
fpsyt-13-990405 September 27, 2022 Time: 16:57 # 1

TYPE Review
PUBLISHED 03 October 2022
DOI 10.3389/fpsyt.2022.990405

OPEN ACCESS

EDITED BY

Dino Luethi,
University Hospital of Basel,
Switzerland

REVIEWED BY

Jolanta B. Zawilska,
Medical University of Łódź, Poland
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The utility of classical drugs used to treat psychiatric disorders (e.g.,

antidepressants, anxiolytics) is often limited by issues of lack of efficacy,

delayed onset of action or side effects. Psychoactive substances have

a long history of being used as tools to alter consciousness and as a

gateway to approach the unknown and the divinities. These substances were

initially obtained from plants and animals and more recently by chemical

synthesis, and its consumption evolved toward a more recreational use,

leading to drug abuse-related disorders, trafficking, and subsequent banning

by the authorities. However, these substances, by modulation of certain

neurochemical pathways, have been proven to have a beneficial effect

on some psychiatric disorders. This evidence obtained under medically

controlled conditions and often associated with psychotherapy, makes these

substances an alternative to conventional medicines, to which in many cases

the patient does not respond properly. Such disorders include post-traumatic

stress disease and treatment-resistant depression, for which classical drugs

such as MDMA, ketamine, psilocybin and LSD, among others, have already

been clinically tested, reporting successful outcomes. The irruption of new

psychoactive substances (NPS), especially during the last decade and despite

their recreational and illicit uses, has enlarged the library of substances

with potential utility on these disorders. In fact, many of them were

synthetized with therapeutic purposes and were withdrawn for concrete

reasons (e.g., adverse effects, improper pharmacological profile). In this review
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we focus on the basis, existing evidence and possible use of synthetic

cathinones and psychedelics (specially tryptamines) for the treatment of

mental illnesses and the properties that should be found in NPS to obtain new

therapeutic compounds.

KEYWORDS

antidepressant (AD), cathinone, LSD, MDMA, NPS, psychedelics, psilocybin,
tryptamine

Introduction

Psychiatric disorders are very prevalent medical conditions
nowadays. These constitute a public health concern as they
often lead to disability, with a high associated sanitary cost.
Among these disorders, it is estimated that between 1.0
and 16.9% of the world population suffer from depression
(1) and around 3.8–25% have anxiety (2). The number of
incident cases of depression worldwide increased by 49.9%
from 1990 to 2017 (3) and it is also a major risk factor
for suicide. Although there are several clinically tested and
authorized medicines and protocols to treat these illnesses,
about 50% of patients suffering from major depressive
disorder receiving treatment fail to respond (4). When
patients fail to respond to two or more antidepressants,
it is considered that they suffer from treatment-resistant
depression (5).

In addition, patients who respond to classic antidepressant
treatment suffer from undesirable and frequent side effects,
and many discontinue treatment (6). Furthermore, due to
their late-onset clinical effect (7), these medications are not an
ideal treatment for certain cases of anxiety and depression, so
alternative treatments are highly sought after. Moreover, from
the beginning of this century, fear-related disorders such post-
traumatic stress disorder (PTSD) and specific phobias have also
raised their prevalence. These disorders are also accompanied
by a decrease in quality of life and by severe depression and
anxiety (8, 9).

Psychedelic substances have been used for millennia
since the dawn of humanity for magic-religious rituals to
communicate with divinities, the spiritual world of the deceased
and to obtain knowledge and healing (10). These substances
were consumed from vegetal and animal preparations. Classical
examples of these drugs are ayahuasca, peyote and magic
mushrooms. Psychedelic effects include an altered state of
consciousness characterized by distortions of perception,
hallucinations, visions, dissolution of self -boundaries and “the
experience of union with the world” (11). During the 20th
century, the advances in chemistry led to the isolation and
structural elucidation of the active molecules of these natural
drugs and to the synthesis of a great number of analogs. Such

structures included tryptamines (N,N-dimethyltryptamine
(DMT), 5-methoxy-N,N-dimethyltryptamine (5-MeO-
DMT), psilocybin) and indole alkylamines (e.g., lysergic
acid diethylamide, LSD). On the other hand, a great number
of amphetamine derivatives was synthetized due to their
vasomotor, psychostimulant, and anorectic effects, from
which we highlight 3,4-methylenedioxymethamphetamine
(MDMA) (see Figure 1 for representative chemical
structures).

Many of these substances, such as LSD, were tested
for possible medical uses during the 1950s and 1960s,
demonstrating that they could be used to treat anxiety and
depression (12). However, as some of them spread into the illicit
recreational market, the Food and Drug Administration (FDA)
banned any pharmacological research into them in 1970 by
classifying these substances in Schedule I, the most restrictive
category of drugs (13). Similarly, for MDMA, uncontrolled
published reports suggested that, when administered in
conjunction with psychotherapy, it could provide substantial
benefits for those afflicted with a variety of mental disorders
and so was used in the United States from 1977 to 1985,
when it became scheduled under the Controlled Substances Act
(CSA) (14).

