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Brain structural and functional abnormalities have been shown to be involved

in the neurobiological underpinnings of bulimia nervosa (BN), while the

mechanisms underlying this dysregulation are unclear. The main goal of

this investigation was to explore the presence of brain structural alterations

and relevant functional changes in BN. We hypothesized that BN patients

had regional gray matter volume abnormalities and corresponding resting-

state functional connectivity (rsFC) changes compared with healthy controls.

Thirty-one BN patients and twenty-eight matched healthy controls underwent

both high-resolution T1-weighted magnetic resonance imaging (MRI) and

resting-state functional MRI. Structural analysis was performed by voxel-based

morphometry (VBM), with subsequent rsFC analysis applied by a seed-based,

whole-brain voxelwise approach using the abnormal gray matter volume

(GMV) region of interest as the seed. Compared with the controls, the

BN patients showed increased GMV in the left medial orbitofrontal cortex

(mOFC). The BN patients also exhibited significantly increased rsFC between

the left mOFC and the right superior occipital gyrus (SOG) and decreased

rsFC between the left mOFC and the left precentral gyrus, postcentral gyrus,

and supplementary motor area (SMA). Furthermore, the z values of rsFC

between the left mOFC and right SOG was positively correlated with the

Dutch Eating BehaviorQuestionnaire-external eating scores. Findings from this

investigation further suggest that the mOFC plays a crucial role in the neural

pathophysiological underpinnings of BN, which may lead to sensorimotor

and visual regions reorganization and be related to representations of body

image and the drive behind eating behavior. These findings have important

implications for understanding neural mechanisms in BN and developing

strategies for prevention.
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bulimia nervosa, eating disorder, voxel-based morphometry, structural MRI, resting-
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Introduction

Bulimia nervosa (BN) is an eating disorder with a

multidimensional etiology. Its essential feature is recurrent

episodes of binge eating combined with a subjective feeling

of loss of control, followed by inappropriate compensatory

behaviors (such as self-induced vomiting; misuse of laxatives,

diuretics, or other medications; fasting; or excessive exercise) to

avoid weight gain and overestimation of one’s own body size

(1). BN usually begins during adolescence in females, and the

lifetime prevalence is 2.6%, with an ∼10:1 female-to-male ratio

(1, 2). Only 30–45% of adults exhibit prolonged remission after

receiving the existing forms of treatment, including cognitive

behavior therapy and pharmacotherapy (3). The neurobiological

mechanisms involved in the development and maintenance of

BN remain unclear and have largely hindered the development

of therapeutics for this disorder.

Neuroimaging techniques, especially useful in highlighting

distinct levels of neuropathology, have been recently applied to

investigate the structural and functional abnormalities of the

brain in BN, but the conclusions have been inconsistent. Voxel-

based morphometry (VBM) is an automated technique and

an incredibly powerful tool to assess structural changes in the

brain (4). Functional magnetic resonance imaging (fMRI), an

inferential neuroimaging technique, can be used to investigate

synchronous neural activity to explore functional connectivity

(FC) between brain regions (5). Resting-state functional

connectivity (rsFC) analysis, measured via a stimulus-free

fMRI approach, has been used to identify multiple functional

networks that are understood to drive behavior (6). A seed-

based approach can be used to assess the temporal correlations

and neural network reconfiguration between the seed and

other regions of the brain (7). For instance, some previous

studies based on VBM have shown that, compared with

healthy controls, individuals with BN have increased gray

matter volume (GMV) in the orbitofrontal gyrus, ventral

striatum, insula, precuneus, and paracentral lobules, decreased

GMV in the superior temporal gyrus and caudate nucleus,

and increased or decreased GMV in the putamen (8–12).

