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The integration of artificial intelligence (AI) technologies into mental health

holds the promise of increasing patient access, engagement, and quality

of care, and of improving clinician quality of work life. However, to date,

studies of AI technologies in mental health have focused primarily on

challenges that policymakers, clinical leaders, and data and computer scientists

face, rather than on challenges that frontline mental health clinicians are

likely to face as they attempt to integrate AI-based technologies into their

everyday clinical practice. In this Perspective, we describe a framework for

“pragmatic AI-augmentation” that addresses these issues by describing three

categories of emerging AI-based mental health technologies which frontline

clinicians can leverage in their clinical practice—automation, engagement, and

clinical decision support technologies. We elaborate the potential benefits

o�ered by these technologies, the likely day-to-day challenges they may

raise for mental health clinicians, and some solutions that clinical leaders

and technology developers can use to address these challenges, based on

emerging experience with the integration of AI technologies into clinician daily

practice in other healthcare disciplines.

KEYWORDS

artificial intelligence, AI-augmentation, automation technologies, clinical practice,
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Introduction

Artificial intelligence (AI) technologies—computer systems that perform human-

like physical and cognitive tasks such as sensing, perceiving, problem solving, and

learning subtle patterns of language and behavior (1)—may both enable mental health

(MH) clinicians to focus on the human aspects of medicine that can only be achieved

through the clinician–patient relationship, and at the same time make therapies

more effective. In the health domain, the automation, engagement, and decisions

empowered by AI are commonly reviewed by domain experts before they can be

implemented in a patient’s treatment plan, a process called “augmented intelligence”

Frontiers in Psychiatry 01 frontiersin.org

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://doi.org/10.3389/fpsyt.2022.990370
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyt.2022.990370&domain=pdf&date_stamp=2022-09-06
mailto:kkellogg@mit.edu
https://doi.org/10.3389/fpsyt.2022.990370
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fpsyt.2022.990370/full
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Kellogg and Sadeh-Sharvit 10.3389/fpsyt.2022.990370

or “intelligence amplification.” By utilizing the capabilities

of AI systems to support clinicians and patients, they

transform mental healthcare (MHC) through improving

patient experience and retention and the work life of healthcare

professionals, and reducing costs (2). AI-Augmentation

incorporates a pragmatic approach, led by the frontline

clinician, wherein AI technology informs and augments, rather

than replaces, clinician experience and cognition (3).

To date, much of the literature on implementing AI

technologies in MHC has highlighted the potential clinical

and economic value of AI (1), as well as the technical,

ethical, and regulatory challenges associated with its effective

implementation (4). A research agenda and initiatives for

addressing these challenges has also been proposed, such

as redesigning elements of the technical and regulatory

infrastructure of organizations (4), using robust data and science

practices in developing AI technologies (5, 6), studying AI

efficacy and fairness (7), and providing formal training to

medical professionals (7).

To add to this emerging understanding of effective AI

development and use in MHC, we provide a complementary

perspective of “Pragmatic AI-Augmentation.” We argue that, in

order to realize the promise of AI technologies in MHC, it is

necessary to answer three questions: (1) What are some specific

AI technologies that frontline MH clinicians can leverage

to inform and augment their human intelligence in clinical

practice?; (2) What challenges are likely to arise for MH

clinicians as they attempt to use these AI technologies in their

daily work?; and (3) What solutions can clinical leaders and

technology developers use to help address MH clinicians’ AI

implementation challenges?

Three categories of AI technologies that are of particular

interest to MH clinicians are automation technologies,

engagement technologies, and clinical decision support

technologies (8, 9). AI-based automation technologies allow

for the automation of healthcare management processes to

optimize healthcare delivery or reduce administrative cost,

often via computer vision and machine learning (ML) systems.

AI-based engagement technologies allow for engagement with

patients using natural language processing (NLP) chatbots

and intelligent agents. And AI-based clinical decision-making

support technologies allow for early detection and diagnosis

through extensive analysis of structured data, most often

using ML algorithms and neural networks. While we do

not cover all types of technologies in this paper, we provide

a framework for patients, clinicians, and stakeholders to

think about AI-augmentation in their practice (10). Table 1

illustrates key characteristics, applications, and potential

benefits of AI for MH clinicians in each of these three domains.

Table 2 details related challenges and solutions required for

pragmatic AI-augmentation.