However, the need of alternatives to clinical drugs and
based on such previous evidence fueled efforts to re-take clinical
studies with these scheduled substances, although most of
them were denied regulatory approval. Thus, clinical trials with
MDMA and several psychedelics such as LSD, psilocybin and
DMT on depression, anxiety and PTSD have been carried out
with promising results, even in treatment-resistant cases (15,
16). Such studies demonstrate the psychotherapeutic utility of
these compounds and encourage to carry on with these studies
but, as it also happens with clinically approved medicines,
these drugs may have side effects, contraindications and some
non-optimal pharmaceutical properties that claim for the
search of alternatives which, retaining the therapeutic activity,
overcome these issues.

Consequently, several associations raised to promote
the research on the clinical use of psychedelic drugs to
enlarge the therapeutic arsenal to treat several mood
disorders. These include the Multidisciplinary Association
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FIGURE 1

Chemical structures of representative substances cited in this review. Amph. Deriv., amphetamine derivatives.

for Psychedelic Studies (MAPS),1 a non-profit organization
that was founded in 1986 to increase the knowledge base of
psychedelic substances; the Heffter Research Institute, a non-
profit organization founded in 1993 that promotes research
with classic hallucinogens and psychedelics, predominantly
psilocybin; and the Beckley Foundation, which promotes the
use of psilocybin for depression and LSD for pain.

The irruption of new psychoactive substances (NPS),
especially during the last decade and despite their recreational
and illicit uses, has enlarged the library of substances with
potential utility on these disorders. In fact, many of them
were initially synthetized with therapeutical purposes and were
withdrawn for concrete reasons that did not make these
substances appropriate for the purposed medical use (e.g.,
adverse effects, improper pharmacological profile, etc.). NPS
include a range of chemical structures which intend to act
as replacements to classical banned substances (e.g., cocaine,
MDMA, LSD, cannabis, opioids, etc.), so that they can be
initially freely sold in presentations “not intended for human
use” such as bath salts, plant food, incense, research chemicals,
etc. (17). Moreover, as they are classified and banned, they
are replaced by a new generation of non-controlled molecules
enlarging the library of compounds that might, under a clinical

1 https://maps.org/

setting, be used in therapeutics. The possibilities of therapeutic
uses of synthetic cathinones and synthetic cannabinoids have
been cited and summarized in a recent review (18), which also
warns about the undesirable effects of these substances, which
may preclude such therapeutic uses.

In this review we will focus in two groups of NPS, namely
synthetic cathinones and psychedelics, as they share at least
part of their mechanism of action with psychotherapeutic drugs
(e.g., antidepressants) and may provide additional actions that
contribute to the therapeutic effect. In fact, there is already
evidence of clinical trials with some of these substances. We
will discuss the pharmacodynamic requirements, review the
previous evidence and the properties expected in a new drug to
become useful in therapeutics of mood disorders.

Mechanisms of action involved in
the antidepressant effect

Monoamine enhancers

Nowadays, depression and several anxiety disorders are
usually treated with antidepressants (AD) (see Figure 1 for
representative chemical structures). These include from classical
tricyclic antidepressants (TCAs, e.g., amitriptyline) to the more
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recent selective serotonin (5-HT) reuptake inhibitors (SSRIs,
e.g., fluoxetine, paroxetine, sertraline, escitalopram. . .) and
atypical antidepressants which combine several mechanisms of
action including inhibition of some monoamine transporter/s
plus effects on concrete receptors such as histaminergic or
serotonergic (e.g., trazodone, mianserin, mirtazapine, etc.)
(19–22).

The main mechanism of action of these drugs is the
enhancement of monoamine neurotransmission in the CNS,
mainly of norepinephrine (NE), 5-HT and dopamine (DA),
by interacting with presynaptic transporters and inhibiting
their reuptake, thus restoring the hypothetically reduced
neurotransmitter levels in certain brain areas (7). The increased
neurotransmitter levels result in activation of receptors whose
signaling pathways contribute to the antidepressant effect. As
their name indicates, SSRIs, currently the most used AD,
possess much higher selectivity for the 5-HT transporter
(SERT) than for the transporters of norepinephrine (NET) and
dopamine (DAT), and were developed after the serotonergic
theory of depression postulated by Lapin and Oxenkrug
(23) which suggests that serotonergic pathways play a major
role in depression.