Additionally, meta-analyses have revealed that BN patients

exhibit altered neural function in brain networks involved in

cognitive control, reward processing, affective processing, and

visuospatial and body-signal integration, which involve the

frontal, parietal, cingulate, ventral striatal, amygdala, insular,

somatosensory, and occipital cortices (5, 13–15). It appears

that structural changes in brain areas influence cognitive and

perceptual function in BN individuals. However, most of these

studies have been difficult to replicate with consistent results,

and they focus either on structural or functional changes,

rather than both (16, 17). In other disease areas, such as

anorexia nervosa, migraine and alcohol use disorder, some

neurological studies have found coexisting functional and

structural differences using whole-brain data-driven approaches

(18–20). Furthermore, little is known about how altered

regional GMV affects intrinsic brain functional activity in BN

individuals. Identifying regional brain structural abnormalities

and associated functional alterations may provide specific

insights into the developing brain’s adaptive or maladaptive

changes and reframe our understanding of the pathophysiology

underlying BN.

In the present study, using a cross-sectional, neuroimaging

imaging approach combining VBM with rsFC analysis to

identify specific brain areas related to BN, we aimed to

elucidate the underlying structural abnormality and relevant

functional changes in patients with BN. We hypothesized that

(1) BN patients demonstrate altered GMV in some brain

regions, including cognitive control, reward, affect processing,

or sensorimotor-related regions; and (2) regions affected in

structure also demonstrate neural functional changes. Moreover,

the correlation between significant brain regions and clinical

features was explored.

Materials and methods

Participants

Thirty-one BN patients and twenty-eight age-, sex- and

education-matched healthy controls (HCs) were consecutively

enrolled in this study. All study subjects were females and

right-handed checked by answering questions related to the

Edinburgh Handedness Inventory before enrollment (21). The

BN patients were recruited from outpatient services of the

hospital, and diagnoses were confirmed via clinical interviews

with a psychiatrist based on the Diagnostic and Statistical

Manual of Mental Disorders, 5th Edition (DSM-5) criteria

for BN. Patients were required to have been free of any

psychotropic medications for at least 2 months before the study.

Specific exclusion criteria for all groups were current or past

comorbid serious psychiatric disorders, such as bipolar disorder,

schizophrenia, major depression and anxiety disorder; with a

history of anorexia nervosa or binge eating disorder; alcohol

or substance abuse; history of severe head injury, intellectual

disability, pregnancy and significant health problems, such

as endocrine disorder (including diabetes, hyperthyroidism,

hyperlipidemia), cancer, heart, kidney, gastrointestinal, or liver

disease; known neurological impairment (e.g., epilepsy). All

study subjects had no known MRI incompatibility (e.g.,

pregnancy, lactation; ferrous implants such as pacemakers

and cochlear implants; claustrophobia). Owing to metal

denture artifacts in the raw data and abnormal blood

biochemical tests, MRI datasets from two BN patients were

excluded, with 29 patients and 28 HCs finally used in

the analysis.
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The present study was approved by the Institutional Review

Board of the hospital. Written informed consent was obtained

from all participants after providing a full description of the

procedure involved. This study was performed in accordance

with the ethical standards of the Declaration of Helsinki.

Clinical variable measures

The demographic questionnaires (including age, gender,

education level, weight, and height) of participants were

recorded. Before arrival at the scanning visits, all participants

were asked to fast for at least 4 h, and upon arrival,

they completed the visual analog scale (VAS) to rate their

current hunger intensity (0 indicates “not at all”; 10 indicates

“extremely”). All participants further completed several self-

report assessments, including the Chinese version of the Dutch

Eating Behavior Questionnaire (DEBQ) (22), Eating Disorder

Inventory-I (EDI-I) (23), Eating Attitudes Test (EAT-26) (24),

Beck Depression Inventory (BDI) (25), and self-rating anxiety

scale (SAS) (26). The DEBQ, used to assess eating behavior,

consists of 33 items in three subscales reflecting restraint eating

(overeating in the wake of attempted restraint), emotional eating

(eating in response to emotional distress), and external eating

(eating in response to external food cues). Each statement in

the DEBQ was rated on a 5-point Likert scale (ranging from 1

“never” to 5 “very often”). In addition, the EDI and EAT-26 were

applied to evaluate symptoms and the characteristic features

of eating disorders, while depression and anxiety status were

measured by the BDI-II and SAS, respectively. The Chinese

version of the above scales has good reliability and validity and

is applicable among Chinese adults (22–25, 27).

