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Xingguang Luo2, Ping Zhang1, Junchao Huang1, Li Tian3,

Chiang-Shan R. Li2 and Yunlong Tan1*

1Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing,

China, 2Department of Psychiatry, Yale University School of Medicine, New Haven, CT,

United States, 3Department of Physiology, Faculty of Medicine, Institute of Biomedicine and
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Objective: Previous studies have implicated intricate interactions between

innate immunity and the brain in schizophrenia. Monocytic Toll-like receptor

(TLR) 4 signaling, a crucial “sensor” of innate immunity, was reported to be

over-activated in link with cognitive impairment in schizophrenia. As TLR4

is predominantly expressed on gliocytes prior to expression in neurons, we

hypothesized that higher TLR4 levels may contribute to cognitive deterioration

by a�ecting white matter microstructure.

Methods: Forty-four patients with stable chronic schizophrenia (SCS) and 59

healthy controls (HCs) were recruited in this study. The monocytic function

was detected with lipopolysaccharide (LPS) stimulation to simulate bacterial

infection. Basal and LPS- stimulated levels of TLR4, nuclear factor-kappa

B (NF-κB), and interleukin (IL)-1β were quantified with flow cytometry.

Cognitive function was assessed by the MATRICS Consensus Cognitive Battery

(MCCB) and psychopathological symptoms were evaluated by the Positive and

Negative Syndrome Scale (PANSS). We employed di�usion tensor imaging with

a 3-T scanner and evaluated white-matter integrity with fractional anisotropy

(FA). Subcortical volume and cortical thickness were also assessed.

Results: The TLR4/NF-κB/IL-1β signaling pathway was activated in patients

with SCS, but responded sluggishly to LPS stimulation when compared

with HCs. Furthermore, monocytic TLR4 expressions were inversely

correlated with cognitive function and white matter FA, but not with

cortical thickness or subcortical gray matter volume in schizophrenia.
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Conclusion: Our findings support altered TLR4 signaling pathway

activity in association with deficits in cognition and white matter integrity

in schizophrenia.
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Introduction

The pathophysiology of schizophrenia remains an active

focus of investigation. The intricate interactions between innate

immunity and the brain may conduce to the development of

schizophrenia (1). Higher levels of pro-inflammatory cytokines

in pueritia related to increased risk of psychosis in adulthood

(2). Clearance of some antibodies against synaptic surface

receptor by plasmapheresis appeared significantly improved

clinical symptoms in patients with schizophrenia (3). Notably,

the Toll-like receptor (TLR) 4 signaling pathway is involved in

innate immunity dysfunction and may elevate the vulnerability

to schizophrenia (4, 5).

The Toll-like receptor 4, a pattern recognition receptor,

is detected in conserved molecules or extracellular structures,

termed pathogen-associated molecular patterns (PAMPs) and

endogenous damage-associated molecular patterns (DAMPS).

TLR4 plays a crucial role in immunosurveillance during innate

immunity responses, constituting the first-line defense against

pathogens (6). The TLR4 signaling pathway can be specifically

triggered by lipopolysaccharide (LPS) (7), an endotoxin from

the Gram-negative bacteria, resulting in myeloid differentiation

primary response protein 88 (MyD88) dependent or MyD88-

independent pathway activity that releases downstream pro-

inflammatory cytokines, such as interleukin (IL)-1β and

tumor necrosis factor (TNF)-α, to eliminate infection (8).

However, the current research on TLR4 actions predominantly

targets peripheral immune-related cells, including macrophages,

monocytes, endothelial cells, and granulocyte cells (9). The

expression of TLR4 was also observed in mammalian glial cells

such as oligodendrocytes, astrocytes, and especial microglia

(10), which is critical to neuroplasticity including synaptic

remodeling, myelinated axons formation and neurogenesis,

affecting learning and memory, as well as other aspect of

cognition (10–13). Higher TLR4/NF-κB signaling in the brain

has been related to the generation of subtle neuroinflammation

and neural degeneration, contributing to the pathogenesis of

schizophrenia (14, 15).