Not devoid but with milder adverse effects than TCAs,
SSRIs rapidly reached a prevalent place in the treatment
of mood disorders, although they can interfere with libido
and appetite, cause vomiting and produce nausea, irritability,
anxiety, insomnia and headaches. Also, and to a lesser extent,
they can induce tremor, agitation, spasms and tics (20).

However, some facts suggest that the mechanism of action
responsible for the antidepressant effect of SSRIs goes beyond
the mere inhibition of 5-HT uptake and activation of 5-HT
receptors (24). For example, it takes at least from 2 to 4 weeks
for these drugs to exert an antidepressant effect, whereas the
increased synaptic levels of monoamines are detected briefly
after starting the treatment, suggesting that some adaptive
changes must occur to achieve the desired effect. In addition, the
acute depletion of tryptophan, the precursor of 5-HT, leading to
a decrease in the brain levels of this neurotransmitter, does not
induce a depressive behavior in healthy humans (25).

Still regarding the monoaminergic hypothesis, more
recently DA was also reported to be implicated in the
pathophysiology of depression and therefore suggested that
DA uptake inhibition and dopaminergic neurotransmission
potentiation may also be useful to achieve the antidepressant
effect (26). In fact, the increased 5-HT2C receptors activation
favored by SSRIs can reduce the mean firing rate of the ventral
tegmental area (VTA) neurons, leading to a decrease in DA that
might account for reduced response to SSRIs (27, 28).

For this reason, triple reuptake inhibitors (TRI)
combining enhancing properties for all the three monoamine
neurotransmitters (5-HT, NE, and DA) have been postulated
as good candidates to antidepressant drugs [see ref. (29) for
a review] because, in addition to its broader target spectrum,

some effects could compensate and attenuate side effects
of selective reuptake inhibitors. For example, SSRIs induce
hyperprolactinemia due to 5-HT-induced increase in prolactin
(PRL) release causing sexual dysfunction, and this effect would
be mitigated by increased DA (29). This would also explain
the effects of monoamine oxidase (MAO) inhibitors, which
potentiate monoamines inhibiting their metabolic degradation.
This is the case of moclobemide, a MAO-A inhibitor which
exerts antidepressant effects with lower sexual side effects than
SSRIs (30). Unfortunately, the current clinical use of MAO
inhibitors has considerably decreased because of safety concerns
about the hypertensive reaction which can occur if tyramine-
containing food (e.g., cheese) is eaten. Also, MAO inhibitors
interact with other drugs which potentiate monoamines such
as 5-HT reuptake inhibitors, TCAs and even opioid analgesics;
or with adrenergic decongestants, leading to conditions such
as serotonergic syndrome or hypertension (31). Moreover,
MAO inhibitors are not promoted by major pharmaceutical
companies and their clinical use is progressively disappearing
as a content of medical residents training.

When designing TRIs, it is important to obtain an optimal
relative inhibition of SERT, NET and DAT to avoid main
side effects such as hypertension (high NET inhibition) or
motor stimulation and stereotypies as well as abuse liability
(excessive DAT blockade). For this reason, it has been suggested
that an ideal TRI should have an in vivo ability to occupy a
fraction of the population of monoamine transporters of SERT
(≥80%) > NET (50–70%) > DAT (≤30%) (29), with a slow
onset of DAT occupancy and slow clearance from brain to
reduce abuse potential. According to these premises, numerous
laboratories synthesized candidate compounds but, to date,
none has reached the clinical market yet.

Additional mechanisms

The discovery in the 1990s decade that antagonism at
the NMDA glutamate receptors was capable of inducing
antidepressant-like effects in mice exposed to the forced swim
test (32) suggested that glutamatergic pathways may also play a
role in depression. In fact, it is hypothesized that the pathology
of major depression is associated with maladaptive activity of the
intrinsic circuitry of the medial PFC (mPFC) and limbic system,
where neurons predominately release glutamate and GABA
rather than monoamines (33). Moreover, it was demonstrated
that treatment with classical monoaminergic antidepressant
drugs also induced adaptive changes on NMDA receptors
and in brain areas important to mood control (34). This
underpinned the involvement of a glutamatergic mechanism in
the neurobiology of depression.

Accordingly, Berman et al. (35) published, at the beginning
of 2000, a study showing that ketamine, a drug that was well
known as a NMDA receptor antagonist, was able to induce
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fast (within hours) and lasting (up to 3 days) antidepressant
effects with only one low dose. Since then, numerous clinical
trials investigating the antidepressant effects of ketamine have
been carried out (36) and some are still ongoing (37–39). The
blockade of NMDA receptors by ketamine favors a series of
events that are thought to be responsible for its antidepressant
effect [see ref. (22) for a review], namely the reduced production
of nitric oxide (NO), the increased presynaptic release of
glutamate due to the decreased GABAergic inhibition, and
the resulting increased activation of AMPA receptors with the
subsequent activation of downstream pathways. The reduction
of NO levels in CNS itself has been related with antidepressant
effects as it can modulate the release of neurotransmitters and
affect neuronal plasticity (40, 41). In addition, activation of
AMPA receptors results in increased release of 5-HT which,
activating postsynaptic receptors (especially 5-HT1A) in cortical
regions, contributes to the antidepressant effect (42, 43), as it will
be further developed below.

