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1Institute of Behavioral Sciences in Medicine, Yonsei University College of Medicine, Seoul,

South Korea, 2Department of Psychiatry, Yonsei University College of Medicine, Seoul, South Korea

Social anxiety disorder (SAD) is a mental disorder characterized by excessive

anxiety in social situations. This study aimed to examine the alteration of

resting-state functional connectivity in SAD patients related to the virtual

reality-based self-training (VRS) which enables exposure to social situations

in a controlled environment. Fifty-two SAD patients were randomly assigned

to the experimental group who received the VRS, or the control group

who did not. Self-report questionnaires and resting-state functional magnetic

resonance imaging (fMRI) were performed to assess clinical symptoms and

analyze the resting-state network properties, respectively. Significant decrease

in social anxiety and an increase in self-esteem was found in the experimental

group. From the resting-state fMRI analysis, alteration of local network

properties in the left dorsolateral prefrontal gyrus (-10.0%, p = 0.025), left

inferior frontal gyrus (-32.3%, p = 0.044), left insula (-17.2%, p = 0.046), left

Heschl’s gyrus (-21.2%, p = 0.011), bilateral inferior temporal gyrus (right:

+122.6%, p= 0.045; left:−46.7%, p= 0.015), and right calcarine sulcus (+17.0%,

p= 0.010) were found in the experimental group. Average shortest path length

(+8.3%, p = 0.008) and network e�ciency (-7.6%, p = 0.011) are found to be

altered from the global network property analysis. In addition, the experimental

group displayed more positive and more negative changes in the correlation

trend of average shortest path length (p= 0.004) and global network e�ciency

(p = 0.014) with the severity of social anxiety, respectively. These results

suggest potential e�ectiveness of the VRS, which is possibly related to the

change of aberrant processing and control of visual and auditory linguistic

stimuli and the adaptive change in rumination pattern.
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Introduction

Social anxiety disorder (SAD) is a mental disorder

characterized by excessive anxiety in social situations and fear

of negative evaluations from other people to an extent that these

impair normal functioning in ordinary life (1). The hardships

that SAD patients experience in social contexts significantly

undermine their ability to plan appropriate strategies to

attain their goals (2). Although SAD patients seek for social

belonging, their pathological patterns of thoughts, including

fear of negative evaluations from others and recurrent negative

imageries of past experiences, hamper them from forming

intimate relationships with other people (3, 4). Unfortunately,

pathophysiology of the SAD still remains not fully understood

which limits the exploration and development of effective

treatment options (5).

Functional magnetic resonance image (fMRI) studies of

SAD patients have been performed to explore the functional

neural correlates of SAD. One of the key findings that has

been consistently reported through these studies is abnormal

functional connectivity between the limbic and frontal regions

(6, 7). For example, alterations in resting-state functional

connectivity of the amygdala with the ventromedial prefrontal

cortex, dorsomedial prefrontal cortex, and orbitofrontal cortex

were suggested to be associated with an increase in anxiety

to social interaction, self-criticism, and difficulties of emotion

regulation in SAD patients (7–10). In addition to the

abnormality of limbic-frontal connectivity, aberrant functioning

of brain regions associated with processing of sensory stimuli

had also been suggested. Specifically, SAD patients displayed an

abnormal activation level in the fusiform gyrus, the brain region

involved in high-level visual cognition and face recognition (11–

13). Furthermore, SAD patients showed higher activation level

in the primary visual cortex when they viewed themselves from

the third person’s point of view, implying an excessive focus on

the visual stimuli of SAD patients in social situations (14). Also,

SAD patients showed an aberrant processing of auditory and

linguistic stimuli in addition to visual ones. Activations of brain

regions that process external speech, including the temporal

gyrus and temporal pole, were significantly correlated with the

extent of social anxiety when presented with human voice, while

the correlations were weak or non–existent for other types of

acoustic stimuli (15).

Given that the characteristics of the functional connectivity

can be analyzed from the perspective of the whole network,

graph theoretic analysis of network properties are being recently

studied in SAD (16, 17). These literatures suggest that there

exist alterations of the network metrics at both local and

global scales in SAD patients, suggesting that the disrupted

functional connectivity as a network can be related to the

pathophysiology of the illness. More specifically, increase in the

average shortest path length and the decrease in the clustering

coefficient is found in the brain network of SAD, suggesting

a change in interconnectivity and information transmission

ability at global scale (16). Another study has reported increased

nodal centralities in parahippocampal gyrus and precuneus, and

decreased nodal centralities in calcarine sulcus and dorsolateral

prefrontal cortex, suggesting increased level of local network

connectivity within the limbic area and the decreased level of

connectivity in the sensory processing area (17).