Previous studies have suggested dampened monocytic TLR4

activation during LPS stimulation that is manifested by less

increases in the levels of proinflammatory cytokines, such as

IL-1β and IL-6, leading to a weakened capability to eliminate

pathogens and potentially sustained infections in schizophrenia

(16–18). Currently, the correlations between TLR4 levels and

cognitive performance in schizophrenia have not been fully

elucidated, with complex and less than consistent results (5, 6,

17, 19). Some demonstrated that TLR4 may play a pathogenic

role in cognitive dysfunction (17), whereas others showed

negative findings (16).

Imaging studies with diffusion tensor imaging (DTI) showed

that schizophrenia, especially treatment-resistant schizophrenia,

is associated with region-specific patterns of white-matter

deficits (20–22), although the potential mechanisms are

as yet unclear. A postmortem study revealed microglia

activation specifically in the frontal and temporal white-

matter regions (23). Therefore, we speculated that there is

a potentially etiological relationship between TLR4 signaling

activity dysfunction and white-matter deficit in patients

with schizophrenia.

In the current study we tested the following hypothesis:

(a) The TLR4/NF-κB/IL-1β pathway is over-activated and

its response is blunted to LPS stimulation in patients with

schizophrenia; and (b) TLR4 pathway activation is prominently

correlated with white-matter deficits and cognitive impairment

in schizophrenia. In addition, regional cortical thickness and

subcortical gray matter structures were extracted to check

whether the activation of the TLR4 pathway was located in a

specific white matter microstructure or extended throughout the

whole brain.

Methods

Subjects

Forty-four patients with stable chronic schizophrenia (SCS)

and 59 healthy controls (HCs) were recruited for the study. All

patients visited Beijing Huilongguan Hospital as inpatients or

outpatients between 2017 and 2018, and HCs were recruited

from the community through advertising. Patients with SCS

were of 18–65 years in age and Han nationality; meeting the

Diagnostic and Statistical Manual of Mental Disorders, Fourth

Edition, criteria for schizophrenia; and clinically stable on

medication, defined as taking a steady dose of antipsychotics for

at least 6 months.
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Common exclusion criteria for patients and controls

included: any severe, acute, or uncontrollable physical or

neurological disorder; any chronic infection, autoimmune

diseases, or use of immunosuppressants medication in the last 6

months; a history of alcohol or substance abuse or dependence;

lactating or pregnant females; intellectual disability or inability

to understand the experimental content.

This research followed the Helsinki Declaration and was

approved by the Ethics Committee of Beijing Huilongguan

Hospital. All participants provided written informed consent

prior to study.

Symptom and cognitive evaluations

Positive and Negative Syndrome Scale (PANSS) was

conducted by two experienced psychiatrists to evaluate

psychopathology with a coefficient of interclass correlation

>0.8. The MATRICS Consensus Cognitive Battery (MCCB)

was used for cognitive function evaluation in patients with

schizophrenia (24) and a Chinese version of MCCB was

developed due to differences in translation and culture. The

Chinese-normalized T-scores for MCCB have been adjusted by

gender, age, education and region (25). The retest reliability of

the Chinese-versionMCCBwas (0.60–0.85:0.69–0.85); the inter-

rater reliability was 0.97; the ceiling effect was 0.85% and floor

effect was 1.72%, suggesting that the Chinese version of MCCB

is more sensitive and applicable (26). The MCCB contains

10 tests covering seven different cognitive dimensions and

Chinese-normalized T-scores were used for statistical analysis.

Quantification of the TLR4, NF-κB, and
IL-1β levels in CD14+ monocytes

The detailed experimental procedures can be found in our

previous studies (16, 17) and main reagent information was

shown in Supplementary Table 2. Serum samples (5ml) from all

participants between 6 and 7 am were collected. Whole blood

samples (100 µl) were transferred into polystyrene FACS tubes

and stained with 10 µl FITC-labeled mouse anti-human CD14.

To quantify the TLR4, NF-κB and IL-1β levels, counterpart

antibodies were added to each tube while corresponding isotype

antibodies were added to the corresponding samples as negative

controls to ensure staining specificity. Notably, additional

Monensin, a Golgistop Protein transport Inhibitor, was required

for IL-1β to enhance intracellular concentration and facilitate

detection by flow cytometry.

Notably, NF-κB is a heterodimer composed of p50 and

p65 subunits and activation of NF-κB requires phosphorylation

in the transactivation domain of p65. When activated, NF-κB

translocates to the nucleus and binds to specific DNA sequences

to regulate the release of inflammatory cytokines (27, 28).

