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Objective: Previous studies have revealed abnormal degree centrality (DC) in

the structural and functional networks in the brains of patients with major

depressive disorder (MDD). There are no existing reports on the DC analysis

method combined with the support vector machine (SVM) to distinguish

patients with MDD from healthy controls (HCs). Here, the researchers

elucidated the variations in DC values in brain regions of MDD patients and

provided imaging bases for clinical diagnosis.

Methods: Patients with MDD (N = 198) and HCs (n = 234) were scanned using

resting-state functional magnetic resonance imaging (rs-fMRI). DC and SVM

were applied to analyze imaging data.

Results: Compared with HCs, MDD patients displayed elevated DC values

in the vermis, left anterior cerebellar lobe, hippocampus, and caudate, and

depreciated DC values in the left posterior cerebellar lobe, left insula, and

right caudate. As per the results of the SVM analysis, DC values in the

left anterior cerebellar lobe and right caudate could distinguish MDD from

HCs with accuracy, sensitivity, and specificity of 87.71% (353/432), 84.85%

(168/198), and 79.06% (185/234), respectively. Our analysis did not reveal
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any significant correlation among the DC value and the disease duration or

symptom severity in patients with MDD.

Conclusion: Our study demonstrated abnormal DC patterns in patients with

MDD. Aberrant DC values in the left anterior cerebellar lobe and right caudate

could be presented as potential imaging biomarkers for the diagnosis of MDD.

KEYWORDS

major depressive disorder, rest state fMRI, degree centrality, support vector machine,
biomarker

Highlights

– The support vector machine (SVM) was used to
differentiate between major depressive disorder (MDD)
and healthy controls.

– Patients with MDD reported abnormalities in brain scans.
– The left cerebellum anterior and right caudate were

the potential specific biological imaging markers for
patients with MDD.

Introduction

Major depressive disorder (MDD), a well-researched
psychiatric disorder, occurs with a high rate of disability, which
presents a primary cause of the economic burden throughout
the world (1). As per the World Health Organization report in
2017, about 322 million people suffer from depression, ranking
second in the world’s disease burden and growing to the largest
in 2030 (2). Despite the tremendous burden brought by MDD,
the existing studies have not found useful diagnostic markers.

Previous neurological imaging studies have implicated
functional and structural aberrations in patients with MDD.
However, different neuroimaging features between various
investigations have been identified. Structural brain imaging
studies show the lesser gray-matter volume in the insula and
various subcortical and medial temporal regions, including
the left sides of the caudate, hippocampus, parahippocampal
gyrus, and cerebellar areas of patients with MDD (3). Also,
hippocampal structural reductions have been tied explicitly to
MDD illness progression (4). The common analysis methods of
functional brain imaging include regional homogeneity (ReHo),
low-frequency fluctuation (ALFF), and functional connectivity
(FC). Previous research found elevated FC values in the bilateral
parietal and left occipital regions (5) and depreciated resting-
state functional connectivity (rsFC) between the left superior
frontal gyrus and hippocampus (6). Besides, MDD patients
showed elevated ALFF in the right superior frontal gyrus
(SFG) and depreciated ALFF in the bilateral precuneus, bilateral

cerebellum, and left occipital cortex (7). Geng et al. found
elevated ReHo in the bilateral parahippocampal gyrus and
left lingual gyrus but depreciated in the right middle frontal
gyrus in patients with depressive disorders who showed somatic
symptoms (8). These studies revealed abnormalities in brain
function in patients with MDD. However, ALLF and ReHo
reflect local brain activity and do not show the functional
connection between different brain regions. When abnormal FC
exists between two brain regions, the FC analysis method is
challenging to determine the anomalous brain region. Our study
aimed to use the technique of degree centrality (DC) to detect
resting state functional connections in patients with MDD.