The National Institute for Health and Care Excellence

(NICE) guidelines state that pharmacological treatment and

psychological interventions such as the Cognitive Behavioral

Therapy (CBT) are effective first-line treatments for SAD (18).

However, modeling feared social stimuli and relevant social

situations in clinical settings has its limitations. The use of virtual

reality (VR) technology resolves the problem by reproducing

relevant social situations, enabling patients to confront feared

social contexts in environments withmore control on situational

elements (19). Given these strengths of VR, we developed a VR-

based exposure therapy program that can be performed on a self-

led basis in which participants can receive therapy sessions at any

desired places without formally visiting clinics (20). Although

our VR self-training (VRS) program provides only the exposure

of feared stimuli among the full CBT sessions, exposure therapy

itself is also known to be an effective treatment option of SAD

(21). In addition, this form of self-training has advantages in

patient accessibility and confidentiality unlike the traditional

CBT which the participants physically encounter psychiatrists

and therapists (22, 23).

Neuroimaging evidence further support the clinical

effectiveness of repeated exposure of avoidant stimuli in SAD

patients, showing normalization of functional activity and

connectivity in response to the exposure treatment (24–26).

More specifically, normalization of resting-state functional

connectivity between the amygdala and frontal area is found

after exposure-based intervention in SAD patients (10). In

addition, the 2-week VR-based exposure self-training of

SAD patients has demonstrated effectiveness on improving

performances in social circumstances, which is found to be

associated with changes in the functional activity of the visual

cortices and thalamus (27). Nevertheless, few studies have

explored the effect of VR-based exposure self-training on

resting-state functional connectivity in SAD patients, which has

been shown to be different from that of healthy controls (16, 17).

In this study, we aimed to examine the change of resting-state

functional connectivity related to the VR exposure self-training

in SAD patients, particularly focusing on the network properties

using graph theory. Participants with SAD were recruited and

analyzed on their resting-state fMRI data by comparing the

differences in network properties with respect to the presence or

absence of the VRS. The network properties were computed in

both local and global scales with the network constructed from

functional connectivity, which consists of nodes as the brain
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regions of interest (ROIs) and edges as the connections between

these ROIs (28).

Our hypothesis was that the treatment of SAD patients

with the VRS could improve clinical symptoms related to

the anxiety and fear in social contexts. Regarding the local

network properties of specific brain regions, we expected that

the amygdala and frontal regions would show lower level of

network efficiency after the VRS, since these regions have

shown increased level of connectivity in SAD in previous

studies (29, 30). In addition, we expected that areas related

to sensory processing would show increased degree centrality

after the VRS based on previous evidences (16, 17). For the

global network properties, we hypothesized that the small-

worldness would be increased in experimental group after the

VRS, reflecting altered economy of information processing in

brain network.

Materials and methods

Participants

A total of 115 adults volunteered to participate in the

study and submitted application forms via email after

watching the internet advertisement. Participants aged

between 19–30 years old were evaluated by a professional

psychiatrist (M.-K. K.) based on the DSM-5 criteria for SAD

on symptoms as well as demographics, and scores higher

than 30 points on the Liebowitz Social Anxiety Scale (31)

were used as the inclusion criteria. The exclusion criteria

included: (i) history of diagnosis of major psychiatric disorders

including bipolar disorder, organic mental disorder, psychotic

disorder, or substance use disorder, (ii) current usage or

past experience of any forms of psychiatric treatments,

(iii) inability to go through MRI scanning, (iv) pregnancy,

and (v) left-handedness. Sixty-one participants had met the

inclusion criteria, but 9 of them were disqualified on the

exclusion criteria, leaving 52 participants as eligible. The

Institutional Review Board (IRB) at Gangnam Severance

Hospital, Yonsei University had approved the study

procedure. Written informed consents were obtained from

all participants.

Experimental process

All participants completed the initial psychometric scale

evaluation using the Liebowitz Social Anxiety Scale [LSAS;

(31)], Brief Fear of Negative Evaluation scale [BFNE; (32)],

Social Interaction Anxiety Scale [SIAS; (33)], Rosenberg Self-

Esteem Scale [RSES; (34)], and Hospital Anxiety and Depression

Scale [HADS; (35)]. After the completion of psychometric

scale evaluations, all participants went through a baseline fMRI

scanning on the same day. Using a stratified randomization

on the severity of social anxiety and gender, 24 participants

were assigned to the experimental group and 28 participants

to the control group. Then, the experimental group received

8 sessions of the VRS over 2 weeks, while the control group

did not receive any treatments within the three-week period.