Because flow cytometry detects the phosphorylation level of NF-

κB p65 subunit with PhosflowTM PE Mouse Anti- NF-κB p65, it

can indirectly reflect the activated levels of NF-κB in our study.

For LPS stimulation group, another serum samples (100 µl)

were stimulated with LPS (100 ng/ml). Besides, the stimulation

time of TLR4 and IL-1β for 5h and NF-κB for 5min at

37◦C were optimal (17). The following operation steps were in

accordance with the previous instructions. Homotypic controls

and corresponding serum samples without LPS stimulation were

taken as the control group. We obtained a total of 2,500 events

for each sample and used FlowJo V10 software for data analysis.

Imaging and data processing

Imaging data were obtained using 3-T Prisma MRI

scanner (Siemens, Germany), equipped with a 64-channel

radio frequency head coil from Beijing Huilongguan Hospital

Medical Imaging Center. DTI data were acquired using a spin-

echo, echo-planar imaging sequence with a spatial resolution

of 1.7×1.7×1.7 mm3, repetition time (TR) = 8,000ms, echo

time (TE) = 87ms, field of view (FOV) = 224×224 mm2,

98 isotopically distributed diffusion-weighted directions and

axial slice orientation with 82 slices and no gaps, 2 diffusion

weighting values [b = 0 and 1,000 s/mm2], and 5 b =

0 images). Head movements were restricted with padding

for participants and the ENIGMA-DTI analysis pipeline was

conducted for processing DTI data. All data for our study

passed ENIGMA-DTI quality guarantee and control. Regional

white matter fractional anisotropy (FA) of 21 brain regions were

generated each averaged across cerebral hemispheres based on

the guidelines of ENIGMA-DTI atlas (29).

Structural T1-weighted imaging data were collected with a

sagittal 3D-magnetization-prepared rapid acquisition gradient

echo sequence (MP-RAGE), to assess subcortical volumes and

cortical thickness. The scanning parameters were: TE= 2.98ms,

FOV= 256 × 224 mm2, TR = 2,530ms, inversion time (TI)

= 1,100ms, matrix size = 256 ×224, flip angle = 7 and

thickness/gap = 1/0mm. Voluminal operation was conducted

with FreeSurfer, version 5.3. We derived a volume score for

nine subcortical structures, including accumbens, putamen,

thalamus, caudate, amygdala, hippocampus, lateral ventricle,

pallidum, lateral ventricle choroid plexus in addition to total

intracranial volume (ICV). Seventy cortical thickness regions

were extracted for analysis complying with the Desikan–Killiany

atlas (30).

Statistical methods

Student’s t-test or chi-squared test was performed to

compare demographics and TLR4, NF-κB and IL-1β levels

between patients and controls. As the levels of IL-1β did not
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exhibit normal distribution, and were transformed by log10.

Analysis of covariance (ANCOVA) was conducted to compare

the MCCB scores, white-matter FA, subcortical volumes, and

cortical thickness between patients and controls, with education

level and ICV as covariates, respectively. Paired t-test was

performed to evaluate the differences before and after LPS

stimulation and ANCOVA was used to compare inflammatory

markers levels after LPS stimulation between patients and

controls, with respective unstimulated levels as covariates.

Partial correlations were conducted between TLR4 levels and

regional FA, subcortical volumes as well as cortical thickness

in the patients, controlling for age, sex distribution and ICV.

The relationship between TLR4 levels and PANSS scores as well

as MCCB scores were assessed by partial correlation analysis,

adjusting for age, sex, chlorpromazine (CPZ) equivalents and

education level, respectively. To further explore the causal

relationship among the TLR4 signaling pathway, cognitive

performance and whole-brain average FA, we attempted to

run a mediation effect analysis by SPSS’s PROCESS macro. In

the mediation model, we took TLR4 level as an independent

variable; and processing speed of MCCB as a dependent

variable and average FA as a mediator, respectively. Age, gender,

education level and ICV were controlled as covariates. We chose

Model 4 in the PROCESS and used the bootstrap method to

test the significance of the mediating effect. The 95% confidence

interval (CI) was displayed for direct, indirect and total effects

with 5,000 bootstrap samples. If the 95% CI of the indirect

effect did not contain 0, it meant that the mediating effect was

significant (p <0.05). All findings were considered statistically

significant with p<0.05 (2-tailed) with Bonferroni correction for

multiple comparisons.

