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Background: Alcohol use disorder is characterized by perseverative alcohol

use despite negative consequences. This hallmark feature of addiction

potentially relates to impairments in behavioral flexibility, which can be

measured by probabilistic reversal learning (PRL) paradigms. We here aimed to

examine the cognitive mechanisms underlying impaired PRL task performance

in patients with alcohol use disorder (AUDP) using computational models of

reinforcement learning.

Methods: Twenty-eight early abstinent AUDP and 27 healthy controls

(HC) performed an extensive PRL paradigm. We compared conventional

behavioral variables of choices (perseveration; correct responses) between

groups. Moreover, we fitted Bayesian computational models to the task data

to compare di�erences in latent cognitive variables including reward and

punishment learning and choice consistency between groups.

Results: AUDP and HC did not significantly di�er with regard to direct

perseveration rates after reversals. However, AUDP made overall less correct

responses and specifically showed decreased win–stay behavior compared to

HC. Interestingly, AUDP showed premature switching after no or little negative

feedback but elevated proneness to stay when accumulation of negative

feedback would make switching a more optimal option. Computational

modeling revealed that AUDP compared to HC showed enhanced learning

from punishment, a tendency to learn less from positive feedback and lower

choice consistency.

Conclusion: Our data do not support the assumption that AUDP are

characterized by increased perseveration behavior. Instead our findings

provide evidence that enhanced negative reinforcement and decreased non-

drug-related reward learning aswell as diminished choice consistency underlie

dysfunctional choice behavior in AUDP.

KEYWORDS

alcohol use disorder (AUD), reversal learning, reinforcement learning, computational

modeling, cognitive flexibility
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Introduction

Adaptive decision-making requires both learning from

reward and punishment and updating reward and punishment

contingencies in a changing environment. Substance use

disorder (SUD) is characterized by perseverative drug use

despite negative social, economic, and health consequences,

which is thought to reflect cognitive inflexibility. Recent theories

thus emphasize that inflexible decision-making is key to the

pathophysiology of addiction (1).

Probabilistic reversal learning (PRL) paradigms, in

which subjects must adapt to changes in stimulus–outcome

contingencies, have been applied to examine cognitive flexibility

(2). Some studies using PRL tasks have reported higher

perseverative responses after reversals supporting impaired

cognitive flexibility in patients with SUD (3–7). However,

available studies have not revealed robust and consistent

findings as some studies have failed to evidence higher

perseverative responses in patients with alcohol use disorder

(AUDP) (8, 9) as well as in amphetamine (3), cocaine (10),

and methamphetamine (11) use disorder patients compared to

controls. The reasons for the heterogeneity in these findings

are unclear but may be partly due to differences in the clinical

characteristics of the sample such as stage of addiction,

psychiatric comorbidity, and medication. Furthermore,

previous studies used different definitions to operationalize

perseverative behavior which also makes the interpretation and

comparison of previous findings difficult.