The increased AMPA receptor activation stimulates
phosphatidylinositide 3-kinase (PI3K)/AKT–molecular target
of rapamycin (mTOR) pathway both directly (through a
calcium-dependent activation of kinases MEK/ERK and PI3K–
AKT) and indirectly after inducing the opening of L-type
voltage dependent calcium channels. This latter mechanism
increases the release of brain-derived neurotrophic factor
(BDNF) that activates the tyrosine kinase B (TrkB) receptors
(44, 45) which, in turn, activate the PI3K–AKT-mTOR pathway,
leading to increased neuroplasticity and neuronal survival.
Neuroplasticity is, thus, essential for the antidepressant effect
because inhibition of mTOR prevents the antidepressant
effects of NMDA antagonists (46). In line with these findings,
the neuroplasticity hypothesis of depression was developed
(47). The ability of a drug to induce neuroplastic changes
will therefore be a valuable property for a candidate to
antidepressant drug, as will be discussed below. More recently
(48) it has been demonstrated that antidepressant drugs can
also directly bind to TrkB receptor dimers and stabilize the
active conformation, thus enhancing neurogenesis.

Moreover, the inhibition of the glycogen synthase kinase-
3β (GSK-3β) effects by drugs as ketamine or lithium, resulting
in disinhibition of mTOR and reduced AMPA receptor
internalization, is an additional mechanism which contributes
to the antidepressant effect (49).

Several findings corroborate the role of neurogenesis in
the pathophysiology of depression. For example, chronic stress
impairs neurogenesis in rodents and humans, which improves
after treatment with antidepressants for 2–3 weeks, a time
matching their therapeutic latency (50–52). Antidepressants
have been found to induce hippocampal neurogenesis and
neuroplasticity in cellular and animal models of depression and
improve the related behavior (52).

More recently, the ceramide pathway has also been
suggested to be involved in depression (53, 54). Ceramide

is formed from the membrane lipid sphingomyelin, after
cleavage by acid sphingomyelinase (ASM). Ceramide and other
bioactive sphingolipids have been found to act as signaling
molecules in several cellular processes such as cell growth,
death, inflammation, migration, adhesion and angiogenesis.
Concretely, ceramide can be a cell death activator (55). The
ASM/ceramide system can be activated by reactive oxygen
species (ROS) and reactive nitrogen species (RNS) which,
in the context of depression, are generated by endogenous
sources, such as proinflammatory cytokines (e.g., IL-1, IL-6,
TNFα) (56). Antidepressants such as desipramine, amitriptyline,
fluoxetine, paroxetine, fluvoxamine or sertraline, among others,
have been found to functionally inhibit ASM and, thus, the
ceramide pathway. These drugs have in common to be lipophilic
weak organic bases, with relatively low molecular weight,
which can cross the plasma membrane and accumulate in
lysosomes after being protonated. Consequently, they disturb
the binding of ASM to the inner lysosomal membrane so
that it is released to the cytoplasm, where it is inactivated
by proteolysis (57). Moreover, reduction of ceramides in the
hippocampus normalizes neurogenesis and behavior in mouse
models of stress-induced depression (58). The reduction in
ceramides is followed by a slow increase in sphingomyelin,
which favors an increase in autophagy, which is also related with
an improvement of depressive behavior (59, 60).

There is also a link between the effect of antidepressants on
the ceramide pathway and the direct TrkB receptor activation.
The dimerization of TrkB is enhanced by cholesterol and recent
findings suggest that it is needed for the antidepressants to
bind this receptor and stabilize the active conformation (59,
60). The cholesterol molecules in plasma membrane (near the
TrkB receptor) can be displaced by ceramide, so the reduction of
ceramide levels induced by antidepressants preserves membrane
cholesterol, facilitating TrkB dimerization and further binding
and potentiation by these drugs.

Overall, the studies on ketamine have brought new
knowledge to understanding the neurobiology of depression
and targets for new treatments. Some of the pharmacodynamic
effects that this drug exerts can also be elicited by other
drugs that recently have been proven to be effective in the
treatment of psychiatric disorders (e.g., psychedelics), thus
underpinning the role of these mechanisms. Ketamine and
its FDA-approved enantiomer, esketamine, have demonstrated
their efficacy and are usually well tolerated at the doses used
as antidepressant. Although there may be some concerns about
the appearance of psychotomimetic effects and other adverse
reactions, these have been described only in a low percentage
of patients or with very high doses that are administered for
prolonged periods (61, 62). Therefore, these findings provide
valuable information to consider in the development of new and
improved antidepressant drugs (42, 43, 61).