At the end of the VRS for the experimental group and the

waiting period for the control group, both groups completed the

same psychometric questionnaires and went through a follow-

up fMRI scanning. In the experimental group, three participants

decided to stop receiving the VRS, leaving 21 participants

who completed the whole procedure. Eight participants in the

control group resigned during the waiting time, leaving 20

participants completed the follow-up fMRI scanning session. A

schematic flow chart of the experimental process is depicted in

Figure 1.

VR self-training interventions

The VRS program consisted of 36 social topics total, which

could be grouped into 12 situations from three environments.

The three environmental contexts were daily life, school life

and business life, where each context included four different

situations. Each situation was further specified into three topics,

where different topics have different numbers of virtual avatars

and various levels of difficulties. The difficulty level increased

as the number of virtual avatars became larger. The contents

were displayed on a head-mounted display (HMD), consisting

of a Samsung Gear VR and a Samsung Galaxy S6. With the

displayer, participants went through the self-led VR training by

performing speech tasks as directed by the narrations in the

VR content. Samsung Gear S2 was used to measure the heart

rates of participants during the training sessions. After each

task, the performance of participants was evaluated based on

the following criteria: the heart rate changes from the baseline

to the end of the task, patterns of eyesight movement, length

of speech, proportion of voiced time during the speech and

self-reported evaluations about the extent of nervousness and

confidence after each topic. Participants could see their scores

of each measure of the performance evaluation. A sample video

of the VRS contents is provided at the following link: https://

youtu.be/LxfSPaSJSTE. For further details about VRS, refer to

our previous study (23).

Although the contents of the VRS were designed so that

the recipients could perform the training by themselves,

the participants visited the VR clinic at the Gangnam

Severance Hospital during the sessions to ensure that the

intervention was being provided correctly. Participants

were asked to complete one situation on the first session

and were asked to complete two situations for the seven

following sessions; these two situations for the last seven

sessions included a repetition of one previously-performed
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FIGURE 1

Flow chart of the experimental process.

situation from the preceding session and a new one,

leading to a completion of eight situations and 24 topics

in total.

Image acquisition and preprocessing

Siemens Magnetom Verio 3T scanner (Siemens Medical

Solutions, Erlangen, Germany) was used to collect the MRI data.

Participants were guided to relax and rest for 5min with eyes

closed but not sleeping. Functional images were acquired with a

gradient echo planar imaging sequence with these parameters:

repetition time, 2,000ms; echo time, 30ms; flip angle, 90◦;

number of slices, 30; slice thickness, 3mm; and matrix size, 64×

64. Three scans were discarded before the acquisition of image

to reach signal equilibrium. T1-weighted structural images were

obtained with a 3D spoiled-gradient-recall sequence with the

following parameters: repetition time, 1,900ms; echo time,

2.46ms; flip angle, 9◦; number of slices, 176; slice thickness,

1mm; and matrix size, 256× 256. Preprocessing of the acquired

images were performed using fMRIPrep v20.2.1 (36). The

preprocessing of T1-weighted structural images included brain

extraction, tissue segmentation, surface extraction and spatial

normalization, while the preprocessing of blood-oxygen-level-

dependent (BOLD) functional images included head motion

correction, slice timing correction and co-registration. Further

details on image data preprocessing are provided in the

Supplementary material.

Network analysis of the functional
connectivity network

We examined the network properties of functional

connectivity from the preprocessed fMRI data with the

GRETNA toolbox (28). From the functional brain images, mean

timeseries within the 90, 246, and 360 regions of the Automated

Anatomical Labeling (AAL) (37), Brainnetome (38), and Glasser

(39) atlases were obtained, respectively. The cerebellum and

pons were excluded from the AAL (37). Functional connectivity

values of every possible pair of the regions within each atlas were

acquired by calculating the Pearson’s correlation coefficients

between the mean timeseries across time. Through these

procedures, an N × N resting-state functional connectivity

matrix for each participant could be defined, where N refers to

the number of ROIs.

To compute local and global network property measures,

the functional connectivity matrices were first binarized by

considering the top k-percentile values as connected and

others unconnected, where k?{5,10,15,20,25,30,35,40,45,50}.

