ± 4.86

REBANS 177.61 ± 38.60

PANSS 89.63 ± 17.00

aThe p-value for gender distribution was obtained by chi-square test.
bThe p-value were obtained by two sample t-tests.
HCs, healthy controls; REBANS, Repeatable Battery for the Assessment of Neuropsychological Status; PANSS, Positive and Negative Symptom Scale.

TABLE 2 Brain regions with abnormal ALFF in schizophrenia patients.

Cluster location Peak X (MNI) Y Z Cluster size (voxels) Peak accuracy (%) T-value

Patients < HCs

Right cerebellum 18 −81 −27 58 69.11 −7.38

Left MTG −51 −24 −15 399 70.27 −7.91

Right MTG 60 −39 −3 246 70.27 −8.25

Left fusiform −30 −33 −21 41 69.88 −7.41

Left ACC 0 33 12 148 70.66 −8.2

Bilateral PCu −6 −72 18 273 73.36 −8.75

Left AG −51 −54 24 460 73.36 −8.15

MNI, montreal neurological institute; MTG, middle temporal gyrus; ACC, anterior cingulate cortex; PCu, Precuneus; AG, angular gyrus.

FIGURE 1

Differences in ALFF values between SCH patients and HC individuals. Reduced ALFF values are shown in blue, with the color bar representing
t-values in the group analysis. ALFF, amplitude of low-frequency fluctuation; SCH, schizophrenia; HCs, healthy controls.

parietal lobule in non-depressed SCH individuals (41), while
another study reported reduced ReHo in the right superior
temporal gyrus, left middle frontal gyrus, PCu, and left

central anterior gyrus in childhood- and adolescent-onset SCH,
with auditory hallucination incidence being associated with
abnormal activity in these regions (42). These inconsistent
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FIGURE 2

(A,B) Visualization of SVM classification based upon reduced ALFF values in the bilateral PCu and left AG as a means of differentiating between
SCH patients and HCs. A1/2: 3D visualization of SVM with the most optimal parameters; B1/2: classification map of ALFF values for the bilateral
PCu/left AG. SVM, support vector machine; ALFF, amplitude of low-frequency fluctuation; AG, angular gyrus; PCu, precuneus; SCH,
schizophrenia; HCs, healthy controls.

results may be attributable to differences in sample size,
disease course, or analytical approaches employed among
studies. Furthermore, structural MRI findings have suggested
that a gray matter volume reduction was evident in the
bilateral PCu in SCH patients (43). In one recent meta-
analysis, reduced ALFF values within the PCu were found to
be reliably associated with memory and theory of mind in
both first-episode and chronic SCH patients (44). Moreover,
damage to the PCu can impact frontal lobe activity (45).
These prior studies suggest that abnormal ALFF values in
the PCu, medial superior frontal gyrus, MTG, and illness
severity are likely to be correlated with one another. Even
so, no such correlative relationships were observed in the
present study. Abnormal ALFF values in the DMN may
be attributable to the sample size in this study or the
specific characteristics of this patient population. Moreover,
this analysis revealed that reduced ALFF values in the

bilateral PCu may serve as a promising biomarker for
differentiating between SCH patients and HCs in an SVM
analysis, yielding good accuracy (73.36%), specificity (54.69%),
and sensitivity (91.60%).

The AG is located in the posterior of the inferior parietal
lobe, and serves as a central hub for different subsystems
(46). The AG plays a role in semantic processing, reading,
and word comprehension, and is linked to higher memory
scores (47). Over the course of SCH progression, patients
exhibit increases in brain damage, with chronic SCH patients
exhibiting the disruption of normal bilateral AG asymmetry
and a reversal of the normal left > right asymmetry relative
to HC individuals (48). In this analysis, decreased ALFF
values were only observed in the left AG of analyzed SCH
patients, potentially owing to the shorter disease course in
these individuals. The AG is considered a component of the
semantic-lexical network that includes the planum temporal
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FIGURE 3

Assessment of the accuracy of utilizing abnormal ALFF values in different regions of the brain to differentiate between SCH patients and HCs.
ALFF, amplitude of low-frequency fluctuation; 1, right cerebellum; 2, middle temporal gyrus; 3, right middle temporal gyrus; 4, left fusiform; 5,
left anterior cingulate cortex; 6, bilateral precuneus; 7, left angular gyrus.