In addition, most previous studies have used means

of behavioral task measures to examine decision-making

abnormalities in SUD which might be influenced by different

potential underlying mechanisms. So far, only a few previous

studies have used computational models of reinforcement

learning to infer about the latent cognitive mechanisms

underlying impaired PRL task performance in SUD. Such

computational models rely on the assumption that agents try

to maximize total reward and minimize punishment in the

long term by learning from positive and negative feedbacks

via reward prediction error signals (12, 13). Essentially, such

computational models allow to infer how effective subjects

incorporate rewards and punishments to update their action

values, thus providing a powerful approach to study impaired

decision-making more mechanistically (14). For instance, by

using this analytic approach, previous studies using different

decision-making tasks have mostly found decreased choice

consistency in patients with SUD. One previous study using the

Iowa Gambling Task (IGT) (15) has found that patients with

polysubstance use disorder showed less consistent choices but

similar learning rates from reward and punishment compared

to controls (16). Another study using the same task has reported

reduced loss aversion and subtle differences in overall learning

in opioid users but not in stimulant users relative to controls

(17). Another recent study using the IGT has reported increased

random exploration in patients with methamphetamine use

disorder (18). Increased switching behavior rather than stick

with decisions even if they are rewarded as well as lower

learning rate from losses and an increased learning rate from

gains have also been shown in patients with polysubstance use

disorder (19). Another study using a probabilistic instrumental

learning task has reported a decreased tendency to repeat

prior responses in patients with opioid user disorder compared

to controls (20). With regard to PRL task, two previous

studies observed no alteration in neural encoding of reward

prediction errors (21, 22). Moreover, there is no evidence

for altered reward or punishment learning rates for the

chosen stimulus in AUDP (21–24). However, these previous

studies used PRL tasks with a comparably small number of

reversals which may limit accurate estimation of the learning

parameters. Indeed, a recent study using a PRL task with higher

number of reversals found reduced reward learning, while

increased learning from punishment (non-reward) in patients

with stimulant use disorder (25) indicating the role of altered

reinforcement learning in the maintenance of addiction. Taken

together, findings of previous computational modeling studies

suggest that increased random choices rather than perseveration

seem to at least partly underlie abnormal decision-making

processes in patients with SUD. However, evidence for learning

from reward and punishment seems somewhatmixed in patients

with SUD.

Most reversal learning tasks in humans have relied on non-

drug rewards and punishments as opposed to drug rewards.

There is accumulating evidence that addicted individuals

show reduced responsivity to alternative rewards (26, 27).

The mechanism underlying this shift provides a potential

explanation why individuals with SUD find alternative, non-

drug-related rewards and activities hardly rewarding. With

regard to responsivity to punishment, previous studies have

yielded mixed results. Some studies have shown decreased

punishment sensitivity or reduced loss aversion (28–31), while

others have shown increased sensitivity to punishment in SUD

patients (25, 32). The former results have been interpreted as

a potential mechanism underlying habitual drug intake (drug

intake despite negative consequences), whereas the latter results

have been interpreted as a potential mechanism underlying drug

intake that is driven by negative states, such as withdrawal

periods (33, 34).

In the present study, we aimed to build upon these recent

reports and further elucidate the role of reward and punishment

sensitivity as well as behavioral perseveration in early abstinent

AUDP. We hypothesized that AUDP would show more random

choices rather than perseverative responses relative to healthy

controls. However, given the previous results were mixed,

our investigation on learning from reward and punishment

was exploratory.
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Materials and methods

Participants

Twenty-eight inpatient male AUDP who had completed

detoxification process were included in the study. All

patients were free of benzodiazepines and other psychotropic

medications for at least 5 days. Twenty-seven male healthy

controls (HC) were matched to the patients with regard to

age and education level. All subjects gave written informed

consent to participate in the study, and the study was approved

by the local ethics committee. As described elsewhere (35),

exclusion criteria for the AUDP were as follows: (1) any lifetime

substance use disorder other than alcohol (except nicotine),

(2) current or past history of any serious psychiatric illness,

including psychotic or bipolar disorder except for a past (but

not current) history of major depressive disorder, (3) current

or past history of any significant neurological disorders, (4)

history of loss of consciousness for more than 30min, and

(5) any severe hepatic, endocrine, and renal diseases. HC

met the same criteria as patients, except for the history of

alcohol use disorder. All subjects were interviewed using the

Structured Clinical Interview for DSM-IV Axis I Disorders

to exclude participants with past or current comorbid Axis I

diagnoses and to confirm the diagnosis of alcohol dependence

in the clinical group. Michigan Alcoholism Screening Test

(MAST) was used in the evaluation of severity of alcohol

dependence. Craving was measured using Craving Typology

Questionnaire (CTQ) (36, 37) total score. During the standard

course of inpatient treatment, regular monitoring of blood and

urine for the presence of alcohol, amphetamines, barbiturates,

benzodiazepines, cocaine, cannabis, and opiates was performed

to assure sobriety.

Reversal learning task

We used a probabilistic reversal learning task (2) (Figure 1)

which runs in PEBL software (38). As described before (4,

39), to complete the task, participants had to finish three

consecutive blocks of trials consisting of 11 discrimination

stages, and, therefore, ten reversal stages. Two abstract stimuli

in each block were presented simultaneously in the left and

right visual fields (location randomized). There was no time

limitation to produce a response in each trial. Feedback,

consisting of a green smiley face for correct responses or a

red sad face for incorrect responses, was presented immediately

after the response. Participants were told that, according to

a predefined rule, one stimulus was correct on each trial,

and the other stimulus was incorrect. Participants were also

instructed that the rule deciding the correct stimulus would

change at various points throughout the task, and they should

change their response when they were confident that the rule

had changed. Reversal of the stimulus–reward contingency

occurred after between 10 and 15 total correct responses

(including probabilistic errors: misleading feedback provided

to the usually correct and rewarded response). The number of

probabilistic errors between each reversal varied from 0 to 4

in a pseudorandomized sequence. Participants were given a full

block of practice trials.