The binarized functional connectivity matrices served as the

adjacency matrices of simple graphs, from which the network

properties were estimated. The local network property metrics

included the betweenness centrality, degree centrality, nodal

clustering coefficient, nodal efficiency, local efficiency, and nodal

shortest path. The global network metrics, which represent the

characteristics of a brain network as whole, included the network

efficiency, average shortest path length, and small-worldness
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(40). Aggregation as area under curve (AUC) with respect to

the differing value of k for each network property metric was

calculated. We further report network analysis results from

weighted, or un-binarized functional connectivity matrices in

the Supplementary material.

Statistical analysis

Statistical analyses were performed using Python 3.8.5

with packages pandas, statsmodels and pingouin. For the

demographics of the participants, an independent samples t-test

was conducted to evaluate the difference in age between the two

groups while Pearson’s chi-squared test was conducted to assess

the difference in gender distribution. For the psychometric scale

scores of each of six self-reported questionnaires, amixed-design

analysis of variance (ANOVA) was conducted to compare the

change in scores across time (baseline/follow-up) between the

two groups.

The mixed-design ANOVA was also conducted to analyze

the interaction effect of group-by-time on local and global

network metric measures, for each individual threshold value

and AUC of all threshold values. To evaluate whether a change

in correlation existed between the level of social anxiety and the

AUC aggregated global network metrics in response to the VRS,

we constructed a general linear model on each network metric

and the psychometric scale scores LSAS, BFNE, and SIAS across

time of the two groups, and fitted the model with the ordinary

least square solver. Here, the three scales are known to measure

the level of social anxiety. For the local network metrics, we

applied the false discovery rate (FDR) correction to account for

the multiple comparisons problem.

Results

Demographics and self-assessment
scales

Statistical tests did not show any significant difference of

age and gender distribution between the two groups (Table 1).

For the psychometric mixed-design ANOVA results of the

psychometric scales, a statistically significant interaction effect

between scale scores and time was found for LSAS, BFNE, RSES,

and SIAS, but not for the scores of HADS-Anxiety and HADS-

Depression subscale scores. A significant main effect of time was

revealed for the scores of LSAS, BFNE, SIAS, HADS-Anxiety,

and HADS-Depression. A post-hoc analysis of the paired-t test

confirmed that there existed a statistically significant increase

in RSES (t20 = −2.94, p = 0.004) and decrease in LSAS (t20

= 4.12, p < 0.001), BFNE (t20 = 3.92, p < 0.001), and SIAS

(t20 = 5.52, p < 0.001) scores in the experimental group after

the VRS.

Local network property analysis

Results of the local network property analysis are

demonstrated in the Figure 2, Table 2.

AAL 90: Sensory processing regions revealed

A significant interaction effect was found for the nodal

efficiency of the opercular part of left inferior frontal gyrus at

threshold 0.1. The left Heschl’s gyrus showed significant results

for the clustering coefficient at threshold 0.15 and the AUC

aggregated value, the local efficiency at threshold 0.15 and the

aggregated value and the nodal efficiency at threshold 0.1. The

left inferior temporal gyrus and right calcarine sulcus showed

significant interaction effects from themixed-design ANOVA on

degree centrality at thresholds 0.2, 0.25, and 0.3.

A post-hoc paired t-test within the experimental group

indicated a significant decrement of the nodal efficiency

on the opercular part of left inferior frontal gyrus. For

the left Heschl’s gyrus, a significant decrement of the

clustering coefficient, local efficiency and the nodal efficiency

was found at thresholds 0.15, 0.15, and 0.1. Significant

decrement and increment of the degree centrality were

found in the left inferior temporal gyrus and right calcarine

sulcus, respectively.

Brainnetome 246: Dorsolateral prefrontal
cortex revealed

Significant interaction effects were found for the

degree centrality of the left dorsal part of the Brodmann

area 9/46 (BA9/46d) at threshold 0.45, 0.5 and the right

caudolateral part of the Brodmann area 20 (BA20cl) at

threshold 0.45, 0.5 which lies within the left dorsolateral

prefrontal cortex and the right inferior temporal

gyrus, respectively.

The post-hoc paired t-test demonstrated significant

decrement and increment of degree centrality at threshold

0.45 in the BA9/46d (t = 3.25, p = 0.002) and the BA20cl

(t = −4.04, p < 0.001) for the experimental group,

respectively. For degree centrality at threshold 0.50, the

post-hoc paired t-test demonstrated significant decrement

and increment in the BA9/46d (t = 3.36, p = 0.002) and

the BA20cl (t = −4.07, p < 0.001) for the experimental

group, respectively.

