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The obesity epidemic has crossed social-demographic barriers and is a

matter of significant concern. Why do individuals fail to restrain from

eating high-calorie foods and fail to follow treatment routines that reduce

the risk of health complications? These questions have been addressed

through behavioral and brain imaging studies on prefrontal cortex inhibitory

mechanisms. Failure to inhibit undesirable behaviors has become a hallmark

of obesity. In many life situations, obesity risk is increased by inaction (e.g., not

taking blood pressuremedication, not following a healthy diet). Risk by inaction

has been defined as passive risk-taking, and it is correlated with traits such

as procrastination, future time perspective, and cognitive avoidance. To the

present, passive tendencies, specifically in the context of risk-taking behaviors,

have not been addressed in the obesity literature. We introduce a framework

in which active and passive risk-taking behaviors are integrated within the

scope of bidirectional models of obesity that describe the brain as both the

cause and the consequence of obesity vulnerability. The present perspective

aims to foster new research on treatment and prevention, and also on the

neurobiology of passive behaviors in obesity and other metabolic conditions.
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Introduction

Obesity as determined by a bodymass index (BMI) of 30 kg/m2 or higher has become

the most prevalent chronic disease in the USA, with 37.9% of adult men and 41.1% of

women (1). Obesity can lead to variousmetabolic complications including type 2 diabetes

and cardiovascular conditions that are risk factors for mild cognitive impairment, and

dementias (2). Obesity also increases the incidence of psychiatric conditions such as

depression and anxiety (3).The impact of obesity in individuals’ brain and metabolism

can be already identified at young age (4–6).

Psychological processes described within the construct of executive functions have

been found to play a significant role in obesity (7). Executive function is a key

construct that describes the ability to self-regulate behavior and make decisions that

allow the achievement of long-term goals (i.e., being healthy) by overcoming less

immediate and more automatic tendencies (6, 8). The prefrontal cortex hosts inhibitory,
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updating, and shifting mechanisms which have been

systematically addressed in obesity (9, 10). Impairment in

executive function interferes with processes such as working

memory, reasoning, planning, and decision making (8).

Decision-making associated with inhibitory deficits has

been consistently reported in obesity (11–14) and shown in

individuals without obesity struggling with weight control

(15). Individuals with obesity show greater difficulty inhibiting

undesirable behaviors and are more sensitive to reward than

healthy weight individuals, thereby increasing the probability

of engaging in risk-taking behavior (16). Risk-taking behavior

in obesity, has traditionally concentrated on the analysis of

failures of inhibition of undesired behaviors. That is, in the study

of actions that increase an individual’s risk of gaining weight

(e.g., choosing a high caloric dense food; overconsumption of

certain foods). There are, however, many situations in which

risk is increased by inaction (e.g., not taking the prescribed

medication; not engaging in physical activity). This risk-taking

tendency has been referred to as passive risk-taking (17, 18),

and it constitutes a unique and separate construct from active

risk-taking. Furthermore, passive risk choices are perceived

as less risky compared to equivalent active risk choices, with

less responsibility ascribed to those taking passive compared

to active risks (18). The importance of examining passive

risk tendencies in the context of obesity is endorsed by

studies on self-control, showing that inhibitory behavior fails to

predict initiatory behaviors such as the intake of healthy foods

(19) which impacts brain and metabolism (20). The present

perspective reflects the observation that passive tendencies have

been largely neglected in the obesity literature. We propose a

framework that integrates active and passive risk-taking within

the current bidirectional models of obesity.