Task data analyses

Behavioral analysis of choice behavior
We first compared conventional behavioral measures

between groups including the number of correct responses

and perseverative errors. Correct choices were defined as

selecting the stimulus with the higher reward probability.

Following previous reports (5), perseverative errors were defined

as selecting the previously rewarded stimulus at least once

following a loss after a reversal. The perseverative error rate was

calculated by dividing the number of perseverative errors by

the number of sequences on which criterion for perseveration

was met (5). To meet criterion for perseveration, participants

had to make at least one consecutive response to the previously

rewarded stimulus immediately following reversal, excluding the

reversal error itself. Correct choices and perseverative errors

were compared between groups using independent t-tests.

We then analyzed switching behavior as a function of the

outcome in the preceding trial by using mixed-effects logistic

regression. More precisely, we used a binomial link function

to regress stay/switch behavior on the previous trial outcome

(fixed effect: reward/no reward coded as 0.5 and −0.5) and

group (fixed effect HC/AUDP coded as 0.5 and −0.5). Subjects

were added as random effects (random intercept model). As we

were particularly interested in whether groups showed different

stay/switch behavior after rewarded and unrewarded trials, we

tested for interaction between group and outcome.

As noted by Perandres-Gomez et al. (40), the

abovementioned analysis of stay/switch behavior presents

some interpretation problems, as stay/switch behavior does

not exclusively depend on the previous trial, but on the

accumulation of outcomes for previous stay/switch responses.

To disentangle this, we performed a third line of analyses

where we calculated the number of consecutive stay responses

preceding the present trial, in the presence of cumulative

negative feedback. In line with Perandres-Gomez et al. (40),

cumulative negative feedback was expressed on a 0–3 scale,

where 0 stands for a positive feedback on the last trial; one

stands for a single negative feedback in the last trial; two stands

for two consecutive negative feedbacks in the last two trials with

one stay response in the previous trial; and three stands for

three consecutive negative feedbacks in the last three trials with

two consecutive stay responses in the previous two trials. In this

analysis, we regress stay/switch behavior on cumulative negative
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FIGURE 1

Probabilistic reversal learning task (2). On each trial, subjects were confronted with two abstract symbols. Feedback (a green smiley face or red
sad face) was presented after choosing one of the symbols by a left or right button press. Using trial-and-error feedback, subjects must discover
which of the two patterns is correct.

feedback and group and tested for interaction. Again, subjects

were added as random effects (random intercept model).

Regression analysis was conducted using generalized

linear mixed-effects models implemented with the lme4

package (41) in the R programming language, version 3.1.2

(cran.us.r-project.org). Post-hoc comparisons were analyzed by

pairwise contrasts using the lsmeans package (42) with Tukey’s

method for multiple comparisons.

Computational modeling
We fitted two reinforcement learning models to trial-by-trial

choice data of the PRL task using hierarchical Bayesian analysis

separately for each group using the R package hBayesDM (43).

The hierarchical Bayesian approach assumes that individual

parameters are drawn from group-level normal distributions.

Normal (mean = 0, sd = 1) and half-Cauchy (location = 0,

scale = 5) distributions were used for the priors of the group-

level normal means and standard deviations, respectively (43).

Weakly informative priors were employed to minimize the

influence of those priors on the posterior distributions when

the sample sizes are small (43). The hBayesDM package applies

inverse probit transformation for parameters that are bounded

between 0 and 1 (e.g., learning rate) to convert the unconstrained

values into this range (43). In addition, hBayesDM package

transforms parameters which bounded between 0 and +∞

(e.g., inverse softmax temperature) to a [0, upper limit] range

by multiplying its inverse probit transformed values by upper

limit (43). The first model was the reward-punishment model

(RP) with separate learning rates for reward and punishment

(44, 45). This RP model has three parameters, arew and

apun, which represent the speed of learning from positive

and negative feedback, respectively, and inverse temperature

(β) indicating decision variability (choosing the best option

more consistently) (44). β could range between 0 and +∞.