Finally, another interesting point is that current evidence
shows two ways to use drugs in the treatment of psychiatric
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disorders, namely administered as daily medication (e.g., classic
antidepressants) or acutely as one or few doses accompanied
by psychotherapy. Thanks to their underlying mechanisms of
action, these drugs may help with neurocircuitry rewiring while
modulating several neurochemical pathways. This could also
assist with addressing negative emotional processing, which is
characteristic of these conditions (62).

3,4-Methylenedioxy
methamphetamine

Although it cannot strictly be considered an NPS, MDMA
is one of the most representative examples of the use of a
recreational illicit substance for therapeutic purposes. Although
it had been synthesized by the pharmaceutical company
Merck in 1912, MDMA never got officially to be tested
as a therapeutical drug (63). In 1978, Alexander Shulgin, a
Californian chemist, synthesized and tested the drug, being
the first to describe that MDMA was a psychoactive drug in
humans. MDMA induces changes in mood, lowering emotional
defensiveness and increasing the ability to open to others,
breaking boundaries in communication and increasing empathy
and self-acceptance without producing marked hallucinogenic
effects (64, 65). Therefore, it is not a “classic” psychedelic
drug, but an “entactogen,” producing a gentler and easily
tolerated state compared to LSD. Then MDMA was rescued and
adopted by many underground therapists during the remaining
1970s and 1980s as an adjuvant of psychotherapy, reporting
beneficial effects (66–68). Unfortunately, the enormous success
that MDMA (also known as “ecstasy” and “Molly” in the street
market) reached as a recreational drug due to its euphoric, pro-
social and empathetic effects, led to its progressive placement
in the most restrictive category of controlled substances
worldwide. In spite of this, MDMA became one of the most
widespread illegal drugs in the dance-club and rave party’s
scenes, especially during the late 1980s and along 1990s, with
numerous intoxication case reports and even some fatalities
attributed to its consumption (69, 70).

However, after its scheduling and due to the previous
evidence about its utility in psychotherapy, placebo-controlled
studies conducted from the beginning of the 2000s provided
preliminary safety and efficacy data on the use of MDMA in
assisting psychotherapy for treatment-resistant PTSD (71–75).
Later, phase 3 trials have been carried out to confirm the efficacy
and safety to establish MDMA as a prescription medicine for
the use in psychotherapy for PTSD (16). Approval could come
as early as by the end of 2023.

In this phase 3 trial (16), patients with PTSD were subjected
to three 8 h-experimental sessions of manualized psychotherapy
spaced approximately 4 weeks, in which they received 80 mg
MDMA orally, plus 40 mg after 1.5–2.5 h in the first session

and 120 mg plus 60 mg in the second and third sessions.
The comparison group received a placebo instead of MDMA,
combined with the same psychotherapy. Each experimental
session was followed by three 90-min integration sessions
that were spaced ∼1 week apart to allow the participant to
understand and incorporate their experience.

The patients were monitored for several vital constants
(e.g., blood pressure, heart rate, body temperature, etc.) during
the development of the sessions and, in general, systemic
effects of MDMA were mild (transient systolic and diastolic
blood pressure and heart rate, some reported muscle tightness,
decreased appetite, nausea, hyperhidrosis, feeling cold. . .).
Interestingly, no increase in adverse events related to suicidality
was observed in the MDMA group.

The results demonstrate that these three doses of MDMA
given in conjunction with manualized psychotherapy over the
course of 18 weeks results in a significant and robust attenuation
of PTSD symptoms and functional impairment, and that this
attenuation is higher than in the placebo group. Moreover,
the benefits seem to be bigger than the FDA-approved first-
line pharmacotherapies sertraline and paroxetine, which have
both exhibited smaller effect sizes in pivotal studies (76) and to
whose many patients fail to respond. Long term assessments are
warranted to evaluate the duration of the outcome.

MDMA is hypothesized to support and enhance
psychotherapy by facilitating the ability of the subject to access
emotionally upsetting material, modulating the associated level
of arousal, and strengthening the therapeutic alliance (77).
It has been suggested that “MDMA may catalyze therapeutic
processing by allowing patients to stay emotionally engaged
while revisiting traumatic experiences without becoming
overwhelmed” (16).