DC takes into account the relationship of a given region with
that of the entire functional connectome and not just its relation
to individual areas or separate more significant components
(9). The DC analysis method completes functional connectivity
across the brain and shows brain regions with abnormal signals.
Previous studies have demonstrated the applicability of the DC
analysis method to elucidate abnormalities in brain networks
in different psychiatric and neurologic disorders. For instance,
elevated levels of DC were identified in the schizophrenia group
in the right inferior parietal lobule/angular gyrus relative to the
HCs (10). However, the tinnitus patients showed elevated DC
in the left inferior parietal gyrus and depreciated DC in the
left precuneus within the dorsal attention network (11). This
lack of consistency could be attributed to variations in disease
characteristics or symptoms. It could also suggest aberrant brain
activity that could be reflected in modifications in DC values.
In addition, the abnormality of the DC value was also found
in the research on MDD (12, 13). However, few researchers
have combined DC and support vector machine (SVM) methods
in studies of MDD.

SVM can be used as a rigorous machine learning
methodology working by constructing a hyperplane that
separates the samples based on the maximum margin approach
(14). It could be used to predict psychosis based on
neuroanatomical biomarkers. Compared with other machine
learning methods such as artificial neural networks, SVM
can successfully solve high dimensional and local minimum
problems with better generalization. Therefore, SVM is widely
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used to distinguish patients with epilepsy (15), Tourette
syndrome (16), schizophrenia (17), and MDD (18) from HCs.
This study investigated DC values in patients with MDD, studied
brain areas with modified DC values, and described the regions
as probable neurological imaging markers via the SVM method.
We hypothesized that DC in patients with MDD might be
abnormal, and SVM might screen out the most valuable brain
regions for diagnosing MDD.

Materials and methods

Subjects

In this study, one hundred ninety-eight patients with MDD
were selected from the Department of Psychiatry at the Tianyou
Hospital, affiliated with the Wuhan University of Science and
Technology. We applied a 17-item Hamilton Rating Scale
for Depression (HRSD-17) to understand the severity of the
depressive state of a patient, as per the Diagnostic and Statistical
Manual of Mental Disorders, fourth edition (DSM-IV). Two
psychiatrists completed the diagnosis. Two hundred thirty-four
healthy controls (HCs) matched with the experimental group,
including age, gender, and years of education, were recruited.
HCs were repeatedly screened to exclude any background
of mental illness.

The exclusion criteria for subjects were as follows: (1)
subjects showing symptoms complying with the symptoms
of other psychiatric disorders meeting DSM-IV diagnostic
criteria, such as schizophrenia, anxiety disorders, and bipolar
disorder; (2) past or present significant physical diseases, such as
cardiovascular disease or diabetes; (3) a history of head injury or
other neurologic diseases; (4) pregnancy; (5) contraindications
for MRI scan. (6) Left-handedness.

The ethics committee of Tianyou Hospital, affiliated with
the Wuhan University of science and technology, sanctioned the
study protocol. Written informed consent was obtained from
all study subjects.

Image acquisition

MRI scans were obtained using the Ingenia 3.0 T (Philips,
Amsterdam, The Netherlands). The scanner noise was
minimized using earplugs; the head motion was reduced using
foam padding. Patients were required to stay conscious
and relax. High-resolution 3D T1-weighted structural
images were acquired with following parameters: echo
time (TE) = 3.2 ms; repetition time (TR) = 7.2 ms; field of view
(FOV) = 256 mm × 256 mm; flip angle (FA) = 7◦. RS blood-
oxygen-level-dependent (BOLD) fMRI data were obtained
with the following parameters: FOV = 220 mm × 220 mm;
TE = 30 ms; TR = 2021 ms; FA = 90◦; slice thickness = 3.5 mm.