MRI data acquisition

All MRI images were collected on a 3.0 T MRI system

(Prisma, Siemens, Erlangen, Germany) equipped with a

64-channel phase-array head coil. A conventional brain

axial T2 sequence was obtained to exclude any possible

abnormality in the brain. High-resolution anatomical T1-

weighted images were acquired in sagittal orientation using a

3D magnetization-prepared rapid gradient-echo (MP-RAGE)

sequence. The scanning parameters were as follows: repetition

time (TR)= 2,530ms; echo time (TE)= 2.98ms; inversion time

(TI) = 1,100ms; flip angle (FA) = 7◦; 192 sagittal slices with

slice thickness = 1mm and interslice gap = 1mm; bandwidth

= 240 Hz/Px; field of view (FOV), 256× 256 mm2; data matrix,

256 × 256; and isotropic voxel size, 1 × 1 × 1 mm3. Blood

oxygen level-dependent (BOLD) resting-state functional images

were obtained with an echo-planar imaging sequence with the

following parameters: TR = 2,000ms; TE = 30ms; FA, 90◦;

number of slices = 33; slice thickness = 3.5mm; interslice gap

= 1mm; bandwidth = 2,368 Hz/Px; FOV = 224 × 224 mm2;

data matrix= 64× 64; and total volumes, 240.

During the entire scanning process, which lasted ∼14min,

we used tight but comfortable foam padding around the subject’s

head to minimize head motion and earplugs to reduce imaging

noise. All participants were asked to close their eyes, stay awake,

breathe evenly, and try to avoid specific thoughts. After each

sequence, all subjects reported by conversation that they had not

fallen asleep during the imaging protocol.

Data analysis

Clinical data analysis

The baseline demographic information and clinical

characteristics were analyzed using SPSS 25.0 software (SPSS

Inc., Chicago, IL). Between-group comparisons were performed

using independent two-sample t-tests, as appropriate. A

p < 0.05 was considered statistically significant. Continuous

variables are presented as the mean with 95% confidence

intervals (CIs).

VBM analysis

Structural data preprocessing and statistical analyses were

performed using the Computational Anatomy Toolbox 12

(CAT12: http://dbm.neuro.uni-jena.de/cat/) and Statistical

Parametric Mapping 12 (SPM12: http://www.fil.ion.ucl.ac.uk/

spm) in the MATLAB environment. First, each participant’s

anatomical images were reoriented to have the same spatial

orientation by manually setting the anterior commissure as

the origin. Then, the standard preprocessing procedure was

performed using the Segment Data module in the CAT12

manual. The preprocessing included (1) estimation of a non-

linear deformation field that best overlaid the tissue probability

maps on the individual subject’s images; (2) segmentation of

the images into gray matter (GM), white matter (WM), and

cerebrospinal fluid (CSF) to calculate the overall tissue volume

(GM, WM, and CSF volume) and total intracranial volume

(TIV) in the native space; (3) normalization of the GM segments

to the Montreal Neurological Institute (MNI) template using

the high-dimensional diffeomorphic anatomic registration

through the exponentiated lie algebra (DARTEL) method with a

voxel size of 1.5 × 1.5 × 1.5 mm3; (4) modulation by the “non-

linear only” components derived from spatial normalization;

(5) bias-field correction to remove intensity non-uniformities;

and (6) smoothing using a Gaussian kernel with a 6-mm

full-width at half maximum (FWHM) Gaussian filter to create

a local weighted average of the surrounding voxels. After

completing these image analyses, we obtained smoothed and

modulated GM images to be used for statistical analysis.

Two-sample t-tests were used to assess group differences while

incorporating age, education level, and BDI scores, and TIV
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as covariates. The statistical threshold criterion was set with a

preliminary uncorrected threshold of p < 0.001. The cluster

was corrected for multiple comparisons with family wise error

(FWE, p < 0.05).