Risk-taking behavior in obesity

The relationship between active and passive risk-taking

is central for answering why individuals fail to refrain

from eating high-calorie foods and fail to follow treatment

routines that reduce the risk of health complications. This

question is highly intriguing considering that an average

adult in industrialized societies has full access to health,

nutrition, and exercise information. Nevertheless, the epidemic

of obesity is a matter of major concern that has crossed

social-demographic barriers (21). In addition, developments in

digital medicine have provided consumers with a wide range

of digital products that promote healthy practices, such as

mobile applications. However, it is important to mention that

access to digital products and opportunities for engaging in

preventive behaviors such as healthy diet and physical activity

are largely constrained by sociodemographic status and other

environmental factors. The prevalence of obesity and type

2 diabetes increases at different rates across race/ethnicity

groups and sociodemographic conditions among US citizens

(22). Therefore, studies that address the brain-behavioral axis

underlying obesity and passive risk-taking should be examined

while considering potential interactions between the brain,

environment (23), and health equity factors (22).

Active risk-taking in obesity has been examined using

various tasks (19, for a review). The Iowa Gambling Task (IGT)

requires individuals to select cards, with the aim of winning

as much money as possible, from four decks, each containing

cards that can reward or penalize them using a financial setting

(24). The IGT revealed that individuals with obesity relative

to individuals without obesity are impaired in decisions under

risk compared to decisions under uncertainty (12, 25–28). An

increase in risk-taking behavior in obesity was also found using

a modified version of the IGT in which the odds for gaining and

losing were equal (29), although the effect was observed only

for male participants. Similarly, the Balloon Analog Risk Task

(BART) was also used to investigate impairments in active risk-

taking in individuals with eating disorders and obesity (30). In

the BART, participants are asked to pump a balloon to obtain

a reward. The balloon may pop at any time during the task at

which the money is lost, or participants may press a key to stop

to save money.

The Risky-Gains task (RGT) (31) captures similar active

risk-taking processes as BART. In the RGT, participants are

sequentially shown the numbers 20, 40, and 80, and they are

asked to choose the number as a potential reward by a button

press. Number 20 is always a safe choice, whereas numbers 40

& 80 are risky options with a certain probability of losing the

stated amount. RGT has been used to study individuals with

obesity (32, 33). Despite showing a similar proportion of safe vs.

risky choices compared to normal weighted controls, individuals

with obesity showed differential brain activation patterns in

the ventromedial prefrontal cortex and insula during active

risk-taking decisions (33).

Schäfer et al. (34) developed the card lottery task (CLT) to

examine risk-taking in individuals with severe obesity. The task

requires selecting cards from decks with conflicting short- and

long-term consequences. This task aimed to resolve a frequent

criticism derived from IGT and delay discounting (DDT) in that

they do not tackle the conflict between immediate vs. long-term

consequences of choices at the same time. Analysis of risk-taking

performance of individuals with severe obesity (34), showed that

risk-taking performance as measured by CLT was sensitive to

changes (i.e., decrease in the number of risky choices) in risk

behavior in participants who underwent obesity surgery.

The use of these various active risk-taking tasks shows that,

relative to normal-weight individuals, individuals with obesity

exhibit decision-making deficits in relation to inhibition, as

demonstrated by a higher frequency of risky choices. However, it

is still an open question how active risk-taking behaviors relate

to initiatory behaviors that lead to the consumption of healthy

foods and to engaging in physical activity. Being able or not
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able to inhibit the urge to consume high-calorie foods does not

necessarily translate into healthy eating and exercising.

Risk-taking by [in]action in obesity

As we mentioned previously, risk can be defined by choices

of inaction, for example, not taking prescribed medication or

not following a diet to control blood pressure. Passive risk-

taking (17) directly relates to deficits in initiating behaviors.

Although not addressed under the construct of risk-taking

behavior, choices of inaction have been consistently reported

in individuals with obesity. Individuals with obesity have been

found to have a low propensity to engage in health behaviors

such as exercise and the intake of fruits and vegetables (35)

and to show low treatment adherence in epidemiological

studies addressing cancer treatment (36). Women with obesity

have also been found to be less likely to adhere to clinical

recommendations for mammography and cervical cancer

screening (37). These observations suggest that, as with active

risk-taking in obesity, passive risk-taking might go beyond

dietary choices and might extrapolate to choices of inaction

in various preventive contexts, such as adherence to medicine

and conducting health check-ups. As mentioned previously,

studies on passive-risk tendencies associated with preventive

health practices should be contextualized under health equity

issues (22).