Imaging preprocessing

Resting state data were preprocessed using DPABI1 on
MATLAB 2013b. The first five time points were discarded
until the subjects became accustomed to the scanner’s noise.
The remaining images were slice-time-corrected and spatially
realigned for head motion. We estimated the translation
volume in each direction and individual axial rotation to
elucidate head motion parameters. The BOLD data for each
subject were within the defined motion threshold (The
translation threshold was set to ± 2 mm, while the rotation
threshold was limited to ± 2◦). Spatial normalization of
the functional images was done using echo-planar imaging
sequence templates. We performed linear detrending and
filtering (0.01–0.08 Hz) of all images to reduce the high-
pitch respiratory and cardiac noises. We performed regression
analysis to remove the white matter signal, the head motion
parameters, and the cerebrospinal fluid signal, followed by
removing the linear trends.

Degree centrality analysis

DC is a theory-based graph method to elucidate the
connection degree between each node and other nodes in the
network. The REST2 software calculated the voxel-based DC
value of the whole brain gray matter. We calculated the Pearson
correlation coefficient between the bold time processes of all
voxel pairs. For a given voxel, DC is calculated as the sum
of positive functional connections between this voxel and all
other voxels in the gray matter above the threshold of 0.25
(19), and then the individual voxelwise DC was converted
into a Z-score map. Finally, the resulting DC maps were
spatially smoothed with a 6-mm full width at half-maximum
(FWHM) Gaussian kernel (detailed information can be found
in Supplementary Material).

Statistical analysis

SPSS v22.0 software was used to compare clinical data
and demographic data. The age, HRSD score, and years of
education of the two groups were compared by two-sample
t-test, and the gender distribution was analyzed by chi-
square test. To explore the difference of DC between MDD
patients and HCs, a voxel-by-voxel two-sample t-test was
performed. The significance threshold was set at p < 0.01 and
Gaussian random field theory (GRF) was employed to correct
multiple comparisons through using REST at p < 0.05 (voxel

1 http://rfmri.org/dpabi

2 http://www.restfmri.net/
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significance: p < 0.001, cluster significance: p < 0.05). The
abovementioned t-tests were performed with gender, age, and
years of education as covariates as these factors may confound
the results (2, 12).

Classification analyses

The SVM method has been diffusely applied in disease
diagnosis for neuropsychosis (15, 18, 20). Running the LIBSVM3

software package in MATLAB, the SVM methodology was
used to test the sensitivity, accuracy, and effectiveness of
using DC values identified in abnormal brain regions to
distinguish MDD from HCs (detailed information can be found
in Supplementary Material).

Results

Clinical characteristics of major
depressive disorder and healthy
controls

The clinical data of MDD and HCs are shown in Table 1.
No significant intergroup differences were observed in age,
gender, and education (p > 0.01). The HRSD scores of MDD
groups were substantially higher than those of the HCs group
(p < 0.01).

Degree centrality analysis

As shown in Table 2 and Figure 1, the main results reported
were based on the DC analysis. According to a two-sample t-test,
compared with HCs, MDD displayed elevated DC in the left
anterior cerebellar lobe, vermis, left hippocampus, left caudate,
and depreciated DC in the left posterior cerebellar lobe, left
insula, and right caudate.

Discriminating patients with major
depressive disorder from healthy
controls

We use SVM to distinguish MDD and HCs. As per the
results, DC values in the left cerebellar anterior lobe and right
caudate can distinguish MDD from healthy subjects with high
accuracy, specificity, and sensitivity of 87.71% (353/432), 84.85%
(168/198), and 79.06% (185/234), respectively (Figure 2).

3 https://www.csie.ntu.edu.tw/~cjlin/

TABLE 1 Demographic and clinical characteristics.

Characteristics Patients (n = 198) HCs (n = 234) P-values

Gender (men/women) 198 (102/96) 234 (130/104) 0.401

Age, years 28.01 ± 7.442 27.87 ± 6.492 0.832

Years of education, years 12.05 ± 3.325 12.55 ± 2.931 0.100

HRSD-17 23.63 ± 2.547

The p-value for the gender distribution was obtained by the Chi-square test. The other
p-values were obtained by two sample t-tests.
HCs, healthy controls; HRSD-17, 17-item Hamilton Rating Scale for Depression.