AI-based automation technologies
for mental healthcare

Key technologies for AI-based
automation

AI-based automation technologies enable the automation of

structured or semi-structured tasks, often via computer vision,

ML, and NLP. They can perform a wider variety of tasks

than traditional automation technologies, such as recognizing

conversations and emotions, and therefore can automate or

semi-automate certain aspects of care, such as screening,

diagnosis, and treatment recommendations, or psychosocial

therapy. For example, computer vision in combination with

ML offers early autism screening by assessing the eye gaze

patterns of children while they watch a short movie on an

iPad (11). Platforms using NLP in combination with ML can

provide chatbot-based screening as well as assist with routine

or mundane tasks that clinicians dislike or are not reimbursed

for. For instance, AI-based automation technologies can

support measurement-based care by automatically collecting

and analyzing data pre-, during, and post-session, administering

digital surveys, and generating insights from a patient’s talking

patterns, tone, and word choice (12).

Potential benefits of AI-based automation

AI-based automation technologies facilitate the automation

of cognitive and physical tasks that are often repetitive and

cumbersome, thereby facilitating early screening, increasing

patient access, and improving clinician quality of work life.

For example, while measurement-based care is perceived

to advance MHC and make it more data-informed (13),

administering standardized assessments is a laborious task

that can be easily computerized. Digital screening tools for

autism, eating disorders, or other psychosocial concerns, can be

complementary to other assessment approaches and ultimately

increase the accuracy, exportability, accessibility, and scalability

of screening and intervention (14–16). More generally, these

technologies can be used to extend, rather than replace, the

skills and experience of frontline clinicians, so could help

address some of the acute workforce shortages in MHC

(17). This augmented AI methodology could also free up

staff time to focus on the human aspects of care. In a

blended-care approach, AI-driven chatbots, apps, and online

interventions can provide data on a person’s responsiveness

to them, and quickly identify cases where improvement

criteria are not met, prioritizing a higher level of care as

needed (18).
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TABLE 1 Key AI technologies, example applications in mental healthcare, and potential benefits.

Automation technologies Patient engagement

technologies

Clinical decision support

technologies

Key AI technologies • Computer vision

• Machine learning

• Natural language processing

• Conversational Agents

• Chatbots

• Machine learning

• Neural networks

• Deep learning

Example applications in

MH

• Screening for autism, eating disorders

• Administering digital surveys

• Generating insights from a patient’s

talking patterns, tone, word choice

• Coaching for smoking cessation,

exercise, nutrition

• Scripted CBT, MI, dialectical

behavioral therapy

• Depression and anxiety prediction

• Stroke prediction

• Suicide ideation prediction

Potential benefits • Increase early screening

• Increase patient access

• Improve clinician quality of work life

• Increase patient access

• Increase patient engagement

• Extend services provided by

organizations adopting a hybrid

therapy model

• Help clinicians identify mental

illnesses at an earlier stage when

interventions may be more effective

• Help clinicians customize treatments

based on a patient’s characteristics

AI-augmentation in MH

practice

• Automation technologies could assist

alleviate some of the severe staffing

shortages in mental healthcare by

extending rather than replacing the

knowledge and expertise of

human clinicians

• AI engagement tools could

complement the therapist’s

interventions in a blended therapy

model. To support skill practice

between sessions, for example, the

therapist could assign a specific GSH

component, extending therapy

beyond the meeting

• To increase clinicians’ readiness to

consider using AI tools to help

decision-making, there has to be

more openness about how algorithms

are developed, the data utilized for

their creation, and the engagement of

mental health practitioners and

service users in their evaluation

and improvement

AI, artificial intelligence; MH, mental health; GSH, guided self-help.

TABLE 2 Challenges and potential solutions related to pragmatic AI-augmentation.

Automation technologies Patient engagement technologies Clinical decision support

technologies

Potential challenges

• Work practices • Automation complacency • Required workflow changes • Lack of interpretability of

AI recommendations

• Beliefs and identity • Fear of obsolescence • Fear of negative impact on

clinician-patient therapeutic alliance

• Concerns about model accuracy and bias

• Lack of evidence-based evaluation studies

• Tasks and roles • Clinician-AI task allocation • Concerns about patient overreliance

on technology

• Clinician surveillance concerns

Potential solutions

• Work practices • Provide proactive risk assessment

• Expose clinicians to potential

automation failures

• Engage clinicians in iterative technology

development and implementation process

• Train clinicians in computational thinking

• Use explainable AI (XAI) techniques

• Beliefs and identity • Provide more accurate portrayals of

capabilities of AI technologies

• Discuss potential risks related to the

patient becoming too emotionally attached

• Use human-in-the-loop development

• Evaluate efficacy vs. current models

• Tasks and roles • Add organizational structures and roles to

govern AI projects

• Automate detection of threat, and provide

recommended action

• Configure AI technologies so that

predictions do not infringe upon

clinicians’ core tasks

AI, artificial intelligence.
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Potential challenges of AI-based
automation

With these new potential benefits come new potential

challenges. First, regarding clinician daily work practices, these

technologies raise the potential for automation complacency.