Despite its theoretical and practical relevance, empirical

research addressing the distinction between inhibitory and

initiatory behaviors in obesity is still minimal. The same is true

for conditions requiring adherence to diet, physical exercise,

and medical recommendations such as metabolic syndrome

and type 2 diabetes. The few attempts to distinguish between

inhibitory and initiatory mechanisms in obesity were conducted

under different theoretical constructs, using various self-report

and behavioral measures that challenge the integration of the

findings. Using self-report measures, inhibitory behaviors were

found to be a successful predictor of the consumption of fat

(i.e., inhibitory) and initiatory behaviors of the consumption of

fruits and vegetables (i.e., initiatory) in adults (35) and teenagers

(38). Inhibition and planning behaviors were measured through

a Stroop task and Tower task (39). Planning, which is a

facet of goal-oriented behavior, as found to be a reliable

predictor of the consumption of fruit and vegetables in adults

with obesity (39). Similar tasks such as stop-signal, n-back

and operation span tasks along with food consumption self-

report measures were used to examine inhibition, planning and

updating (19). Inhibitory self-control predicted fat intake, and

updating predicted fruit and vegetable consumption.

Studies from health and cognitive social psychology

perspectives have provided insights into the importance of

initiatory behaviors in various areas, including eating behavior,

physical activity, and treatment adherence (35, 40, 41). A

trait self-control that describes both inhibitory and initiatory

behaviors has been used to predict the engagement in health

practices (41). Trait self-control is defined as a stable tendency

to adjust to the demands of the environment by inhibiting

undesirable behavior and activating goal-beneficial behaviors

(40, 42–45). The distinction between these two components of

self-control was empirically supported (41). Trait self-control

was found to successfully predict health and well-being (46).

Recently, the relationship between the initiatory component

of self-control was shown to be significantly correlated with

passive risk-taking tendencies in the context of risk derived

from not taking preventive health measures during the time of

COVID-19 (47).

Apart from initiatory behaviors, passive risk-taking is also

associated with cognitive tendencies such as self-responsibility,

future time perspective and cognitive avoidance (18, 47).

Of particular interest among these constructs is future time

perspective, which can be experimentally modeled using the

delay discounting task (48) and its variants. One of such

related computational model examining self-control processes

in terms of hyperbolic discount functions describes motivation

for impulse control arise from temporally varying outcome

values attached to different alternatives, in a process of

interpersonal bargaining (49). Intertemporal bargaining centers

on the conflict between valuing an option that is presented

in a given time just for itself as opposed to valuing an

option as an evidence for how you will choose in a bundle

of similar future choices (i.e., “I eat this chocolate cake

because it is my birthday”). Although these models do

not specifically refer to passive risk tendencies, they are

potentially relevant for understanding how initiatory behaviors

are implemented in various contexts. In a process of recursive

interpersonal bargaining, either an immediate behavior or a

delayed for reward behavior can prevail simply because one

option promises greater discounted reward at the moment

of choice.

Our analysis of the literature strongly supports the need

to integrate both active and passive tendencies as potential

determinants of overweight and obesity. The theoretical

advantage of examining inhibitory and initiatory behaviors

within the scope of active and passive risk-taking rests on the

predictive power of these constructs with respect to behavioral

choices. That is, passive risk-taking is highly associated with

cognitive tendencies that can be identified, such as self-

responsibility, future time perspective and cognitive avoidance

(18, 47). For example, individuals who self-report being more

future-oriented are more prone to exercise (50–52), more prone

to engage in a healthy diet, and to adhere to the prescribed

medication for type 2 diabetes and hypertension (53). Therefore,

constructs such as future time perspective, might be important

mediators for the relationship between passive risk and obesity.