MDMA possesses a unique combination of pharmacological
properties that contribute to its overall psychotherapeutic effects
[see ref. (78) for a review]. It is not the only monoamine
releaser with particularly prominent effects on serotonin, but
it also increases dopamine and noradrenaline and elevates
serum oxytocin through activation of hypothalamic 5-HT1A

receptors (79, 80). Oxytocin is a neuropeptide believed to
play a role in affiliation and bonding in mammals. However,
the contribution of such increase in the entactogenic effect
of MDMA is still a matter of controversy (78, 81). Mithoefer
et al. (75) mentioned that MDMA may reopen an oxytocin-
dependent critical period of neuroplasticity that typically closes
after adolescence, thus facilitating the processing and release
of particularly intractable, potentially developmental, fear-
related memories. This, combined with therapy, may produce
a “window of tolerance,” in which participants are able to revisit
and process traumatic content without becoming overwhelmed
or encumbered by hyperarousal and dissociative symptoms.
Brain imaging studies found that activity in the amygdala,
the brain structure that acquires and stores fearful memories
(81), is reduced after MDMA administration, and shows
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changes in the response to angry and happy facial expressions
(83, 84).

Also, cortisol concentrations significantly increase by 100–
150% from baseline levels with MDMA ingestions of 0.5 and
2.5 mg/kg of body weight in the absence of physical exertion
(85). These increased concentrations have been suggested to
contribute to the fear extinction process when combined with
psychotherapy (86).

Moreover, MDMA has also been demonstrated to induce
neuroplasticity in rats across the corticolimbic circuitry. It
stimulates the expression of the early gene transcription factor
c-fos in the amygdala, hippocampus and cortex (87–89), which
is an early marker of neuroplastic changes. Acute MDMA also
raises brain-derived neurotrophic factor (BDNF) in cortical
areas of rodents (90, 91) which leads to an increase in neurites
and spines in cortical neurons (92, 93). MDMA can also induce
neuroplasticity in the hippocampus of rats but, in this case, it
requires chronic exposition (94). Neuroplasticity is necessary for
the neurochemical rewiring which is supposed to account for
the psychotherapeutic effect of this drug and other psychedelics,
and this effect seems to be triggered after activation of 5-HT2A

receptors (95, 96).
Concerns on the clinical use of MDMA include potential

side effects such as cardiovascular events, especially in elderly
patients or those with previous cardiac conditions, and potential
serotonergic neurotoxicity, although it has been reported that
MDMA used under a clinical environment is unlikely to
be neurotoxic (97, 98). Indeed, the results of the recent
phase 3 trial (16) indicate that the MDMA regimen used in
psychotherapy was not harmful in patients who did not meet the
exclusion criteria, which included uncontrolled hypertension,
history of arrhythmia, or marked baseline prolongation of
QT and/or QTc interval. Under this controlled scenario,
MDMA was safe and reported adverse effects were, in
general, not severe.

Taken together, it can be stated that MDMA is one of
the most evident examples that an NPS might, when used
properly, be useful in psychiatry. It would also be a good
starting point to design or screen substances that, having
similar properties, present more favorable pharmacodynamics
and less undesirable effects at therapeutic doses, as well as
lack of neurotoxic effects after clinical use (98). The latter is
fundamental for a drug to be approved for medical use by the
regulatory authorities. In this line, MDMA analogs such as 3,4-
methylenedioxyamphetamine (MDA) and 3,4-methylenedioxy-
N-ethylamphetamine (MDEA) have also been explored for
psychotherapeutic use (99–101). On the other hand, patients
with a history of chronic MDMA consumption may not benefit
from its therapeutic effects at the doses commonly used due to
tolerance. Therefore, only drugs that do not have cross tolerance
with MDMA could be used in these patients (78).

Finally, another field to explore is the stereochemistry, as
isomers of the same compound can account for different effects.

For example, in the case of MDEA, the S-isomer is responsible
for its entactogenic effects, whereas the R-isomer produces
dysphoria and depressive symptoms and is responsible for its
neurotoxic effects (102).

Cathinones

Synthetic cathinones, also known as β-ketoamphetamines,
are a class of substituted amphetamines characterized by the
presence of a carbonyl group at the β-position of the basic
phenethylamine structure (see Figure 1 for representative
chemical structures). Such modification approaches this
structure to endogenous monoamines such as epinephrine and
NE, which have a hydroxyl group at the β position. They are
synthetic derivatives of cathinone, a natural alkaloid found in
the shrub khat (Catha edulis Forsk), whose fresh leaves are
traditionally chewed by population of the horn of Africa and the
Arabian Peninsula to obtain stimulant and euphoric effects, as
well to reduce hunger and fatigue and to ease social interaction
(103, 104).

Synthetic cathinones are, together with synthetic
cannabinoids, the most popular NPS and this correlates
with the number of new substances appearing every year,
although the prevalence of use of each individual substance
is low compared with more classical drugs (105). Their
consumption increased by the end of the first decade of 2000
when the production and purity of MDMA pills decreased due
to the strong control on this drug and their synthesis precursors
as well. However, not all the cathinones are NPS, as is the case
of bupropion, which is a cathinone used as antidepressant and
as an aid in smoking cessation, as will be mentioned below.