Results

Demographic and clinical characteristics

There were no differences in age, sex ratio, or education

level between the schizophrenia patients and healthy controls.

The illness duration was (22.91 ± 12.19) months, age of onset

was(24.11±5.92)years and CPZ equivalents were (395.50 ±

219.06) mg/day. The PANSS scores were as follows: total (50.64

± 10.67); positive (11.27 ± 4.05); negative (15.07 ± 5.65); and

general (24.32 ± 3.64), indicating stable psychopathology in

patients with SCS. An overall cognitive impairment following

the seven domains of MCCB was found in SCS (p < 0.05/7

= 0.007, Table 1). Further analysis revealed no significant

relationship between TLR4 levels and age of onset, illness

duration, or CPZ medication in SCS.

We observed significant reductions in average FA for the

whole brain, followed by the superior fronto-occipital fasciculus

(p < 0.05/21 = 0.002) and anterior limb of the internal

capsule, fornix, anterior corona radiata, as well as posterior

thalamic radiation (all nominal p’s <0.05) in SCS (Figure 1A).

For subcortical gray matter volume, the patient group showed

enlargement of the choroid plexus and lateral ventricles,

but reductions of volumes in the thalamus, hippocampus,

accumbens, and amygdala subcortical regions, as compared

with healthy controls (all p’s <0.05/9 = 0.006, Figure 1B).

Patients with SCS also had lower average thickness in the

left and right hemisphere or average whole-brain cortical

thickness as compared to healthy controls (all p’s <0.05,

Supplementary Figure 1).

Comparison of the TLR4/NF-κB/IL-1β

signaling activity between controls and
patients

In an unstimulated state, monocytic IL-1β expression were

higher in patients than healthy participants (p < 0.05), and

there were non-significant but higher trends for the levels of

NF-κB and TLR4 in patients with SCS (p > 0.05) (Table 2).

After LPS stimulation, all of the inflammatory markers were

elevated in both groups, but the patient group had a weaker

monocytic TLR4 response to LPS stimulation, compared to

controls (Figure 2, Supplementary Table 1). And we did not find

a statistically significant correlation between CPZ equivalents

and TLR4 levels in the patient group (p > 0.05).

Correlation of TLR4 expression with
white matter FA in patients and controls

Partial correlations revealed that basal TLR4 levels

significantly negatively correlated with whole-brain average FA

(r=−0.405, p= 0.016, Figure 3) in patients with schizophrenia.

Nine specific regions, including the retrolenticular limb of the

internal capsule, the anterior corona radiata, corona radiata,

cortico-spinal tract, posterior limb of internal capsule, internal

capsule, posterior corona radiata, posterior thalamic radiation,

and superior longitudinal fasciculus, were nominally inversely

correlated with the TLR4 measures (p >0.05/21 = 0.002,

Figure 3A). All correlations between TLR4 levels and whole-

brain average FA or 21 regional FA were not significant in

controls (all p’s >0.05).

Correlation of TLR4 expression with
cortical thickness and subcortical
volumes in patients and controls

We also explored subcortical regional volumes as well as

cortical thickness and their correlations with TLR4 levels. The

results showed that none of cortical structures was significantly

Frontiers in Psychiatry 04 frontiersin.org

https://doi.org/10.3389/fpsyt.2022.966657
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Li et al. 10.3389/fpsyt.2022.966657

TABLE 1 Demographics of participants and clinical characteristics of patients.