In addition, personality dimensions such as conscientiousness

and neuroticism associated with specific eating patterns in
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obesity (51) might also impact active and passive risk-taking

tendencies differently.

Obesity and risk-taking in the human
brain

It is well established that decision-making under risk or

uncertainty implicates a network of subcortical and cortical

areas, including the prefrontal cortex (PFC), limbic regions,

and parietal regions (30, 54). For example, a modified version

of the BART task was used to examine brain areas associated

with risks derived from actively choosing a risky option relative

to risks derived from not making a choice (55). Results

show that mesolimbic frontal areas, including the dorsomedial

prefrontal cortex (dmPFC) and ventromedial prefrontal cortex

(vmPFC), are implicated in voluntary but not involuntary

risk-taking (55). Using low-frequency repetitive transcranial

magnetic stimulation to the right dlPFC during a risk-taking task

showed that the disruption of this area leads to risky decisions

compared to disruption to the left dlFPC (56).

Only a few studies examine the direct link between risk-

taking decisions and obesity (31, 57, 58). Using the Risky

Gains task, these studies revealed increasing left inferior

frontal/insula activations during risky choices with decreasing

BMI and the opposite pattern in the superior midbrain region

(48). During risky choices, increased insula activations were

correlated with low restrained eating in subjects with obesity

(31). Attenuated vmPFC activations were observed in obese

subjects (as compared to normal weighted controls) during safe

vs. risky choices following a loss (32). These findings suggested

potential differences in value representations and interoception

between obese and lean people.

The dysregulation of the prefrontal cortex and its

role in inhibitory processes in obesity has recently been

addressed through studies using non-invasive brain stimulation

techniques, for example, transcranial direct current stimulation

(tDCS) and transcranial magnetic stimulation (TMS) (59, 60).

Although these neurostimulation tools modulate self-control

and inhibitory control, their effects on eating behaviors in

obese individuals are still inconsistent and difficult to replicate

(61–63, for recent reviews). Concerning active and passive risk

taking, an interesting direction is suggested by findings showing

stimulation to the dlPFC to reduce carbohydrates consumption

(61) and to increase physical activity (62), suggesting that

stimulation of dlPFC might also impact initiatory behaviors.

To the best of our knowledge currently there exist no

published studies directly investigating passive risk-taking and

its associated neural correlates. Therefore, we can only examine

the neuroimaging correlates of related constructs and indirectly

investigate the neural underpinnings of passive risk-taking.

As we discussed earlier, one such construct is future time

perspective that can be measured by the delay discounting task

(63). A recent meta-analysis addressing the brain correlates of

delay discounting (64) revealed that the decision to receive

immediate gratification, rather than withholding gratification

for a better reward, activates a network consisting of the anterior

cingulate cortex (ACC), bilateral ventral striatum (VS), left

precuneus, right insula and right inferior frontal gyrus (IFG)

that processes the intricate interactions between time and values

of choices.

Studies using voxel-based morphometry have reported

neuroanatomical changes in individuals with obesity in

executive function areas, such as medial prefrontal cortex and

the temporal pole (61). Recently two large-scale cohort studies

(Human Connectome Project & UK Biobank), respectively

revealed positive associations between cortical thickness and left

superior frontal cortex, left IFG and bilateral parietal cortices

(65), and lower subcortical gray matter volume, particularly in

ventral and dorsal striatum that associated with obesity (66). In

normal-weight participants, individual differences in constructs

related to passive risk taking, such as procrastination and future

time perspective, were correlated with changes in executive

function areas (67). Of main relevance is the finding showing

that procrastination and future time perspective overlap in the

vmPFC and the parahippocampal gyrus (68). Mediation analysis

revealed that the effects of procrastination on gray matter

volumes in the parahippocampus and the vmPFCweremediated

by future time perspective.