These compounds exert their effects targeting DAT, SERT
and NET (106–115), mainly inhibiting monoamine uptake but
some can act as substrates of the transporters and interact with
the synaptic vesicles, inducing neurotransmitter release (106–
115). These actions potentiate the effects of the monoamine/s
involved and lead to strong psychostimulation. Also, depending
on the serotonergic effects, some distortion of perceptions
and entactogen effects can occur. For these reasons, synthetic
cathinones are used as substitutes for amphetamines, MDMA
or cocaine and have abuse potential. However, and according
to the monoaminergic hypothesis of depression explained
above, cathinones with an adequate profile of activity on the
different transporters and lower addictive potential might also
be candidates for antidepressant medications.

In fact, there is a published study carried out in mice
assessing the acute antidepressant effects of the ethanolic extract
of khat (116) showing a decrease in the immobility time in both
the tail suspension test and the forced swim test. These results
suggest antidepressant potential, at least in these animal models.
However, other studies report schizophrenic-like symptoms
in mice after subchronic oral administration of the extract
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(117) and the addictive potential of this natural drug is widely
recognized (118), precluding any therapeutical use. Moreover,
methcathinone was used in Russia as an antidepressant in the
1930s and 1940s although it was replaced by newer and safer
drugs (119).

When looking for a possible therapeutic utility of existing
cathinones, their pharmacological profile on different
monoamine transporters must be carefully examined. The
first generation cathinones mephedrone and methylone have
DAT/SERT ratios between 0.1 and 10, which are higher
than those obtained for MDMA (0.08) and in the range
of that for cocaine (3.1) (115). High selectivity on DAT
with > 10 DAT/SERT ratios may suggest increased abuse
potential, especially given that DA has been related to
reinforcing effects (120). For this reason, more favorable
(lower) DAT/SERT ratios would be desirable for a
cathinone to be considered as a therapeutic candidate, as
it would also have predominant entactogenic effects over
psychostimulant properties.

Bupropion, a dual DA and NE reuptake inhibitor and
releaser, is a derivative of cathinone that was developed in the
1980s as an atypical antidepressant and has been prescribed
in some cases of major depressive disorder (121) and as a
smoking cessation agent. It has also been used to enhance
the therapeutic response to noradrenergic and/or serotonergic
antidepressants, decreasing sexual side effects and the weight
gain induced by these drugs. It has negligible activity on SERT
(IC50 > 10,000 nM) (122) and the fact that it is administered
orally implies a pharmacokinetic profile that reduces its
rewarding effects (123). However, abuse of bupropion through
another administration routes (e.g., insufflation or injection of
crushed bupropion tablets) has been described (124, 125).

Apart of considering the possibility that some specific
cathinones, as bupropion, may be used in the chronic treatment
of depression, some have been reviewed as potential candidates
to be used as MDMA, namely in a few sessions, low doses
and combined with psychotherapy because of their entactogenic
effects. These included methylone, butylone and ethylone but,
among them, methylone seems to better combine the desired
properties (78).

Due to being the β-keto analog of MDMA, similar
pharmacological effects would be expected for methylone,
although noticeable differences have been reported. For
example, in vivo 5-HT synthesis inhibition fully antagonizes the
hyperlocomotion induced by MDMA but not that by methylone
(107, 126). Methylone inhibits DAT and NET at approximately
half the potency of MDMA and inhibits SERT at about one-
third of its potency (107). However, unlike MDMA, methylone
is not as potent inhibiting the vesicular monoamine transporters
(VMAT2) at supposedly therapeutic concentrations (107, 127),
which suggest lower releasing capabilities. On the other
hand, methylone induces DA and NE release in rat brain
synaptosomes and in HEK cells transfected with the human

monoamine transporters with similar potency than MDMA, but
it has lower potency for 5-HT release (111, 128, 129).

Methylone exhibits a lower potency than MDMA for 5-
HT2A receptors (130) and is a partial agonist at the 5-HT1A

receptor, with weak antagonist effect on 5-HT2C receptors,
where MDMA behaves as a partial agonist. However, other
contemporary studies (115, 129) reported that methylone did
not have significant affinity for any of these receptors.

In spite of everything, methylone consumers report
sensations very similar to those experienced after taking
MDMA, with subtle differences such as a shorter action, greater
clarity of thought and a lower but noticeable increased desire to
socialize and feelings of closeness to others. These perceptions
suggest that it also has entactogenic effects (131) and that
VMAT2 inhibition does not seem to be a requisite to induce
such effects in humans (78). To note, these effects have been
reported at doses of around 125 mg, which are around half the
doses reported to induce some negative mood alterations (131).