Seed-to-voxel resting-state functional
connectivity analysis

To further investigate possible correlations of regional GMV

abnormalities with other brain regions in the BN patients,

rsFC analysis was carried out using a seed-based, whole-

brain voxelwise approach and defining the brain regions with

abnormal GMV as a seed. Preprocessing was performed using

SPM12 and the Resting-State fMRI Data Analysis Toolkit

(RESTplus: http://www.restfmri.net). In brief, preprocessing

procedures involved discarding the first 10 functional volumes

(the first 20 s of fMRI data), slice timing, headmotion correction,

normalization with resampling voxel size at 3.0mm × 3.0mm

× 3.0mm voxels, smoothing using a 6.0-mm FWHM Gaussian

kernel, detrending, nuisance covariate regression (global signal,

WM signal, and CSF signal), and bandpass filtering (0.01–

0.08Hz) for each voxel. No subjects were excluded based on the

correction exclusion criteria (spatial movement in any direction

of more than 2.0mm or 2 degrees). Further rsFC analyses were

conducted using RESTplus software. The averaged time series

for the seed was calculated for the reference time course. Cross-

correlation analyses were performed between the mean time

course in the seed and the time series of other voxels in the

whole brain. To improve normality, the correlation coefficient

maps were then converted into Fisher-z maps by bivariate

Fisher’s z-transform. Two-sample t-tests were used to compare

rsFC differences between the BN patients and HCs by adding

age, education level, body mass index (BMI), TIV, and BDI

scores as covariates to exclude the effects of confounding factors.

The statistical comparisons were first thresholded on the voxel

level at p < 0.001 (uncorrected) and corrected for multiple

comparisons by applying Gaussian random field theory (GRF,

p < 0.05).

Correlation analyses

To examine the relationship between rsFC strength and the

clinical data, we extracted the average z scores from all surviving

clusters. Pearson’s correlations were conducted in the BN group

to examine the relations between rsFC z scores within each of the

clusters and the clinical data, including disease duration, binge

eating frequency, BMI, and DEBQ, EDI-II, and EAT-26 scores.

Significant correlations were determined according to p < 0.05

(false discovery rate, FDR-corrected).

In addition, we further tested whether a correlation existed

between VBM findings and the potential correlations results

in the BN group through a standard three-variable mediation

analysis which performed with the R package Mediation

(version 4.5.0) (26). A bootstrap strategy with 10,000 resampling

iterations was used to estimate the bias-corrected significance of

the mediation. P < 0.05 is considered statistically significant.

TABLE 1 Baseline demographics and clinical characteristics of participants.

Characteristics Bulimia nervosa patients (n = 29) Healthy Controls (n = 28) P

Mean SD Mean SD

Age (years) 24.00 4.85 25.68 2.75 0.113

BMI (kg/m2) 20.85 3.49 21.12 2.15 0.731

Age of illness onset (years) 20.44 4.93 – – –

Illness duration (months) 38.04 41.47 – – –

Binge eating per week (times/week) 6.37 4.79 – – –

Education (years) 16.31 2.12 16.82 2.06 0.360

Fasting hours (h) 9.52 3.33 8.66 4.11 0.391

DEBQ–total 121.41 16.44 87.04 18.95 0.000*

DEBQ–restrained eating 37.59 6.85 28.86 7.89 0.000*

DEBQ–emotional eating 48.34 10.99 27.14 10.77 0.000*

DEBQ–external eating 35.14 4.67 31.04 5.80 0.015*

EDI-BN 34.90 5.31 12.04 3.71 0.000*

EAT 42.93 11.64 13.50 10.25 0.000*

BDI 23.97 11.13 3.43 2.78 0.000*

SAS 54.91 12.35 33.30 5.62 0.000*

BMI, BodyMass Index; SD, standard derivative; DEBQ,Dutch Eating Behavior Questionnaire; EDI, EatingDisorder Inventory; EAT, Eating Attitudes Test; BDI, BeckDepression Inventory;

SAS, Self-rating Anxiety Scale. *p < 0.05 is considered statistically significant.
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TABLE 2 Regional GMV abnormalities between bulimia nervosa patients and healthy controls.