Lower values of β represent more random choice and lower

sensitivity to the value of outcomes. Reduced learning from

punishment would underlie perseverative behavior according

to the RP model. The second model was an experience-

weighted attraction (EWA) model (46). This EWA model

has three parameters, learning rate (a) represents speed of

learning from feedback; β ; and an experience decay factor

(ρ) indicating the impact of past experience with respect to

incoming information (44). Increases in experience decay factor

might underlie perseverative behaviors according to the EWA

model. Markov chain Monte Carlo (MCMC) simulations by

drawing 20,000 samples and burning the first 2,000 were used to

generate posterior distribution of group-level model parameters,

while accounting for individual differences. Convergence of the

MCMC was assessed by both visual inspection of the Markov
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TABLE 1 Demographic and clinical characteristics of AUDP and

healthy control subjects.

AUDP

(n = 28)

Controls

(n = 27)

Statistic P-Value

Age (years) 39.3± 6.6 38.4± 6.5 t = 0.477 0.636

Education (years) 11.1± 4.1 11.6± 3.8 t =−0.490 0.626

Age at first use (years) 16.2± 4.8

Duration of regular use

(years)

14.7± 8.9

Duration of abstinence

(days)

26.8± 14.2

MAST score 20.6± 5.7

CTQ score 69.1± 15.0

Data are presented as mean+/– standard deviation. AUDP, alcohol use disorder patients;

MAST, Michigan alcoholism screening test; CTQ, craving typology questionnaire.

chains and computing the R-hat Gelman-Rubin statistics where

successful coverage is indicated by values close to 1 (47).

Leave-one-out information criterion (LOOIC) was used for

model selection (lower values indicate better model fit) (48). To

compare the parameters from the winning model between two

groups, we calculated the 95% highest density interval (HDI) of

the differences between each group parameter. A parameter was

considered to significantly differ between groups if the HDI did

not overlap 0 (17, 43).

Results

Table 1 shows the demographic and alcohol use variables for

the groups.

Choice behavior

HC made significantly more correct responses than AUDP

[t(53) = −3.54, p = 0.001; Figure 2A]. Both groups did not

significantly differ on the overall amount of perseverative errors

(Figure 2B, Table 2). Moreover, perseverative error rates did not

significantly differ between groups (Table 2).

Analyses of switching behavior as a function of outcome of

the previous trial indicated a significant main effect of reward

(Estimateoutcome = 0.27, SE = 0.06, p < 0.001), suggesting

that rewarded trials were more likely to be repeated than

punished trials. There was also a significant main effect of group

(Estimategroup = 0.67, SE = 0.11, p < 0.001). Post-hoc analyses

indicated that the HC repeated the previous choice more often

than the AUDP. We also found a significant outcome x group

interaction on repetition probability (Estimateoutcomexgroup =

0.96, SE = 0.07, p < 0.001). Post-hoc comparisons revealed that

the AUDP repeated the previous choice less likely following

FIGURE 2

Results of the choice analyses. (A) AUDP made significantly less
correct responses. (B) Perseverative errors were similar between
groups. (C) AUDP showed decreased win–stay behavior
compared to HC. (D) AUDP showed increased switching
behavior after no or limited negative feedback but decreased
switching after multiple negative feedback compared to HC.
***p < 0.001.

TABLE 2 Conventional behavioral measures of AUDP and healthy

control subjects.

AUDP

(n = 28)

Controls

(n = 27)

Statistic P-Value

Perseverative errors 22.25± 14.05 28.3± 11.96 t =−1.72 0.091

Perseverative error rate 1.74± 0.52 1.56± 0.46 t = 1.31 0.198

Data are presented as mean+/– standard deviation. AUDP, alcohol use disorder patients.

rewarded trials (EstimateAUDPreward−HCreward = −1.15, SE =

0.12, p < 0.001). There was no difference for punished trials

(EstimateADPpunish−HCpunish = −0.19, SE = 0.11, p= 0.350)

suggesting that the AUDP showed significantly less win–stay and

similar lose–shift behavior relative to the HC (Figure 2C).