Characteristics SCS (n = 44) HCs (n = 59) x²/t/F p

Gender, M/F 29/15 28/31 3.5 0.062

Age (yrs) 47.02± 10.87 43.54± 11.38 −1.56 0.121

Education (yrs) 12.34± 3.29 12.24± 2.41 −0.19 0.854

Illness duration (ms) 22.91± 12.19 NA NA NA

Age of onset (yrs) 24.11± 5.92 NA NA NA

CPZ equivalents (mg/day) 395.50± 219.06 NA NA NA

PANSS-score

PANSS-total score 50.64± 10.67 NA NA NA

PANSS-positive 11.27± 4.05 NA NA NA

PANSS-negative 15.07± 5.65 NA NA NA

PANSS-general 24.32± 3.64 NA NA NA

MCCB score

MCCB total score 45.33± 10.53 57.56± 8.69 6.12 2.00× 10−8***

Speed of processing 42.36± 9.18 54.82± 8.66 6.89 1.00× 10−8***

Attention/vigilance 45.69± 9.49 57.09± 9.15 5.96 4.00× 10−8***

Working memory 46.33± 10.08 58.07± 8.22 6.23 1.00× 10−8***

Verbal learning 50.21± 11.53 58.11± 8.50 3.92 1.63× 10−4***

Visual learning 45.05± 11.68 52.39± 8.63 3.36 0.003***

Social cognition 46.33± 10.08 51.94± 9.77 2.72 0.008**

Reason and problem solving 42.85± 9.36 54.81± 8.66 6.89 1.00× 10−8***

SCS, Stable Chronic Schizophrenia; HCs, Healthy Controls; NA, Not Applicable; MCCB, MATRICS Consensus Cognitive Battery; PANSS, Positive and Negative Syndrome Scale; CPZ,

chlorpromazine equivalents. **p < 0.01; ***p < 0.001.

FIGURE 1

Comparison of regional white matter FA (A), and subcortical gray matter volume (B) between schizophrenia patients and healthy controls.

ANCOVA was conducted in our study, with age, sex and intracranial volume as covariates. For white matter FA, nominal correlations after

multiple comparison (p >0.05/21 = 0.002) were drawn in orange. ACR, anterior corona radiata; ALIC, anterior limb of internal capsule; BCC,

body of corpus callosum; CGC, cingulum; CR, corona radiata; CST, cortico-spinal tract; EC, external capsule; FX, fornix; GCC, genu of corpus

callosum; IC, internal capsule; IFO, inferior frontal occipital fasciculus; PCR, posterior corona radiata; PLIC, posterior limb of internal capsule;

PTR, posterior thalamic radiation; RLIC, retrolenticular limb of the internal capsule; SCC, splenium of corpus callosum; SCR, superior corona

radiata; SFO, superior fronto-occipital fasciculus; SLF, superior longitudinal fasciculus; UNC, uncinate fasciculus; SS, sagittal striatum; FA,

fractional anisotropy. *p < 0.05; ** p < 0.01; *** p < 0.001, after Bonferroni correction.

correlated with TLR4 levels in either group (all p’s > 0.05).

Neither group showed TLR4 levels that were correlated with

68 regional or whole-brain average cortical thickness (all p’s

> 0.05).
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TABLE 2 The comparison of TLR4 signaling pathway activity in schizophrenia patients and controls.

% SCS (n = 44) HCs (n = 59) t p

TLR4 57.76± 26.48 52.98± 20.26 −1.08 0.284

NF-κB 67.74± 30.65 57.62± 24.46 −1.81 0.073

IL-1β 30.03 (11.17–48.72) 5.87 (3.25–13.60) NA NA

Log(IL-1β) 1.39± 0.36 0.93± 0.37 6.22 1.30×10−8***

%, The percentage of monocytes; SCS, Stable Chronic Schizophrenia; HCs, Healthy Controls; NA, Not Applicable. ***p < 0.001.

FIGURE 2

Comparison of percentage of monocytic TLR4 (A), NF-κB (B) and log (IL-1β) (C) following LPS stimulation between schizophrenia patients and

healthy controls. TLR4, Toll-like receptor 4; NF-κB, nuclear factor-kappa B; IL-1β, interleukin-1β; LPS, lipopolysaccharide; %. The percentage of

monocytes. *p < 0.05; *** p < 0.001.

FIGURE 3

(A) Partial correlation coe�cients between TLR4% and white matter FA in patients after adjusting for age, sex and intracranial volume, and

nominal correlations after multiple comparison (p >0.05/21 = 0.002) were drawn in yellow. (B) The correlation between TLR4 % and

whole-brain average FA is plotted. TLR4, Toll-like receptor 4; FA, fractional anisotropy. %, The percentage of monocytes *p < 0.05.
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Correlation of TLR4 expression with
cognitive function in patients and
controls

There were negative correlations between basal TLR4 levels

and social cognition and speed of processing of MCCB in the

patient group (r = −0.424, p = 0.010; r = −0.352, p = 0.026,

respectively, Figure 4), with age, sex, education level and CPZ

equivalents as covariates, but the results did not pass Bonferroni

correction (p >0.05/7 = 0.007). No significant correlation was

found between TLR4 levels and any cognitive domain functions

in the controls (all p’s >0.05, Figure 4).