Brain regions Hemisphere Cluster size (voxels) Peak t values MNI coordinates

X y Z

BN > HC

mOFC L 609 5.41 −9 40.5 −24

GMV, gray matter volume; MNI, Montreal Neurological Institute; BN, bulimia nervosa; HC, healthy controls; mOFC, medial orbitofrontal cortex; L, left.

FIGURE 1

(A–C) The yellow region indicates larger GMV of the left mOFC in the bulimia nervosa patients than in the healthy controls (voxel-level p <

0.001 uncorrected and cluster-level p < 0.05 FWE-corrected). GMV, gray matter volume; mOFC, medial orbitofrontal cortex; FWE, family wise

error. * p < 0.05 (FWE-corrected).

Results

Baseline characteristics

As shown in Table 1, the BN patients and HCs showed no

significant differences in demographic or clinical data, including

age, BMI, years of education, and fasting hours. The BN patients

had higher DEBQ, EDI-BN, EAT-26, BDI, and SAS scores than

the HCs (p < 0.05).

VBM results

There were no significant differences between the BN

patients and HCs in the total GMV, WM volume, CSF, or TIV,

which is consistent with some previous studies (16). Compared

with the HCs, the BN patients showed increased volume in

the left medial orbitofrontal cortex (mOFC) (FWE corrected)

(Table 2; Figure 1). Compared with the HCs, the BN patients did

not have decreased volume in any brain region.
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TABLE 3 Altered rsFC from the left mOFC to other brain regions in bulimia nervosa patients.

Brain regions Hemisphere Cluster size (voxels) Peak t values MNI coordinates

x y Z

Precentral L 79 −4.832 −42 −3 9

Postcentral L 65 −4.336 −54 −18 27

SMA L 67 −5.175 −3 −6 51

SOG R 48 4.206 21 −66 30

rsFC, resting-state functional connectivity; mOFC, medial orbitofrontal cortex; MNI, Montreal Neurological Institute; L, left; R, right; SMA, supplemental motor area; SOG, superior

occipital gyrus.

FIGURE 2

Compared with healthy controls, the bulimia nervosa group showed significantly increased rsFC between the left mOFC and the rSOG, but

decreased rsFC between the left mOFC and the left precentral gyrus, left postcentral gyrus and left SMA (voxel-level P < 0.001 uncorrected and

cluster-level P < 0.05 GRF correction). Nodes are color-coded with the seed region (green) and the rsFC di�erential region (purple). The rsFC

between nodes are represented by lines, with red indicating increased and blue indicating decreased. rsFC, resting-state functional connectivity;

mOFC, medial orbitofrontal cortex; SOG, superior occipital gyrus; SMA, supplemental motor area; GRF, gaussian random field theory. * p < 0.05

(GRF-corrected).

RsFC patterns in participants with BN

Compared with the HCs, the BN patients showed increased

rsFC between the left mOFC and right superior occipital gyrus

(rSOG) and decreased rsFC between the left mOFC and the left

precentral gyrus, left postcentral gyrus, and left supplemental

motor area (SMA) (GRF corrected) (Table 3; Figure 2).

Correlations between DEBQ scores and
RsFC values

In the BN group, rsFC z values between the left mOFC

and rSOG was positively correlated with DEBQ-external eating

scores (r = 0.494, p < 0.05) (FDR corrected) (Figure 3). No

additional significant correlations were found.

Frontiers in Psychiatry 06 frontiersin.org

https://doi.org/10.3389/fpsyt.2022.963092
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Li et al. 10.3389/fpsyt.2022.963092

FIGURE 3

(A) rsFC between the left OFC (L.mOFC) and right SOG (R.SOG) in patients with BN. (B) Correlation in the BN patients between DEBQ-external

eating scores and rsFC values for the L.mOFC—R.SOG (p < 0.05 corrected with FDR). rsFC, resting-state functional connectivity; mOFC, medial

orbitofrontal cortex; SOG, superior occipital gyrus; DEBQ, Dutch Eating Behavior Questionnaire; FDR, false discovery rate.

TABLE 4 Mediation analysis for the volume of left mOFC and the

relationship between rsFC (the left mOFC-rSOG) and DEBQ-external

eating.