This can occur, for example with an “auto-complete” function

for drug names after entering the first few letters. Because

clinicians are faced with complex tasks, multitasking, heavier

workloads, and increasing time pressures, they may choose

the route requiring the least amount of cognitive effort, which

may lead to them letting technology direct their path (19).

Additionally, clinicians may overestimate the performance of

these technologies because they believe that technology has

better analytical capabilities than humans, and they might put

less effort or responsibility into carrying out a task (20).

Second, regarding beliefs and identities, narratives

surrounding AI (21) might influence how frontline clinicians

perceive and approach the technology. Because AI-based

automation enables the automation of well-defined cognitive

tasks that can be captured by sets of patterns and rules, this may

lead to clinician concerns about obsolescence. Clinicians may

worry that AI will replace the need for their expert work (9, 22).

Third, regarding new tasks, clinicians may be concerned

about task allocation between clinicians and AI technologies.

They may wonder how the delegation of tasks among

interdependent humans and machines should be determined

(23). This uncertainty may, in turn, undermine confidence and

prevent the widespread use of these technologies.

Potential solutions for AI-based
automation

Regarding potential automation complacency, this issue

is not unique to AI technologies, and has been handled

effectively in healthcare settings using two strategies. First,

before implementing new technology, clinical leaders can first

undertake a proactive risk assessment to identify any unexpected

vulnerabilities and remediate them (24). Second, leaders can

allow clinicians to experience automation failures during

training, such as technology failure to issue an important alert

or “auto-fill” errors, to encourage critical thinking when using

automated systems, and increase the likelihood of recognizing

these failures during daily work (25).

Regarding fear of obsolescence, although in the popular

imagination software often takes on mythic qualities of near-

omnipotence (26), AI will likely augment the importance of

human judgement and knowledge (27–29). Clinical leaders

could highlight the essential role played by humans at each phase

of the development and implementation of an AI technology

(30). For example, leaders could note that radiologists may

relinquish the preliminary scanning of medical images to the

AI technology in order to focus on the more complicated

cases, or those that the algorithm finds ambiguous (31);

technology developers can include feedback during screening

that recommends reaching out for in-person evaluation to verify

the clinical recommendation (32).

Regarding concerns about task allocation, the design

of AI systems—like the design of other sociotechnical

systems—involves decisions about how to integrate augmented

intelligence and delegate sub-tasks among humans and non-

humans. Clinical leaders at healthcare organizations using

AI have put in place a wide range of internal organizational

structures and roles to manage and govern AI projects (33).

Governance committees should offer a balanced view of

challenges and opportunities associated with implementing AI

technologies (34).

AI-enabled engagement
technologies for mental healthcare

Key technologies for AI-enabled
engagement

AI-enabled voice-and text-based engagement technologies

allow for patient engagement, ranging from the handling of

repetitive patient queries to the undertaking of more complex

tasks that involve greater interaction, conversation, reasoning,

prediction, accuracy, and emotional display. Conversational

agents (CAs) such as chatbots use NLP, speech recognition,

and synthesis technologies to conduct limited text conversations

with human users. Intelligent virtual agents (IVAs) add

more realism to conversational emulation through computer-

generated, artificially intelligent virtual characters.

IVAs and CAs have been used as coaches to support

behavior change such as smoking cessation, starting exercise

programs, nutrition, and to provide limited treatment functions,

such as elements of cognitive behavioral therapy (CBT),

dialectical behavior therapy, or motivational interviewing, in

areas where highly scripted protocols are applicable (35). For

instance, Woebot is a conversational agent designed to help

reduce depression and anxiety. It provides CBT tools, learning

materials, and videos as well to guide users through “self-

directed” therapy (36). Further, digital guided self-help (GSH)

programs can improve access to evidence-based therapy and

offer patients standardized interventions (37).

Potential benefits of AI-enabled
engagement

While these technologies cannot function at the level of an

experienced, empathic human clinician, they may play a special
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role in MHC prevention and intervention, both supportive of

and distinct from the functions of human healthcare providers.

AI-enabled engagement technologies have the potential to

increase patient access because they offer 24/7 availability in

remote areas where access to MH professionals may be limited

(38). They can also increase the dissemination of evidence-

based practices. For instance, “Elizabeth,” a virtual nurse, assists

patients in understanding information about hospital discharge,

such as follow-up care and prescription needs (38). AI can

also identify program participants’ disengagement and alert the

assigned casemanager or clinician, using hundreds of datapoints

that humans do not always have access to or cannot process in a

timely manner (39).