Correlation of TLR4 expression with
psychopathology in patients

We also performed partial correlation analysis between

TLR4 signaling pathway and PANSS score, with age, sex, and

CPZ equivalents as covariates. However, we did not find any

statistically significant correlation between TLR4 levels and

PANSS-positive score (p = 0.595), PANSS-negative score (p =

0.060), PANSS-general score (p= 0.153) or PANSS total score (p

= 0.090).

Correlation of white matter FA with
cognition function in patients

We further examined the relationship between cognitive

function and whole-brain average as well as individual regional

FA to explore whether cognitive decline caused by TLR4/NF-

κB signaling activation is due to specific white matter defects

or if other brain structures are also involved. After controlling

for age, gender, and education level, the whole-brain average FA

was found to be significantly and positively correlated with the

processing speed ofMCCB alone in the patient group (r= 0.388,

p = 0.021, Supplementary Figure 2). However, the correlation

did not pass Bonferroni correction at p > 0.05/147 (for 21

regions ×7 domains). The nominal correlation coefficients for

the other regions varied from−0.355 to 0.474 (p= 0.004–0.05).

Mediation analysis

According to the results of correlation analysis, we used

SPSS’s PROCESS macro for mediation effect analysis. In the

mediation model, we took TLR4 level as an independent

variable; and processing speed of MCCB as a dependent

variable and average FA as a mediator, respectively. Age, gender,

education level and ICV were controlled as covariates. In this

study, the 95% CI for total, indirect and direct effects were

(−0.31, −0.05), (−0.05, 0.09), (−0.34, −0.05), respectively,

suggesting that there was no mediation effect.

Discussion

Our major findings showed that: (a) schizophrenia patients

showed higher activity of the TLR4/NF-κB/IL-1β signaling

pathway but dampened monocytic response to LPS stimulation,

as compared to healthy controls; and (b) higher TLR4

levels may contribute to cognitive impairment by possibly

affecting the white matter rather than gray matter volume or

cortical thickness.

Our findings showed that the TLR4 pathway was activated

in stable chronic schizophrenia. Monocytic IL-1β, identified as

a downstream inflammatory mediator of the TLR4 pathway,

was significantly elevated in SCS than healthy subjects. There

was a statistical trend toward increased expression of baseline

TLR4 and NF-κB in monocytes. Together, these findings

suggest a disturbance of the immune system in schizophrenia.

We speculated that higher TLR4/NF-κB/IL-1β signaling may

compensate for functional deficits of monocytes and, as a result,

less increases in monocytic TLR4 levels upon LPS stimulation in

schizophrenia. With regard to monocyte/macrophage function,

neopterin, a macrophage activation marker, was demonstrated

to be decreased in patients with schizophrenia (31). The

increased number of monocytes may compensate for cellular

function defects (17, 31). Monocyte-derived microglia were

also found at a high level in the brain, as can be measured

by positron emission tomography (32). Two mechanisms may

perhaps explain the origin of TLR4 over-activation: (1) The

“leaky gut” hypothesis of schizophrenia: Gram-negative bacteria

is translocated into the blood with the increase of intestinal

permeability, thus activating TLR4 signaling pathway (33).

(2) maternal immune activation induced by prenatal infection

including virus, bacteria and protozoan, leading to nitrosative or

oxidative stress response (8), which needs further investigation.

Indeed, TLR4-induced low-grade inflammation in innate

immunity has been well-established in first-episode (16, 31)

and chronic schizophrenia (17) and modulating TLR4 pathway

activity may have potential therapeutic implications (8).

The current study also indicated an impaired TLR4 signaling

pathway activation after LPS challenge, as manifested in lower

TLR4 elevation in schizophrenia, consistent with previous

reports (17, 31, 34). Impaired TLR4 signal pathways may

result in a decreased capability of the body recognizing and

clearing invading pathogens in vivo, causing sustained mild

infection in schizophrenia (16, 18). Nearly half of schizophrenia

patients suffered from iatrogenic infections, suggesting that

infection may be related to developing schizophrenia (35). The

mechanisms underlying infection and immunoreaction have to

be clarified in a larger scale cohort study.
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FIGURE 4

Partial correlations between basal TLR4 % and cognitive performance in patients and controls group, after adjusting for age, sex, education level

and CPZ equivalents. (A) Correlations between basal TLR4 levels and social cognition; (B) Correlations between basal TLR4 levels and speed of

processing. TLR4, Toll-like receptor 4. %, The percentage of monocytes.