Our third analysis was conducted to see whether cumulative

negative feedback resulted in altered switch behavior in AUDP

compared to HC. In line with Perandres-Gomez et al. (40), we

calculated a score for cumulative negative feedback ranging from

0 to 3 indicating howmuch negative feedback the individual had

experienced in the trials before. Again, this analysis indicated

a significant main effect of group (Estimategroup = 0.76, SE

= 0.12, p < 0.0001), suggesting that AUDP showed generally

more switching behavior. Moreover, the analysis revealed

a significant main effect of accumulated negative feedback

(Estimateaccneg =−0.88, SE= 0.02, p < 0.0001), indicating that

participants were more likely to switch with the accumulation

of negative feedback. Furthermore, we found a significant
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interaction between group and accumulated negative feedback

(Estimategroupxaccneg = −0.69, SE = 0.04, p < 0.0001). As

Figure 2D reveals, the different slopes for the two groups suggest

a mixture of premature switching (instability) and perseveration

in AUDP. This is reflected in an elevated proneness to switch

with no or little negative feedback and a slightly elevated

proneness to stay when accumulation of negative feedback

would make switching a more optimal option.

Computational models

LOOIC scores were lower for RPmodel (AUDP= 17,667.22,

HC = 11,157.05) than the EWA model (AUDP = 17,706.96,

HC = 11,193.27) in both groups. Comparison of the posterior

distributions of parameters from the winning RPmodel between

groups indicated that the learning from negative feedback (apun)

values were significantly higher in the AUDP than HC (95%

HDI = 0.109–0.239). Conversely, the learning from positive

feedback (arew) values were slightly lower in the AUDP than HC

(95%HDI=−0.236–0.033). The β values were also significantly

lower in the AUDP than HC (95% HDI = −1.161 to −0.265),

suggesting more random choice and lower value sensitivity

(Figure 3). All parameters had R-hat values between 0.99 and

1.01. There were no divergent transitions after warmup in any

of the models and samples, with the exception of 1 divergent

transition in the EWAmodel for the HC group.

In AUDP, Spearman’s correlation analysis showed that

addiction severity measured by the MAST, craving measured by

the CTQ total score, duration of regular use, and duration of

abstinence were not related to posterior means of αpun, αrew,

or β parameters. β parameters were related positively with αpun

(rho = 0.418, p = 0.028) but not with αrew (rho = 0.048, p =

0.810) within AUDP. In HC group, there were no correlations

between β parameters with αpun (rho=−0.356, p= 0.068) and

αrew (rho=−0.065, p= 0.746).

We performed parameter recovery for the winning RP

model for the HC and for the AUDP groups. To this end,

we performed posterior predictive simulations of the models.

For each posterior sample, we simulated (posterior predictive)

choices on the task. The choice that was most often simulated for

a given subject and trial was chosen as the simulated choice. To

these simulated choices, we fitted the RP model. We extracted

the mean parameter values based on the original model fit to

the empirical data (i.e., true parameter value) and compared this

to the posterior means from the recovery model (i.e., simulated

choices; recovered parameter). Supplementary Table 1 shows

correlations, and Supplementary Figure 1 shows scatter plots

for the true and recovered by-subject parameter estimates. The

results showed that in both samples (AUDP and HC), recovery

was good for αpun and β parameter. Recovery was not optimal

for the αrew for HC.

We also performed posterior predictive checks for the

RP model for AUDP and HC, where we simulated posterior

predictive choices based on the fitted models. For each subject

and trial, we computed the choice probabilities across all

posterior samples. We then performed the same analyses as

reported in Figure 2, but now using the posterior predictive

choice probabilities instead of the empirical choices. The

results from this analysis are shown in Supplementary Figure 2.

They show that the model reproduces similar trends for the

perseverative behavior (Figure 2B) and win–stay and lose–shift

behavior (Figure 2C) but not for the lower correct choices

in AUDP (Figure 2A) and decreased switching behavior after

multiple negative feedback in AUDP (Figure 2D).

These results suggest that caution should be taken when

interpreting results from our computational model.