In addition, these technologies may provide between-session

support through facilitating homework and skills practice. In

a blended therapy model, AI tools for engagement augment

clinicians’ interventions. Similarly, AI-augmented engagement

can extend the services provided by organizations adopting

a hybrid therapy model—integrating both in-person and

technology-based modalities (40). For instance, clinicians can

assign a specific GSHmodule, thereby extending therapy beyond

the meeting (37). Further, a study on the use of CAs in inner

city outpatient clinics found that patients with chronic pain and

depression who interacted with a CA reported a high degree of

compliance with the CA’s recommendations for stress reduction

and healthy eating (37).

Potential challenges of AI-enabled
engagement

Just as AI-enabled engagement technologies may afford

new benefits for MH clinicians, so they may raise a new

set of new challenges. First, regarding clinician daily work

practices, these technologies will require workflow changes that

enable clinicians to collaborate with chatbots and patients,

and there are no codified practices that clinicians can use to

implement chatbots in a way that meets patients’ needs, goals,

and lifestyles while facilitating trust in AI to improve MH

outcomes (41).

Second, regarding beliefs and identities associated with AI-

Enabled Engagement, recent research on CAs and GSH have

found that program participants report forming some sort

of a therapeutic alliance with automated MH platforms. For

instance, the users of a smoking cessation chatbot reported that

their perceived therapeutic alliance with the chatbot increased

over time (42). Patients forming a relationship with the chatbot

may lead to clinician concerns about a negative impact on

the therapeutic alliance between clinicians and patients (43).

Further, the literature has noted that the therapeutic alliance

with a human being and with a therapist may be distinct

concepts that need to be assessed using different tools (44).

Third, regarding concerns about task allocation, clinicians

may be concerned that their patients may assume that the

technology is adequately addressing their MH needs, and may

over-rely on technology (7). Additionally, there is a potential

risk of harm to patients if a system is unable to appropriately

address circumstances in which a user needs rapid crisis

care or if other safety-related action is necessary (43). Risk

assessment is complicated enough for providers; if we delegate

it entirely to machines, patients’ unique circumstances may be

overlooked (45–47).

Potential solutions for AI-enabled
engagement

Regarding workflow changes required by AI-enabled

engagement technologies, research on AI technology

implementation in other healthcare domains has shown

that clinical leaders can facilitate the creation of new workflows

by supporting an iterative process between AI technology’s

developers and clinicians—through which both the clinicians’

daily activities and the technology itself are transformed (48).

Regarding a potential negative impact on the therapeutic

alliance, clinical leaders could encourage the responsible party to

discuss with the patient any potential risks related to the patient

relying on the agent more than on human caregiver or clinician.

Technology developers could design the technology to detect if

the user is becoming too emotionally dependent, broach this

topic with them, and discuss possible risks (7).

Third, regarding clinician concerns about task allocation,

technology developers should include an explicit message to the

patient outlining circumstances under which patients should

seek clinician help. There is a need for blending AI insights with

clinician-led engagement to incorporate the nuances, risk, and

support resources an individual has. Developers could design

agents to identify types of risks and take appropriate action, such

as detecting suicide risk and immediately directing the patient to

contact a suicide prevention hotline, a clinician, or caregiver (7).

AI-enabled decision support
technologies for mental healthcare

Key technologies for AI-enabled decision
support

AI-enabled decision support technologies use ML

algorithms to make predictions based on past data. New

large-scale advances, such as deep or reinforcement learning

(49, 50), have enabled AI to make inroads into much more

complex decision-making settings, including those that involve

audio and speech recognition. These improved decision-making

processes stem from big datasets now available in healthcare,
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that are enhanced by computational analyses (51). For example,

supervised ML has been shown to predict attention-deficit and

hyperactivity disorder (ADHD), autism, schizophrenia, and

Tourette syndrome and suicidal ideation. ML-based models

have been shown to more accurately predict the severity of

depression or anxiety (52), and stroke (53) and allow clinicians

to identify which interventions will be most effective for which

patient populations.

Potential benefits of AI-enabled decision
support

AI-enabled decision support technologies can enable

clinicians to detect mental illnesses at an earlier stage when

interventions may be more effective, and offer customized

treatments (1). These technologies, as opposed to clinicians who

are human, never grow weary, can integrate new knowledge

into their models, and can process large datasets in a matter

of minutes. However, algorithms do not have the empathy and

capacity for nuance of a human being. Therefore, platforms that

integrate data from multiple resources such as assessments, the

treatment alliance, content from treatment sessions, and the

patient’s perception of therapy, are poised to augment, rather

than replace, clinician decision making (54).