Estimate 95% CI Lower 95% CI Upper P-value

Indirect effect 7.60 0.21 18.10 0.036*

Direct effect 21.4 7.9310 38.50 0.004*

Total effect 29.0 14.3 48.3 0.000*

Prop. Mediated 0.2620 0.01 0.6 0.036*

mOFC, medial orbitofrontal cortex; rsFC, resting-state functional connectivity; SOG,

superior occipital gyrus; DEBQ, Dutch Eating Behavior Questionnaire. *P < 0.05 is

considered statistically significant.

Furthermore, as shown in Table 4 and Figure 4, the p-value

of the mediation variable is 0.036 (p < 0.05), indicating that

the volume of left mOFC partially mediated the relationship

between rsFC (the left mOFC—rSOG) and DEBQ-external

eating and the mediating effect accounted for 26.2%.

Discussion

In our study, we found that relative to HCs, BN patients

had increased GMV in the left mOFC. Furthermore, in BN

patients, the structurally altered left mOFC had increased rsFC

with the rSOG but decreased rsFC with the left precentral gyrus,

postcentral gyrus and SMA. Consistent with our hypothesis, we

found that the mOFC in BN patients showed local structural

and neural functional network reorganization. In addition, the

correlation analysis showed that the rsFC z values between the

left mOFC and rSOG was correlated with DEBQ-external eating

scores in the BN group and the volume of left mOFC partially

mediated the relationship between rsFC (the left mOFC—rSOG)

and DEBQ-external eating, which may provide insight into how

neural abnormalities are related to the symptomatology of BN.

This structural and functional neuroimaging study could further

support the involvement of the mOFC in the pathophysiology

of BN.

The OFC, occupying the ventral surface of frontal lobes,

plays a crucial role in some complex human behaviors, such as

food valuation, social cognition, affect regulation, and reward-

based decision making (28, 29). Our results showed that the

BN patients had structural brain alterations in the left mOFC

compared with the HCs. This finding is in line with a previous

VBM study that also reported an increased volume in the mOFC

in BN patients relative to HCs and suggests that this structural

abnormality might be related to food reward processing and/or

self-regulation dysfunction (8). A recent review summarized

that the OFC plays a relevant role in food intake control

and satiety, and its increased volume in eating disorders

could possibly drive food avoidance through early satiation

and/or disturbed reward valuation of food stimuli (30). The

main brain reward circuit includes the ventral tegmental area

(VTA) and the nucleus accumbens (NAc), which is part of

the striatum. Brain reward system dysfunction in BN has been

widely reported. The OFC, anterior cingulate cortex (ACC),

and ventromedial prefrontal cortex (PFC) are involved in

high-order cognitive processes within the reward circuitry and

are necessary for reward processing, inhibition of emotional

responses, and habit formation, and they promote behavioral

outcomes (30). Additionally, the OFC plays a key role in

hedonic and motivational aspects of reward and is integral in

controlling behaviors associated with reward and punishment

(31). In addition, a large number of clinical psychology studies
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FIGURE 4

The volume of the left mOFC partially mediated the relationship between rsFC (the left mOFC—rSOG) and DEBQ-external eating (Prop.mediated

= 26.2%, p = 0.036). mOFC, medial orbitofrontal cortex; rsFC, resting-state functional connectivity; SOG, superior occipital gyrus; DEBQ, Dutch

Eating Behavior Questionnaire.

have found that BN patients have obvious impulsivity, which

is manifested by decreased decision-making abilities, impaired

inhibitory functions, and other behavioral characteristics (32,

33). Additionally, a systematic review showed that dysfunction

in frontostriatal circuits may be associated with recurrent binge-

eating and purging behaviors in BN patients (34). Previous

studies have found that the OFC is also associated with

impulsivity, which helps to explain the uncontrolled abnormal

eating behaviors in individuals with BN (35, 36). Additionally,

an event-related fMRI study demonstrated that diminished

frontostriatal brain activation in BN patients contributed to

the severity of recurrent binge-eating characteristics (37). The

increased volume of the mOFC may be related to diminished

frontostriatal brain activation. More recently, some studies have

suggested that the OFC is a key node of the cognitive control

neurocircuitry, more specifically, the inhibition system, andmay

be involved in affective processing (5, 13, 29). Thus, we further

confirmed a crucial role of the mOFC in BN and speculate

that this regional structural alteration may be related to the

pathogenesis and maintenance of disease. To investigate the

regulatory relationship in the mOFC, it is necessary to apply

additional rsFC analyses to evaluate the features of regulation

patterns in this brain region.