Convergence between neuroimaging correlates of risk-

taking decisions and structural changes associated with obesity,

particularly the findings in PFC and VS, points to a possible

link between the two. Activity in the PFC modulates individual

vulnerability to obesity due to its role in executive functions,

including decision-making (9). The PFC is connected with

cortical and subcortical areas involved in different aspects

of eating behavior, such as decision-making, self-regulation,

reward sensitivity, and taste evaluation (69). Different roles for

the dlPFC and the vmPFC have been identified in response to

food-related stimuli (6). While the dlPFC provides inhibitory

self-control related to food stimuli, it downregulates taste

evaluation within the vmPFC (70). Theories supporting the role

of the PFC in obesity suggest that decisions involving healthy

food choices depend on the optimum functional coupling

of these two subregions (6). That is, optimum control of

eating behavior depends on the intact function of the dlPFC

to downregulate taste and health evaluation provided by the

vmPFC. We propose that choices of inaction, such as those

defined within the construct of passive risk-taking, engage the

vmPFC to a large extent.

Moreover, in addition to the different roles of the PFC

(i.e., ACC, vmPFC, and dlPFC) in food-related choices, there

is also growing evidence suggesting that these areas and the

hippocampus subserve passive risk-taking-related constructs

such as procrastination and evaluation of future consequences
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(71). The vmPFC is implicated in maximizing gains to prevent

future consequences (72, 73). In individuals without obesity,

brain imaging studies addressing future time perspectives have

reported that the medial PFC, vmPFC, and hippocampus are

implicated in future time projections [76-78]. Episodic future

thinking during delay discounting tasks reduces the rate of

discounting (i.e., reduction of impulsive choices) and increases

the functional coupling of the ACC-hippocampus/amygdala

(63). This finding is also in agreement with others showing

the role of the parahippocampal gyrus in procrastination (71).

Coupling between the PFC, including the ACC and hippocampal

regions, is also engaged during mental simulations involving

future scenarios.

Taken together, these findings are consistent with our

proposal that active and passive risk taking partially overlap

in the PFC. Although inhibitory processes are consistently

found to implicate ACC and dlPFC regions, processes

involving evaluation, value attribution, and assessment of

future consequences implicate the vmPFC, hippocampus, and

parahippocampal area. Future studies should be designed to

examine the neuro basis of these two forms of risk and their

relation with eating behavior and body composition.

Discussion

In summary, our analysis of the literature reveals that risk-

taking behavior in obesity has mainly been examined through

failures to inhibit undesirable behavior. Here we discuss the fact

that in real-life situations risk-taking is also derived from choices

of inaction. The risks caused by inaction are associated with

various psychological traits, such as procrastination, avoidance,

and poor initiation. Therefore, it has the potential to play

an important role in obesity. We do not suggest that passive

risk-taking does not require inhibitory processes. In fact, an

important consequence of refraining from taking passive risk is

the ability to evaluate the future consequences of a choice and

to delay reward (i.e., inhibit). However, successfully preventing

passive risk-taking goes beyond being able to inhibit behaviors

but to act to prevent or to reduce risk. The potential role of

inhibition in passive risk behaviors is indeed an important facet

of human decision making to be systematically addressed in

future research.

We propose to integrate active and passive risk-taking

behaviors within the scope of bidirectional models of

obesity under which the brain can be both the cause and

the consequence of obesity. This bidirectional influence is

understood to be mediated by metabolic processes that are

triggered by dietary choices and physical activity (54) which

impact brain and cognition, specifically executive function (55).

Implementing preventive actions that have the potential to

impact long-term health depends on individuals’ opportunities

to implement such actions, for example, sociodemographic

and financial factors (23). Therefore, as we mentioned

previously, the brain-behavioral axis underlying passive-risk

taking choices should be studied while considering potential

interactions involving sociodemographic factors and health

equity issues (22).