Reductions in global average and regional FA were in

line with an earlier, large-scale study from the ENIGMA

of schizophrenia patients (36). Notably, monocytic TLR4

expression was significantly correlated with the decreases in

white matter FA in schizophrenia, inter-linking white matter

deficits with impairment in oligodendrocyte function and

axonal myelination (37). In the CNS, glial cells support

myelination of axons, nutritional supply to neurons, and

defense against foreign substances, collectively to ensure

parenchymal white matter integrity (38–40). Circulating TLR4-

mediated-proinflammatory cytokines, such as IL-1β, IL-6,

may mediate peripheral-CNS interaction through impaired

blood-brain barrier and enlarged choroid plexus (41), leading

to microglia with stronger responses to new inflammatory

mediators and as a result, more severe neuroinflammation (42)

and neuronal damage (43). Higher TLR4 levels were also found

in circumventricular organs, blood brain barrier, leptomeninges,

and plexus choroideus in the CNS (8). The finding that TLR4

signaling activation was associated with neuroinflammation

accorded with an animal experiment where knockdown of

TLR4 blocked TLR/NF-κB and MAPK signaling pathway along

with the downstream inflammatory components in astrocytes

(44). Microglial inflammation also drives hypomyelination

in the brain, contributing to developmental white matter

impairment (38), dysfunctional neuroplasticity and networks

connectivity (38–40).

We observed subcortical volume differences between

patients and controls, including enlargement of the

choroid plexus, lateral ventricle, and reduction of thalamus,

hippocampus, accumbens, and amygdala volumes, consistent

with a large-scale meta-analysis from the ENIGMA consortium

(45). Furthermore, lower global and regional cortical thickness

was also observed in the patients, in accord with a previous

report (21). On the other hand, although neuroinflammation

may lead to altered regional brian volumes (46, 47), we did not

find a significant relationship between monocytic TLR4 levels

and cortical or subcortical volumes in the patients. A likely

explanation is that the TLR4 is predominantly expressed on

microglial cells and rarely detected on the surface of neurons

(48). Microglial activation was reported to bemore prominent in

white than gray matter in neuropsychiatric disorders, including

schizophrenia, Alzheimer’s disease, primary progressive

aphasia (23, 49, 50). Saijo et al. reported that microglia

was more sensitive to LPS stimulation, inducing massive

inflammatory mediators; conversely, neurons were relatively

insensitive (51). One should also note that antipsychotic

medications have anti-inflammatory properties and might

reduce microglia activation (32). Together, we speculated that

neuroinflammation preferentially affected the white matters in

the mild psychopathology of schizophrenia and might progress

into a widespread region such as gray matter volume, causing

accelerated deterioration from illness.

We observed cognitive impairment in the patients in all

seven domains of the MCCB (16, 17, 52). Sustaining low-grade

inflammation might account for cognitive deterioration, as

shown in both prospective epidemiologic and cross sectional

studies (11, 53). Indeed, partial correlation analysis indicated

that elevated basal TLR4 levels were distinctly harmful

to cognitive function in SCS, replicating a previous study

associating higher cell-surface TLR4 levels with cognitive

dysfunction in chronic schizophrenia patients (17). Persistent

inflammation may enhance the permeability of blood
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brain barrier (47), allowing peripheral monocyte-derived

macrophages to penetrate the CNS and differentiate into

microglia cells (54). Additionally, circulating pro-inflammatory

mediators such as TNF-α, IL-6 and IL-1 may also interact

with the brain through endocrine, neurological, and humoral

pathways, exerting complex effects on cognitive function,

emotion, and behavior (55). Inflammation in the medial

temporal lobe impaired spatial memory in humans (56).