In accordance with our second hypothesis, we observed

decreased functional connections between the left mOFC and

left sensorimotor cortex but increased connections between the

left mOFC and right visual occipital areas. The motor cortex,

including the primary motor cortex, premotor cortex, and SMA,

is involved in motor planning, preparation, and control of

motor execution, including behavioral inhibition (38). The close

connection between the sensorimotor cortex and reward-related

regions has been widely reported in obesity-related studies

(31). Such an uncoupling between the left mOFC and the left

motor cortex in BN patients might drive uncontrolled binge

eating and inappropriate purging behaviors. Conversely, one

of the diagnostic criteria for BN is a distorted representation

of one’s own body (1). Patients with BN are characterized by

fear of fatness and excessive concern with body shape and

weight. Several studies have suggested that the somatosensory

and occipitotemporal systems are involved in body image

perception (39, 40). A study by Lavagnino et al. demonstrated

that BN patients show reduced rsFC within the somatosensory

network and between the paracentral lobule and the rightmiddle

occipital gyrus, which are relevant to body image (41). Another

study of resting-state whole-brain FC of striatal subregions

in BN found a decreased rsFC in primary sensorimotor and

occipital areas for nearly all striatal subregions and observed

significant correlations between rsFC of the striatum and

somatosensory/occipital areas with the severity of bulimia (17).

These previous studies partially overlap with our results, while

our study links the rsFC changes in the sensorimotor and visual

occipital regions to the mOFC. However, we observed increased

rsFC in the left mOFC and rSOG. A correlation between the

increased rsFC values and external eating behavior scores was

also found in this study. A systematic review summarized

that restrained eaters show an over responsiveness to external

food-relevant cues, which reflects an incompatibility between

sensitivity to eating enjoyment and the goal of eating control

(42). Visual processing is an important input interface to reward

circuitry. Accordingly, when exposed to food-relevant stimuli
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primes, BN patients might show that priming with eating

rewards decreases accessibility to eating control. This proposal

is further suggested by the significant positive correlation

observed between rsFC of the left mOFC and right SOG with

the external eating behavior scores. Furthermore, in the BN

group, the increased left mOFC volume played a mediating

role in this significant positive correlation to some extent,

which may support a correlation between structure and function

of this region. This result provided further evidence for the

involvement of mOFC in regulating external eating behavior of

BN. Taken together, we found that neural functional network

reorganization and structural changes in the mOFC, which may

be involved in modulating visuospatial perception and driving

abnormal eating behavior in BN.

The present investigation has the following limitations. First,

the present study is limited to a modest sample size. We

included only adult women with BN, so the results cannot

be generalized to men. However, BN patients were carefully

selected to exclude confounding effects of comorbidities and

medication use. Second, in this study, only one brain region

was selected as a seed based on the VBM analysis, potentially

explaining the limited number of significantly altered FCs

observed. Third, this was a descriptive, not a mechanistic study.

Finally, we did not control for menstrual status, which may

also affect attention-related neural functioning (43). Thus, future

multimodal research should involve a larger sample size with

more stringent control of confounding factors to explore the

abnormal structural features and functional activation in BN.

Conclusion

Local structural alterations and neural functional network

reorganization in the mOFC suggest that this structure is

involved in the neural pathophysiological underpinnings of

BN. We found that neural functional network reorganization

in the mOFC involves the sensorimotor and visual regions

that mediate body image and drive eating behavior, which can

provide new insight into how neural abnormalities are related to

the symptomatology associated with BN. ‘
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