Discussion

In the present study, we aimed to investigate behavioral

flexibility and its underlying latent cognitive mechanisms in

AUDP using a reversal learning task. We found general

impairments in learning and decision-making as reflected

by lower rates of correct responses and decreased win–stay

behavior in AUDP compared to HC. However, in our primary

analyses, we did not find evidence for increased perseveration

rates after reversals in AUDP compared with HC.We found that

AUDP compared to HC showed increased switching behavior

after no or limited negative feedback but decreased switching

after multiple negative feedback. Our computational analysis

revealed enhanced learning from negative feedback and a

tendency to reduced learning from positive feedback in AUDP.

Moreover, we found lower β values in the AUDP, suggesting

that AUDP show more random behavior and/ or less sensitivity

to the value of outcomes. These findings highlight the benefits

of reinforcement learning models to provide a mechanistic

understanding of impaired decision-making in AUDP.

Several rodent studies have shown that excessive alcohol

intake renders individuals prone to habitual responding that

is characterized by repetitions of actions despite outcome

devaluation (49, 50). Such habitual response tendencies have

been argued to underlie ongoing alcohol intake despite negative

outcomes in AUDP (51, 52). However, in humans, evidence for

this assumption is mixed (34, 53, 54). In the reversal learning

paradigm, increases in perseverative responding after reversals

or decreases in punishment learning rates potentially reflect

habitual response tendencies. In the present study, we found

no evidence for such habitual response tendencies in AUDP,

which mirrors findings of some studies that have reported no

perseverative behavior after reversals in patients with alcohol

(8), opiate and amphetamine (3), and methamphetamine (11)

use disorder. Our analyses where we tested how accumulated

negative feedback impacted switch behavior indicated that
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FIGURE 3

Posterior distribution di�erences of reward-punishment model parameters between alcohol use disorder patients (AUDP) and healthy controls
(HC). A parameter was considered to significantly di�er between groups if the 95% highest density interval (HDI) did not overlap 0. Punishment
learning rate was significantly higher in AUDP, but reward learning rate was only slightly lower in the AUDP than HC. AUDP also showed
significantly lower inverse temperature than HC, suggesting reduced reward sensitivity. The red bar indicates the 95% HDI of the group
di�erences.

AUDP showed increased switching behavior particularly after

limited negative feedback. Likewise, our computational analyses

indicated enhanced learning from negative feedback in AUDP,

which is in line with models emphasizing the importance of

negative reinforcement in the maintenance of addiction (26,

27, 34, 55, 56). Hogarth (34) recently argued that instead of

habitual responding, increased goal-directed action selection

under negative affect might underlie ongoing alcohol intake

despite negative outcomes in AUDP. According to this, aversive

states, such as withdrawal powerfully increases the expected

alcohol value leading to alcohol intake which momentarily

outweighs the expected value of abstinence. This hypothesis

is in line with assumptions regarding alcohol craving elicited

by (expected) relief from withdrawal and associated negative

mood states (57). Although in our study, we did not assess

goal-directed action selection directly, our finding of increased

punishment sensitivity in AUDP aligns well with the hypothesis

that actions in AUDP are excessively driven by negative states.

In contrast to our findings, two previous studies using

PRL tasks in AUDP have found no differences in punishment

learning rates for the chosen stimulus although their behavioral

analysis revealed similar findings such as lower win–stay but

similar lose–shift choices in AUDP (23, 24). Inconsistencies

between our and these studies may be due to task discrepancies

with regard to the number of reversals [five and ∼10 reversals

in the studies by Reiter et al. (24) and Beylergil et al. (23),

respectively, vs. 30 reversals in our study] which may limit

accurate estimation of learning parameters. Another study

which used a similar number of reversals as our study

has reported increased learning from non-reward in patients

with stimulant use disorder (25). Although non-rewards are

functionally different from punishments, this result aligns

well with our finding indicating that addicted individuals

might be particularly impaired in integrating information of

non-rewarding valence in their choices. Furthermore, enhanced

learning from punishment and increased loss avoidance have

also been found in recently abstinent patients with nicotine

(32, 58) and cocaine dependence (33). Although not measured

directly in the current study, our finding might be related

to changes in dopamine system over the course of addiction.