Some studies have demonstrated that antipsychotics can affect

TLR4 levels (12, 31, 57) and cognitive function (58–60) in

patients with schizophrenia. For example, a study of 266

schizophrenic patients found that deficit of overall cognition

were significantly related to high CPZ equivalents (58). The

finding that the correlations between TLR4 levels and cognition

performance did not survive Bonferroni test may possibly

be explained by the effects of antipsychotics in this chronic,

stable cohort. But the role of TLR4 signaling in cognitive

function between first-episode and chronic schizophrenia is

inconsistent, presenting a context-dependent pattern (16, 17).

Chen et al. (16) pointed out that TLR4 level was positively

correlated with cognitive performance in patients with first-

episode schizophrenia. The TLR4 signaling pathway may

have a dual effect on cognitive function in schizophrenia,

manifesting as both benefiting cognitive function and impairing

cognitive performance. The balance between rapid immune

response and long-term persistent low-grade inflammation

and the mechanisms underlying their association warrants

further exploration.

We also attempted to explore the relationship between TLR4

levels and psychopathology in patients with schizophrenia.

However, we did not find a statistically significant correlation

between TLR4 levels and PANSS score. The classical

neurotransmitter hypothesis indicated that the imbalance

of dopamine level and dopamine receptor activity in the brain is

one of the main reasons causing schizophrenia. Hyperfunction

of dopamine neurotransmitters in the striatum leads to positive

symptoms, while hypofunction of dopamine in the frontal

cortex is involved in negative symptoms (61). Considering that

TLR4-mediated neuroinflammation preferentially affects glial

cells such as microglia and astrocytes, whereas it is rarely or

undetectable in neurons (48). Therefore, we speculated that

the TLR4 signaling system rarely affects dopaminergic neurons

in chronic stable schizophrenia, which may explain our lack

of correlation between TLR4 levels and psychopathological

symptoms. Later follow-up observations are required to

demonstrate this initial hypothesis.

We examined the correlation between cognitive

performance and white matter FA, aiming to confirm the

hypothesis that TLR4-mediated inflammation may indirectly

affect cognitive function by influencing white matter integrity

in schizophrenia. We showed that processing speed was

positively correlated with the average FA (i.e., response time

in negative correlation with FA), suggesting that higher TLR4

signaling could potentially affect the white matter integrity but

not gray matter volume or cortical region to affect cognitive

performance. Previous studies of neurodegenerative disorders,

including Alzheimer’s disease and primary progressive aphasia,

showed that microglial activation was more prominent in the

white than gray matter (49, 50). White matter microstructural

dysconnectivity has been related to cognitive impairment

and psychopathology in schizophrenia (37, 62). Thus, a

blockade of the TLR4 signaling pathway may represent a novel

therapeutic strategy for modulating cognitive performance

in schizophrenia.

There were inevitably some limitations in this study. First

of all, to further explore the causal relationship among the

TLR4 signaling pathway, cognitive performance and whole-

brain average FA, we attempted to run a mediation effect

analysis. Although no mediating effect was found in this

study, it may be related to the small sample size. Our study

revealed that there were important correlations between TLR4

signaling pathway and cognitive function, white matter FA,

and there was also a correlation between white matter FA

and cognitive performance in stable chronic schizophrenia,

respectively. TLR4-mediated neuroinflammation preferentially

affects glial cells such as microglia oligodendrocytes (48),

which mainly constitute white matter microstructure and white

matter microstructural dysconnectivity has been related to

cognitive impairment in schizophrenia (37). Based on the

above findings, we initially speculated that TLR4 levels affect

cognitive function by affecting white matter integrity. In future

studies, a larger sample size is needed to demonstrate our

hypothesis, which is the main limitation of this study. Secondly,

TLR4 signaling molecules were quantified for peripheral

monocytes and their levels reflect at best an indirect measure

of neuroinflammation in the brain. A PET study may be

used to evaluate TLR4-medicated neuroinflammation in the

CNS. Finally, antipsychotic drug exposure may represent a

confounding factor, although we recruited patients with stable

drug dosing, and did not find a significant correlation between

TLR4 levels or white matter FA and CPZ medication (36).

The current findings need to be confirmed in drug naïve first-

episode schizophrenia.

In conclusion, the current study showed that TLR4/NF-

κB/IL-1β signaling elevates in activity but responds sluggishly

to LPS stimulation in schizophrenia. Higher TLR4 levels may

contribute to cognitive impairment by affecting white matter

microstructure rather than subcortical volumes or cortical

thickness in schizophrenia.
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