TABLE 2 Significant DC differences across groups.

Cluster location Peak (MNI) Number of voxels t-value

X Y Z

Left cerebellum posterior –21 –39 –57 40 –8.6051

Left cerebellum anterior –6 –54 –15 515 9.6958

Vermis 3 –84 –15 78 8.5139

Left hippocampus –33 –33 3 179 8.8014

Left insula –24 9 24 246 –8.9089

Left caudate –6 –3 24 206 10.841

Right caudate 24 0 27 118 –7.8289

DC, degree centrality; MNI, Montreal Neurological Institute.

Discussion

The current diagnosis of MDD relies on the depression
scale and the clinicians’ subjective analysis, thus, lacking
objective imaging methods. We investigated brain network node
neutrality changes between MDD and HCs at rest. We found
that compared with HCs, the DC values of patients with MDD
in the left cerebellum posterior, left insula, and right caudate
nucleus depreciated. In contrast, the DC values of the left
cerebellum anterior, vermis, left hippocampus, and left caudate
were elevated. In addition, the combination of DC values of the
left cerebellum anterior and right caudate nucleus, as per the
SVM analysis, might be used as potential imaging markers for
the diagnosis of MDD.

More attention has been paid to cerebellar function in motor
control, ignoring unexplained cognitive or neuropsychiatric
phenomena. But studies in recent years have confirmed
that the cerebellum participates in cognitive and emotional
regulation through polysynaptic connections with different
brain functional regions (21–24). For example, reduced lobular
VIIA-vmPFC connectivity was significantly associated with
impaired verbal working memory performance in depressed
patients (25). In emotion regulation, MDD patients needed
more vital expression to identify relaxing/positive emotions
and sad emotions through slight expression, which implied
that patients with MDD exhibited a bias in mood-congruence
in facial expression procession. The posterior cerebellar lobe
was confirmed to be involved in this dependent process. In
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FIGURE 1

Statistical map depicts higher and lower degree centrality (DC) of major depressive disorder (MDD) patients compared with healthy controls
(HCs). The threshold was set at p < 0.01. Blue denotes lower DC, and red denotes higher DC. The color bar indicates t-values from the
two-sample t-test.

FIGURE 2

Visualization of classifications through support vector machine (SVM) using the combination of the degree centrality (DC) values in the left
cerebellum anterior and right caudate. Left: SVM parameter result of 3D view. Right: Dimension 1 and dimension 2 represent the DC values in
the left cerebellum anterior and right caudate, respectively. Red crosses represent healthy controls (HCs), and green crosses represent patients
with major depressive disorder (MDD).

addition to emotional processing, some studies have shown that
the posterior part of crus I and II of lobule VIIA and lobule
IX are associated with DMN (26–28). There appears to be a
strong correlation between MDD and DMN, a crucial aspect
of the neurobiology of MDD, specifically for episodic memory
retrieval, self-referential activity, intrinsic attention allocation,
and emotional behavior modulation-induced symptoms (29).
This further indicates that the cerebellum is critical for the
pathophysiological process of MDD. It is noteworthy that most
of these experimental results were in the posterior cerebellum.
Still, we found abnormal DC values in the anterior cerebellar
lobe of patients with MDD by combining them with SVM. This
might have been related to the current course of treatment of the
patients (30).

In addition, we also found the abnormal DC value in
vermis in patients with MDD. Vermis has been found to play a
regulatory role on the subcortical nodes of the salience networks
(SN) (28). SN plays a crucial role in the bottom-up identification

of relevant events to allow for the application of appropriate
resources when relevant events are identified (31) and also
alters the central executive networks and the default mode. This
ability to switch has been confirmed to be impaired in patients
with MDD. Therefore, we can infer that vermis regulates the
cognitive and emotional function in patients with MDD.