Glasser 360: Middle insular area revealed

Significant interaction effects were found for the

nodal efficiency of the left BA9/46d and the left middle

insular area at threshold 0.15. The post-hoc paired t-test

indicated significant decrement of the nodal efficiency

at both regions (left BA9/46d, t = 3.69, p < 0.001;
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TABLE 1 Results of statistical analyses on age, gender and self-report questionnaire scores of participants.

Control Experimental t / χ
2 P

Age 23.18 (2.04) 23.75 (2.64) −0.86 0.393

Gender (F/M) 10 / 18 10 / 14 0.02 0.878

Baseline Follow-up Baseline Follow-up Effect F P

LSAS 68.11 (18.94) 68.85 (20.25) 73.50 (22.24) 53.0 (23.61) Group 1.45 0.236

Time 11.33 0.002*

Interaction 5.84 0.020*

BFNE 45.107 (7.83) 43.10 (7.39) 45.63 (5.76) 38.62 (8.46) Group 0.36 0.552

Time 12.15 0.001*

Interaction 10.30 0.003*

RSES 16.50 (5.18) 16.50 (4.95) 14.92 (5.83) 17.86 (6.52) Group 0.01 0.930

Time 4.94 0.032

Interaction 8.55 0.006*

SIAS 43.0 (13.28) 40.75 (13.21) 47.71 (11.06) 35.48 (15.46) Group 0.03 0.869

Time 29.44 <0.001*

Interaction 11.70 0.001*

HADS-anxiety 8.82 (2.89) 8.25 (3.01) 10.21 (4.22) 8.29 (3.95) Group 0.27 0.606

Time 6.86 0.013*

Interaction 1.01 0.322

HADS-depression 8.54 (3.67) 7.70 (3.54) 8.17 (4.74) 6.33 (3.85) Group 0.77 0.385

Time 8.13 0.007*

Interaction 0.48 0.494

LSAS, Liebowitz Social Anxiety Scale; BFNE, Brief Fear of Negative Evaluation; RSES, Rosenberg Self Esteem Scale; SIAS, Social Interaction Anxiety Scale; HADS, Hospital Anxiety and

Depression Scale. Asterisks indicate p < 0.05. Average values of the control and the experimental groups are presented with standard deviation in the round brackets.

left middle insular area, t = 3.53, p = 0.001) in the

experimental group.

Global network property analysis

Results of the global network property analysis are

demonstrated in the Figures 3, 4 and Table 3.

AAL 90

Mixed-design ANOVA with the global network property

metrics did not show any significant results. The general linear

model analysis revealed that the experimental group displayed

more positive correlation between the average shortest path

length and the LSAS score (t = 2.39, p = 0.019) and more

negative correlation between the global network efficiency and

the LSAS score (t = −2.18, p = 0.032), in response to the VRS

Figure 5. A similar result was found also for the BFNE score,

indicating a more negative correlation with the global network

efficiency (t= 2.20, p= 0.031) after the VRS in the experimental

group. Post-hoc z-test between the correlation coefficient at

baseline and at follow-up within the experimental group did not

show significant results.

Brainnetome 246

A significant interaction effect was found for the

global network efficiency at threshold 0.05 and the

average path length at AUC aggregated threshold from

the mixed ANOVA. Post-hoc paired t-test within the

experimental group suggested insignificant change

between the baseline and the follow-up for both

network metrics.

From the general linear model, a more positive

correlation between the average shortest path length and

the LSAS (t = 2.78, p = 0.007), BFNE (t = 2.706, p =

0.008), and SIAS (t = 2.21. p = 0.03) and more negative

correlation between the global network efficiency and the

LSAS (t = −2.52. p = 0.014) and BFNE (t = −2.55. p

= 0.013) were found. Post-hoc z-test of the correlation

coefficient did not show significant change in in the

experimental group.

Glasser 360

From the mixed-design ANOVA, significant interaction

effects were found for the average shortest path length

at thresholds 0.05, 0.1, 0.15, 0.2, 0.25, and the AUC

aggregated value and the network efficiency at thresholds
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FIGURE 2

Box plots of the psychometric scale score results. The whiskers indicate the farthest data from the box within the 1.5 inter-quartile range.

FIGURE 3

Brain regions with significant interaction e�ects of the local

network metrics.

0.05, 0.1, 0.15, 0.2 and the AUC aggregated value.

Post-hoc paired t-test did not indicate any significant

change of the average shortest path length and network

efficiency before and after the intervention in the

experimental group.