Prior studies have shown that long-term drug use is related to

lower tonic ventral striatal (VS) (including nucleus accumbens)

dopamine levels (59) which have been linked to enhanced

learning from negative outcomes (60). In sum, our research

extends the findings of previous studies supporting the

importance of negative reinforcement in nicotine and stimulant

use disorder to alcohol use disorder.

Positive reinforcement effect of drugs via phasic release

of dopamine in VS is thought to play a key role during the

initial phase of drug use (26). However, with the continued

drug use, blunted phasic dopamine release and lower BOLD

response within the VS to both drug-related and non-drug-

related rewards has been shown in individuals with substance

use disorder (59, 61, 62). Previous studies have also found

reduced responsivity to monetary rewards in AUDP (63, 64).

Consistent with these findings, we found that AUDP had

lower win–stay responses and slightly diminished learning from

positive feedback compared to HC suggesting dysfunctional

reward learning. In line with our findings, previous studies

using computational analysis found diminished learning from

positive feedback in stimulant (25) and nicotine dependence

(32). However, we have to note that whether hyporesponsivity

to rewards is a result of extended drug use or a pre-existing

vulnerability trait is an ongoing debate (65). We are unable to

establish a clear temporal relationship between hyporesponsivity

to rewards and AUDP, due to the cross-sectional design of our

study. Some longitudinal studies suggest delayed recovery of

dopamine D2-receptor function following detoxification being
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associated with poor treatment outcome (66–68), so longitudinal

studies should assess reward sensitivity and the putative

neurobiological correlates during alcohol intake, detoxification,

and abstinence.

AUDP showed more random choices as evidenced by

lower β values than HC. Our regression analyses indicated

increased switching behavior particularly in light of positive

reinforcement. Moreover, further analyses indicated that

switching behavior in AUDP was also increased after none

or limited negative feedback, whereas after multiple negative

feedback, AUDP showed a tendency to switch less. Our findings

converge with two previous studies using computational

analyses that reported excessive switching behavior in cocaine

(10) and nicotine (69) use disorder patients. In addition, these

results could be interpreted based on the active inference

framework of addiction (70). According to this framework,

substance use leads to suboptimal precision which reflects the

degree of stochasticity or goal-directedness of behavior (71).

Therefore, our finding of more random choices in AUDP

is in line with previous studies that have reported lower

action precision in substance use disorder (19, 71). Crucially,

the task used in this study does not enable to functionally

dissociate randomness from exploration. Interestingly, some

previous studies have suggested that tonic dopamine might

either increase (72) or decrease exploration (73). As AUDP

show reduced availability of D2 receptors (59, 74, 75),

putatively reflecting a downregulation of the dopaminergic

system, future studies should apply appropriate tasks to further

investigate the link between dopaminergic functioning and the

exploration/exploitation trade-off in AUDP.

The findings of this study should be interpreted after

consideration of the following limitations. An important

limitation of this study is its cross-sectional nature. Thus,

it is unclear whether our findings resulted from detrimental

effects of chronic alcohol use on the brain or pre-existed in

individuals more prone to alcohol use. Longitudinal studies are

needed to clarify this issue. Another limitation of the study

is that it included only males, thus limiting generalizability.

Third, although AUDP were not clinically depressed, symptom

severity was not assessed with a scale and thus we may

have underestimated subclinical symptoms. Furthermore, we

did not exclude AUDP with a history of major depressive

disorder as the differential diagnosis between alcohol-induced

depressive disorder and independent major depressive disorder

is challenging. All AUDP except three reported a history of

lifetime major depressive episode. Given that major depressive

disorder has been previously shown to affect performance on

probabilistic reversal learning tasks (76), inclusion of AUDP

with a history of major depressive disorder might contribute

to at least some of these observed differences. Fourth, we

did not examine other cognitive measures such as working

memory which might impact our results. In addition, because

we used the hBayesDM package, our models did not include

a perseveration parameter which might impact our results

regarding the learning rates and inverse temperature. Sixth,

because of poor parameter recovery of model parameters

particularly learning rates for rewards and given the RP model

did not well-captured some behaviors, our findings should be

interpreted cautiously.

In conclusion, our findings provide further evidence for the

importance of higher negative reinforcement and lower reward

sensitivity in AUDP particularly during early abstinence.
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