Brain metabolism processes associated with food

consumption trigger a cascade of hormone releases, such

as insulin, ghrelin, leptin, and glucagon, which in turn

impact the brain and cognition (20, 53–55). It has been

demonstrated in both human and in mouse models that

systemic hyperinsulinemia impairs brain insulin metabolism

(20). Behaviorally, the levels of circulating acyl-ghrelin and

circulating leptin levels affect decision making, specifically

risk preference, suggesting the impact of metabolic states

on the brain-behavior axis (58). Executive functions have

also been found to be modulated by inflammatory states

produced by the immune system response to the presence of

stress, pathogens, or tissue injury (48). Inflammation is an

important pathophysiological mechanism underlying the effects

of nutrition in cognition, as inflammation has been shown to

impact brain areas associated with memory, reward, decision

making, and affect processing (59–61, 74), all subserving

eating habits. Hormonal imbalances and levels of inflammation

throughout life might impact brain function by decreasing

the ability to resist temptations. Likewise, such disruptions in

brain function may increase passive risk-taking choices, making

individuals more vulnerable to not act to improve their health.

The effects of physical activity and dietary choices on

executive function processes well illustrate the bidirectional

relationship involving brain and obesity. It has been shown

that physical activity increases executive function, promoting

inhibitory processes (62). Regular physical exercise (i.e.,

initiatory behavior) induces inhibitory control and restrains

the consumption of unhealthy food (63–65). In the context of

physical exercise intervention, transfer effects were observed

as physical activity enhanced the consumption of fruits and

vegetables, even though the diet was not a target of the

intervention (66, 67). Findings showing the effects of exercise

on executive function suggest that inhibitory and initiatory

factors modulate one another. Less passive risk-taking behavior,

such as engagement in physical activity and fruit and vegetable

consumption, might impact prefrontal function, reducing

active risk-taking behaviors (i.e., succumbing to unhealthy

food options). The effects of inhibitory control on brain

function were observed following long-term weight loss after

laparoscopic sleeve gastrectomy (68). Weight loss significantly

decreased food cravings and reduced ghrelin, leptin, and

insulin levels (68). Notably, weight loss increased the functional

connectivity involving the dorsolateral prefrontal cortex (dlPFC)

and pregenual ACC at 1 month and 6 months after the

gastrectomy procedure and enhanced cognitive control. This

potential bidirectional influence involving active and passive risk

choices highlights the importance of tackling both types of risk
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in preventing obesity. Choices of action that reduce risk, such

as exercising, also impact cognitive functions that determine the

ability to exert inhibitory behaviors that reduce risky behaviors.

Discussing the role of macronutrients and dietary

recommendations in obesity is beyond the scope of the

present article. However, it is important to mention that the

definition of a healthy diet in the context of obesity prevention

and treatment goes beyond consuming a certain amount of

calories (i.e., caloric intake). Following a healthy diet depends

in great extent on initiating (choosing) specific food items

rather than simply refraining from overeating. A number of

recent studies on nutrition in individuals with obesity and

also with type 2 diabetes have shown that not all calories are

the same (69). For example, the consumption of different

macronutrients such as carbohydrates and fats triggers the

different hormonal response (70). In fact, low-carbohydrate

diet have a great impact on weight loss and weight control

(71, 73). Research addressing active and passive risk taking

should benefit from examining the impact initiatory behaviors

regarding dietary choices and also physical activity and their

associated hormonal response.

Finally, addressing active and passive risk-taking patterns

is important for developing digital tools to identify individuals

struggling with behavioral adherence and who are at greater

risk of progressing to overweight and obesity. Utilizing the

latest innovation of assessments using digital biomarkers (75) in

combination with machine learning models, could also promote

the early detection of active and passive risk patterns. We hope

our current perspective will stimulate discussions and further

research on active and passive risk-taking in relation to weight

control issues, or even expand to other health-related issues.

All these research developments will lay the ground for the

development of digital health products that promote healthy

practices, such as mobile applications.
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