The change in correlation followed a similar trend to the

results of the Brainnetome atlas, indicating a more positive

correlation between the average shortest path length and the

LSAS (t = 2.99, p = 0.004) and BFNE (t = 2.91, p = 0.005),

and more negative correlation between the global network

efficiency and the LSAS (t = −2.48. p = 0.015) and BFNE

(t = −2.57. p = 0.012). No significant result was found for

the post-hoc z-test of the correlation coefficient change in the

experimental group.

Discussion

In this study, we aimed to examine the effect of the VRS,

which only presents VR-based exposure treatment sessions,

in relieving clinical symptoms of SAD and investigate related

changes of resting-state functional connectivity in terms of

global and local network properties. A significant decrease

in LSAS, BFNE, and SIAS scores and an increase in RSES

score were observed in SAD patients who went through the

VRS compared to those in the control group. The network

analyses of resting-state functional connectivity with graph

theoretical approach showed decrease of the nodal efficiency on

the opercular part of left inferior frontal gyrus, decrease of the

clustering coefficient, local efficiency and the nodal efficiency on

the left Heschl’s gyrus, decrease of the degree centrality on the

left inferior temporal gyrus, and increase of the degree centrality

on the right calcarine sulcus after the VRS. From the global

network property analyses, changes in the correlation trend

were present between the LSAS score and the global network

efficiency and between the LSAS score and the average shortest

path length.

The change in self-report questionnaire scores in the

experimental group indicates an improvement in subjective

symptoms after the VR-based intervention. Specifically,

participants who experienced the VRS significantly improved

in self-esteem, anxiety in social contexts and fear of negative

evaluations, compared to those who did not. These observations
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FIGURE 4

Bar plots of the local network metrics at baseline and follow-up with respect to varying thresholds. Statistically significant results after the

correction of multiple comparisons are indicated with an asterisk. Each whisker indicates the 95% confidence interval. (A) Results from the AAL

atlas. (B) Results from the Brainnetome atlas. (C) Results from the Glasser atlas.
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FIGURE 5

Scatter plot between the psychometric scale scores and the global network metrics at baseline and follow-up which showed significant results

from the general linear model analysis. (A) Results from the AAL atlas. (B) Results from the Brainnetome atlas. (C) Results from the Glasser atlas.
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TABLE 2 Significant results of the mixed-design ANOVA for the local network metrics at di�erent thresholds.

Region Side Network metrics Threshold F1,37 p-FDR Post-hoc

t19 P

AAL

Inferior frontal gyrus Left Nodal efficiency 0.1 12.82 0.044 2.37 0.014

Heschl’s gyrus Left Clustering coefficient 0.15 18.57 0.011 2.80 0.006

AUC 15.22 0.035 1.54 0.070

Local efficiency 0.15 17.80 0.014 2.66 0.008

AUC 10.30 0.049 1.47 0.079

Nodal efficiency 0.1 12.81 0.044 2.22 0.019

Inferior temporal gyrus Left Degree centrality 0.2 14.81 0.020 2.24 0.019

0.25 15.61 0.015 2.18 0.021

0.3 14.02 0.024 1.88 0.038

Calcarine sulcus Right Degree centrality 0.2 17.69 0.014 −2.51 0.011

0.25 18.73 0.010 −2.40 0.014

0.3 14.43 0.023 −2.14 0.023

Brainnetome

BA9/46d Left Degree centrality 0.45 17.10 0.045 3.25 0.002

0.5 19.01 0.025 3.36 0.002

BA20cl Right Degree centrality 0.45 15.41 0.045 −4.04 <0.001

0.5 15.30 0.045 −4.07 <0.001

Glasser

BA9/46d Left Nodal efficiency 0.15 16.37 0.027 3.69 <0.001

Middle insular area Left Nodal efficiency 0.15 19.81 0.046 3.53 0.001

AUC, Area under the curve; AAL, Automated Anatomical Labeling; BA9/46d, Dorsal part of the Brodmann area 9/46; BA20cl, Caudolateral part of the Brodmann area 20.

are consistent with previous studies, which reported a

significant decrease in anxiety of social environment and

internalized shame, a feeling strongly associated with perception

of negative evaluations by other people, after treatment sessions

with the exposure-based treatment with VR settings (41, 42).

These promising results signify the clinical potential of the VRS,

recently uprising as a viable alternative to the conventional

exposure therapy, in the treatment of mental disorders.

From the network property analyses of resting-state

functional connectivity, significant group-by-time interaction

effects of local network metrics were observed in the opercular

part of left inferior frontal gyrus, left Heschl’s gyrus, left

inferior temporal gyrus, and right calcarine sulcus for the AAL

atlas. The experimental group displayed significant decrease of

nodal efficiency on the opercular part of left inferior frontal

gyrus, the region of language processing circuits (43, 44).