FIGURE 4

ROC curve-based differentiation between SCH patients and HC
individuals based upon ALFF values in region 6 and region 7 of
the brain. ROC, Receiver operating characteristic; SCH,
schizophrenia; HCs, healthy controls; ALFF, amplitude of
low-frequency fluctuation; 6, bilateral precuneus; 7, left angular
gyrus.

lobe and plays a role in complex thought processes and the
perception of auditory hallucinations (49). Previous reports
have documented abnormal cortical asymmetry in the superior
temporal gyrus in individuals with SCH, particularly in the

AG (50). In the present study, SCH patients were generally
considered to exhibit memory loss and slower cognition as
these traits are associated with reductions in ALFF values
within the AG. These abnormal AG findings offer important
insight into the neurological basis for the characteristics of
thought and language processing in individuals diagnosed
with SCH. When ALFF values in the left AG were used as
a biomarker to differentiate between SCH patients and HCs
via an SVM approach, the associated specificity (71.88%),
sensitivity (93.89%), and accuracy (52.34%) values suggested
that reduced ALFF values in the left AG may represent
an effective biomarker of SCH. No correlations, however,
were observed between these reduced ALFF values and SCH
patient disease severity or course. This may be attributable
to the fact that brain function is impacted by a range
of factors including compensatory mechanisms, or may
suggest that decreased ALFF in left AG is a unique intrinsic
characteristic of SCH that does not impact clinical symptoms
of this disease.

The MTG plays a critical role in regulating sensory
perception and is generally regarded as a central region of the
brain necessary for memory and language functions (51,52).
Neuroimaging data from SCH patients have consistently
revealed a role for this region of the brain in the context
of hallucinations and emotional processing. In addition, the
MTG serves as a significant node in the network consisting
of the frontal lobe, temporal lobe, parietal-occipital lobe,
and subcortical structures (53,54). Abnormal MTG activation
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FIGURE 5

A radar plot demonstrating the accuracy, sensitivity, and specificity of classifications for SCH patients and HCs between region 6 and region 7,
with corresponding AUC values. AUC, area under the curve; SCH, schizophrenia; HCs, healthy controls; 6, bilateral precuneus; 7, left angular
gyrus.

TABLE 3 ROC analysis for differentiating SCH patients from HCs by using ALFF values in region 6 and 7.

Brain regions Area under the curve Cut—off point Sensitivity Specificity

Region 6 0.7247 1.160 91.60% 54.69%

Region 7 0.6790 1.295 93.89% 52.34%

ROC, receiver operating characteristic; SCH, schizophrenia; HCs, healthy controls; ALFF, amplitude of low-frequency fluctuation; 6, bilateral precuneus; 7, left angular gyrus; AUC, area
under the curve.

may thus impair language processing and semantic memory
functions. In this analysis, decreased ALFF in the bilateral
MTG was observed in patients with SCH, and the resultant
abnormalities may impair language and memory functions
in these individuals, resulting in symptoms characteristic
of this disease.

There are several limitations to this study. For one, some
of the included SCH patients had been medicated prior to
study initiation, and it is thus not possible to exclude the
impact of such treatment on the observed structural and
functional alterations in the brains of SCH patients (55).
Subsequent studies of SCH patients that have not undergone
drug treatment will be necessary to clarify this possibility.
Second, this was a single-center study with a relatively small
sample size, highlighting a need for additional large-scale multi-
center validation of these results. Finally, deep learning is

currently the most scientific in the exploration of biomarkers of
brain function disorders in psychiatry. However. Our research
only focuses on traditional SVM. In the next step, we plan to
expand the sample size and collect schizophrenia data from
multiple centers to further explore the imaging biomarkers of
schizophrenia combined with artificial intelligence technology.

Conclusion

Overall, the results of this analysis suggest that SCH patients
exhibit abnormal ALFF values in the left AG, ACC, fusiform,
right cerebellum, bilateral PCu, and MTG. In particular,
the reduced ALFF values in the left AG may offer value
as a candidate biomarker to guide the objective diagnosis
of SCH.
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