Potential challenges of AI-enabled
decision support

With these new potential benefits comes a set of new

challenges. First, regarding clinician daily work practices, ML

model outputs are often complex and uninterpretable to

humans—the so called ‘black box’ problem. The precise reason

for an ML model’s recommendation often cannot be easily

pinpointed, even by data scientists (31). In addition, technology-

based approaches are pattern-based, while traditional research

methods are hypothesis-driven, and most clinicians do not have

the training required to engage in the computational thinking

associated with these interpretations (17, 37).

Second, regarding beliefs and identities, clinicians may not

trust that ML-based algorithms yield accurate predictions and

that recommendations can be integrated into clinical practice

securely and efficiently for the benefit of patients. There is

currently a low quality and quantity of evaluated evidence-based

studies for these technologies (55). In the healthcare context,

lives may depend on assuring that model predictions not only

are accurate in the original context, but also function robustly in

other contexts, and that the results of predictive models are not

biased (17).

Third, regarding concerns about task allocation, AI

decision-support tools are by their nature prescriptive in that

they recommend actions for the clinician to take. Clinicians may

be concerned that the availability of AI-enabled decision support

technologies may allow others from outside their domain to

attempt to scrutinize and dictate frontline clinicians’ diagnosis

and treatment decisions (56).

Fourth, most studies on AI-augmentation for personalizing

therapy have been carried out on clients with depression and

anxiety (57). AI-based clinical decision-support technologies

have been understudied in severe mental illnesses (SMI),

including schizophrenia, bipolar disorder, severe depressive

disorder and psychotic disorders (58).

Potential solutions for AI-enabled
decision support

To address the black box problem and misperceptions of

MLmodels, clinicians should be informed about the advantages,

limitations, and risks of AI-based systems. Such knowledge and

abilities are required so that clinicians feel confident in using

AI and communicating the results effectively with patients and

carers. The more technology developers incorporate explainable

Artificial Intelligence (XAI), i.e., explanatory techniques that

clearly state why the AI has made a specific suggestion, the

more they can increase the credibility, accountability, and trust

in AI in mission-critical fields like MHC (59). Developers

should also consider the audience when determining what

explanations to provide; for example, clinicians may be most

interested in explanations that make the model’s functioning

easy to understand, and in those that help them trust the model

itself (60).

Second, regarding therapists’ concerns about how AI-

enabled decision support technologies can be incorporated

effectively and safely into clinical practice, developers need

to foster greater involvement of MH providers and service

users in AI models evaluation and refinement. Developers

can use a human-in-the-loop approach to data collection and

model creation that enlists MH practitioners in all stages

of development and use (61). There also needs to be more

separation between studies that measure degree of use of AI

technologies, and those that evaluate the efficacy of these

technologies; in order to gain the trust and understanding

of clinicians, developers need to demonstrate that these

technologies work better than existing service delivery (17,

62). For example, in the case of stroke risk prediction and

prevention, this means that novel ML-based approaches need

to compete against established models to win clinicians’ and

patients’ trust (53).

Third, regarding task allocation, research on AI technology

implementation in other healthcare domains has shown that

clinician concerns regarding autonomy and surveillance can

be addressed by clinical leaders facilitating greater clinician
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involvement in developing these technologies and by developers

configuring the AI tools so that their predictions do not

infringe upon clinicians’ core tasks, but instead assist them with

important tasks less valued by the clinicians such as monitoring

the completion of follow-up items (56).

Fourth, in regard to the claim that AI-based decision

support tools should be expanded to SMI, since these conditions

may be relatively complicated to diagnose, we suggest that

efforts to develop technologies for AI decision support adopt

human-in-the-loop methods to develop, assess, refine, and

test the tools before they are deployed in practice. In

addition, technology developers should give more attention

to the impacts of using these tools to tailor and personalize

treatment (58).

Conclusion

While much has been written about the potential for

AI technologies to transform the delivery of MHC, the

predominant focus to date has been on the technical,

ethical, and regulatory challenges associated with these

technologies. What is missing is a pragmatic approach to AI-

augmentation that outlines challenges and potential solutions

related to the incorporation of AI-based technologies into

clinicians’ everyday work. Such an approach can help frontline

clinicians use AI-based technologies to transform how MH

is understood, accessed, treated, and integrated, as clinicians

make decisions, day in and day out, to care for their patients

in need.
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