Thus, the decrement of nodal efficiency, which represents the

extent of communication with other brain regions, suggests

that the alleviation of SAD symptoms by VRS may be

associated with lower level of abnormal concentration on

language comprehension of SAD patients. Significant finding

from previous study, which indicates an abnormal increase in

activation in SAD patients in the opercular part of left inferior

frontal gyrus in response to socially oriented language cues, also

supports our finding (45). The decrease in clustering coefficient,

nodal efficiency, and local efficiency in the left Heschl’s gyrus in

the experimental group after the VRS further supports the effect

of VRS in the change of language processing in social context.

The decrease in these local network metrics indicates a lower

level of functional connections of the left Heschl’s gyrus with

neighboring regions (40). The left Heschl’s gyrus is involved

in perception of acoustic stimulus (46) and is associated with

the auditory language comprehension (47), a critical part of

social interaction. Thus, an increased magnitude of functional

communication of the left Heschl’s gyrus and opercular part of

the left inferior frontal gyrus with other brain regionsmay reflect

the problematic processing of acoustic language comprehension

with social context, which could be relieved by the VRS.

The experimental group also displayed a decline in the left

inferior temporal gyrus and a rise of the degree centrality in the

right calcarine sulcus after the VRS. Considering that the degree

centrality reflects the centeredness in communications of a brain

region with other brain, the significant changes of the degree

centrality in response to the VRS suggest the abnormal mode of

interaction of the right calcarine sulcus and left inferior temporal

gyrus in SAD patients. Both regions constitute the ventral
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TABLE 3 Significant results of the mixed-design ANOVA for the global network metrics at di�erent thresholds.

Network metrics Threshold F1,37 p Post-hoc

t19 p

Brainnetome

Network efficiency AUC 4.53 0.040 1.29 0.106

0.05 7.21 0.011 1.72 0.051

0.1 6.42 0.016 1.69 0.054

0.15 6.06 0.019 1.64 0.059

0.2 5.00 0.031 1.40 0.090

Average shortest path length AUC 7.36 0.010 −1.61 0.062

0.05 6.73 0.014 −1.66 0.057

0.1 7.89 0.008 −1.73 0.050

0.15 7.64 0.009 −1.68 0.055

0.2 5.75 0.022 −1.39 0.090

0.25 4.54 0.040 −1.16 0.131

Glasser

Network efficiency 0.05 4.42 0.042 1.00 0.166

Average shortest path length AUC 4.31 0.045 −1.15 0.131

visual pathway (48, 49), which receives visual information

from the primary visual cortex and diverges into the inferior

temporal cortex. It enables the visual processing of recognition

of physical shapes and objects (50, 51). Visual processing of SAD

patients is known to be altered with distorted perception and

understanding of visual information in social contexts, and this

misunderstanding is thought to be contributing to their biased

interpretation and subsequent excessive social anxiety (52, 53).

The degree centrality changes in the inferior temporal gyrus

and calcarine sulcus in response to the VRS may be associated

with the change of the visual processing after the intervention.

Furthermore, the right inferior temporal gyrus within the region

BA20cl also showed a consistent result of increased degree

centrality after the VRS from the Brainnetome atlas analysis.

Interestingly, significant group-by-time interaction effect of

local network property was found within the left Brodmann

area 9/46 for both Brainnetome and Glasser atlases. These

regions constitute part of the dorsolateral prefrontal cortex,

which takes central role in cognitive control. More specifically,

the dorsolateral prefrontal cortex is known to communicate

with the occipital area to modulate top-down sensory inhibition

mechanism for anxiety in social situation, showing exaggerated

network connectivity metrics in the SAD (17). Decrement of

the degree centrality and the network efficiency in the BA9/46d

thus can suggest that the exaggerated activity of the top-down

sensory regulation becomes relieved after the VRS. Considering

that the insula also takes part in the mediation and awareness of

the sensory stimuli and that its activity is elevated in SAD (54),

decreased nodal efficiency within the middle insular area after

VRS treatmentmay further support the interpretation of relief in

top-down sensory regulation in the SAD. The different regions

revealed from the local network analysis between the AAL atlas

and the Brainnetome and Glasser atlases may be due to the fact

that the latter two atlases focus more on parcellating functional

regions rather than anatomical ones (37–39).

The mixed-design ANOVA of the global network metrics

did not show any significant interaction effect for the AAL atlas.