The hippocampus is an important region involved in
memory and cognitive function (32), composed of different
subregions interacting with varying areas of the brain, resulting
in a neuro-anatomical network of emotion regulation and
cognitive processing (33). For instance, the hippocampal volume
of patients with MDD depreciated substantially (34, 35)
and elevated after electroconvulsive therapy (ECT) relative
to HCs (36). Moreover, the less posterior-DMN-hippocampal
connectivity was correlated to elevated cognitive activity and
rumination in MDD (37). Hao et al. also found that different
subareas of the hippocampus (including the subiculum and
dentate gyrus) were substantially related to MDD (32). As per
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our results, an elevated DC value was identified in the left
hippocampus in patients with MDD, which confirmed that the
hippocampus was involved in the pathogenesis of MDD.

In addition, a decrease in the DC value of the left insula was
observed in MDD. The insula is a critical node for integrating
external emotional stimuli (38). In previous studies of MDD,
the functional activity and connectivity of the insula have been
confirmed to be disturbed (39, 40), and gray matter volume also
changed (41–43). The left insula is associated with empathy in
affective perceptual and cognitive assessment forms (44). These
studies reveal the vital role of the left anterior insula in social
emotions, such as empathy, which also explains why patients
with depression show higher personal pain and lower empathic
attention to others when facing emotional situations.

The caudate was coactive with higher-level cognitive areas,
such as the rostral anterior cingulate, dorsolateral prefrontal
cortex, and inferior frontal gyri (45). The stimulation of
the dorsolateral prefrontal cortex elevated neural activity and
dopamine release in the caudate nucleus confirming it (46,
47). All these structures are well-known for their role in
emotional and cognitive modulation and aberrations in the
caudate nucleus in patients with MDD. For example, earlier
studies found an abnormal increase in cerebral blood flow
(GBF) in the right caudate of depression (48), and FC has a
metabolic basis coupled with CBF and the rate of metabolism
(49, 50). This indicates that FC in the right caudate is elevated
in patients with MDD. In addition, Amiri found that the degree
values of ventral caudate were substantially bilaterally higher in
treatment-resistant depression (TRD) than in HCs (51). Those
were the same as some of our results, indicating abnormalities
in the caudate in patients with MDD. We found elevated DC
in the left caudate and a decrease in the right caudate of MDD,
which was reported for the first time in known studies. The
possible explanation is that there are differences in bilateral
cerebral hemispheres of MDD. Although this study is a cross-
sectional design, we could not provide a reasonable explanation
for this result; it presents a new idea for exploring the neural
mechanism of MDD.

Limitations

This study had several limitations. First, we did not
determine the disease course of patients with MDD (current
patients with MDD and remitted patients with MDD). In
future studies, we would set stricter exclusion criteria to exclude
remission-induced depression. Since this was a cross-sectional
study, the structural changes caused by MDD could not be
reflected based on the changes in the DC value, so it was
necessary to use other calculation methods for further research.
Finally, noise could not be eliminated. The patients were
requested to keep quiet as much as possible to reduce the error
caused by physiological noise.

Conclusion

SVM combined with neuroimaging technology has been
widely used in the study of various diseases. For example,
Chen et al. found that combining the average ALFF and fall
values of the right caudate nucleus and corpus callosum can
diagnose MDD [accuracy (79.79%), sensitivity (65.12%), and
specificity (92.16%)] (52). Gao et al. found that the combination
of increased fALFF in the right precuneus and left superior
frontal gyrus (SFG) with a diagnostic accuracy of 76.39% (18).
When the sensitivity or specificity is less than 60%, this index
may not meet the criteria of “diagnostic markers” (53). Our
study found that DC values in the left antenna cerebellar
lobe and right caudate could distinguish MDD from HCS
with accuracy, sensitivity, and specificity of 87.71% (353/432),
84.85% (168/198), and 79.06% (185/234), respectively. To our
knowledge, this study is the first to evaluate the utility of
combining abnormal DC values in the left anterior cerebellar
lobe and the right caudate nucleus as neuroimaging markers of
MDD and provides a new idea for the diagnosis of MDD.
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