Significant group-by-time interaction effect was found for the

Brainnetome atlas and the Glasser atlas, indicating increased

average shortest path length and decreased global network

efficiency in the experimental group after VRS when compared

to the control group. Given that the average shortest path length

becomes shorter when there are nodes in the network that

acts as the central hubs in the network with high centrality

measures (40), the elevation of average shortest path length can

reflect the fact that the degree centrality of multiple regions is

found to be decreased in response to the VRS from the local

network property analysis. The decrement of global network

efficiency is probably related to the fact that it is mathematically

defined to be inversely proportional to the average shortest path

length (40). However, these interpretations may require further

verification in the future since the post-hoc statistical analysis did

not show significant results when the tests are performed within

the experimental group only.

The network property analyses of brain functional

connectivity of SAD patients at global scale with the general

linear model indicated that the correlation trend between the

LSAS score and the global network efficiency, measuring the

efficiency of information transmission among different brain

regions, showed a change to a more negative correlation in
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the experimental group at follow-up than in baseline when

compared to the control group. Additionally, the correlation

trend between the LSAS and the average shortest path length,

representing the shortness of minimum length of path between

any two nodes, implied a stronger positive statistical correlation

in the experimental group at follow-up than in baseline when

compared to the control group as well. This result was consistent

across three different atlases and the same trend was found with

the BFNE score, except for the average shortest path length

within the AAL atlas. However, the post-hoc test did not suggest

a significant difference in the correlation coefficient within the

experimental group before and after the VRS.

We cautiously interpret that the change in the pattern

of rumination might reflect this alteration of global network

property in the experimental group due to the VRS. Rumination

can be divided into the abstract rumination and the concrete

rumination, based on the mode of processing (55). The former

is a type of cognitive process that places more emphasis on

relatively abstract and insoluble aspects of confronted problems,

including retrieved memories about past experiences and the

reason of the problem being faced, while the latter places

more emphasis on the information specifically relevant to the

context and considers more about the feasible solutions of the

problem being faced. In other words, the attitude accompanied

by the abstract rumination can result in exacerbating the

anxiety in social situation, while the concrete rumination can

oppositely help relieve social anxiety for SAD patients (55–

59). The process of concrete rumination requires concurrent

activation of multiple brain circuits, a process that occurs

globally in the brain, and increased communication efficiency

and interconnectivity between different brain regions facilitate

these global-scale interactions (60). Thus, the change in the

correlation trend between the global network metrics and the

social anxiety scale scores in the experimental groupmay suggest

that the VRS might have had an impact on the shift from

abstract rumination to concrete rumination. Individuals with

higher communication efficiency and interconnectivity of brain

regions benefitted more from concrete rumination and adoption

of adaptive attitudes in coping with social problems, effectively

decreasing levels of social anxiety.

In contrast to our hypotheses, we were not able to

observe any specific change in the local network metrics of

limbic areas such as the amygdala for SAD patients who

received the VRS. This discrepancy may reflect the fact that

different subregions of the amygdala, including the superficial,

basolateral, and ventromedial subregions, exhibit different

pattern of functional connections in SAD patients (7, 60, 61).

The differences in functional connectivity patterns of distinct

amygdala subregions in SAD patients could have lessened the

coherence of measured functional connectivity of the amygdala

as a whole, leading to an insignificant statistical result in the

analyses. Accordingly, further studies on resting-state functional

connectivity specifically focusing on the local network properties

of the subregions of the amygdala may be an interesting research

topic in the future.

The strength of our study is that it is the first to analyze

the effect of the VRS for SAD patients in terms of the resting-

state functional connectivity network properties of the brain.

Nevertheless, some limitations should be noted for this study.

First, there existed a limitation on the study design. Specifically,

we did not include any healthy control groups or assign any

participants to the sham treatment group, which could have

provided a broader interpretation for the effect of the VRS if

included. Second, we did not control for the history of drug

intake for the participants.

Conclusion

We showed that intervention with the VRS alleviated the

degree of social anxiety and increased self-esteem in SAD

patients. From the resting-state functional connectivity analysis,

change in the local network properties of the left dorsolateral

prefrontal cortex, opercular part of left inferior frontal gyrus,

left middle insular area, left Heschl’s gyrus, bilateral inferior

temporal gyrus, and right calcarine sulcus were revealed in

response to the treatment. These changes may be related to the

change in aberrant processing of sensory information including

the auditory linguistic and visual stimuli. Altered correlation

trend between the global network properties and the level of

social anxiety after the VRS further suggest changes of the brain

network as a whole which may reflect adaptation in the pattern

of rumination.
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