A matter of concern about the therapeutic use of methylone
may be the possible serotonergic neurotoxic effects reported
from experiments in rats exposed to repeated doses [i.e.,
four doses of 25 mg/kg at 3-h intervals in 1 day (132) or
30 mg/kg, twice daily for 4 days (133)]. However, these effects
were obtained after a binge dosing, which would not be the
case if methylone was used therapeutically. In fact, MDMA
has also been demonstrated to be neurotoxic after repeated
administration (134) but, as mentioned above, the doses used in
psychotherapy are far from these dosing regimens and unlikely
to produce such deleterious actions. Moreover, Baumann
et al. (111) examined post-mortem tissue concentrations of
monoamines in rats following a schedule of a more moderate
repeated dosing of mephedrone, methylone (three doses of 3 or
10 mg/kg every 2 h) and MDMA (three doses of 2.5 or 7.5 mg/kg
every 2 h). In this case and in contrast to MDMA, neither
mephedrone nor methylone depleted the monoamine content,
which might represent a favorable aspect for methylone.

Overall, the most studied synthetic cathinones exert similar
uptake inhibition at monoamine transporters as MDMA (127),
but with slightly lower selectivity for SERT and overall lower
potency (78). Moreover, they have very low potency inhibiting
VMAT2 function, suggesting a scarce monoamine releasing
effect and that the subjective entactogenic effects that some
of them exert is due to a slightly different mechanism than
MDMA (135). For this reason, such entactogenic effect deserves
to be investigated to establish whether it can be useful to
enhance the effects of psychotherapy on mood-related disorders.
Also, designing drugs with a desired profile based on these
previous findings is a promising option for obtaining new
therapeutic compounds.

5-HT-releasing drugs have been used in the past as appetite
suppressants and some are currently being evaluated for being
used as anxiolytics or antidepressants (136, 137). In this line,
synthetic cathinones displaying hybrid DA reuptake inhibition
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and 5-HT releasing activities have been suggested as potential
therapeutic drugs (137, 138). This is feasible because certain
chemical structures can bind to a given monoamine transporter
(e.g., DAT) and block uptake whereas they can be substrate of
another (e.g., SERT) and induce 5-HT release. Although some
of such substances have already been synthesized and tested
in vitro for such dual effects, in vivo experiments should confirm
the appropriate potency and kinetics on every target to be tested
for therapeutic purposes (138).

In this line, specific changes in the cathinone structure
have been reported to change the mode of action on the
monoaminergic targets to obtain drugs with the properties cited
above. It is known that the addition of a 3,4-methylenedioxy
group or substitutions on the phenyl ring, especially in
para- position, of methcathinone generally shifts selectivity
toward SERT and even can behave as partial 5-HT releasers
(127, 128, 140–145). For example, it has been reported that
trifluoromethyl-substitution of methcathinone in the para-
position dramatically shifts the selectivity of methcathinone
toward SERT (146), becoming a SERT-selective partial releaser.
This effect has been suggested to be produced because these
modified cathinones trap a fraction of SERTs in an inactive state
by occupying a specific locus in the transporter called the S2-site.
Moreover, these findings define a new mechanism of action for
partial releasers, which is distinct from the other two previously
known binding modes underlying partial release, such as that of
MDMA analogs (acting on the S1-site) (147) or that of other
phenethylamine derivatives, which trap the transporter in an
inward facing conformation (148).

All this progress in the knowledge of monoamine
transporters’ function and the structure-activity relationships
concerning interaction with the different transporter binding
sites can be the basis for the development of synthetic
cathinones suitable for therapeutic use in psychiatry.

Cathinones as a treatment for cocaine
addiction

Specific cathinones have not only been suggested as
antidepressants or aid in psychotherapy, but some may be
useful to treat addiction to psychostimulants. Accordingly,
bupropion analogs with a slower onset and longer duration of
action on DAT compared with cocaine have been suggested as
candidates for treating addiction to cocaine, methamphetamine,
nicotine, and other drugs of abuse (149). Moreover, the fact
that bupropion and other “atypical” DAT inhibitors such
as benztropine and modafinil have been reported to be
devoid of such a strong abuse liability profile as cocaine,
has led to hypothesize that these drugs stabilize a DAT
conformation which is different from that of cocaine-bound
DAT (150). Concretely, experimental evidence led to suggest
that cocaine and methylphenidate stabilize outward-open DAT

conformation whereas the atypical inhibitors such as bupropion
tend to be less affected by conformational changes and probably
favor a more inward-facing occluded conformation which
is responsible for the lack of addiction potential of these
drugs (151).

Similarly, a pyrovalerone derivative, α-
piperidinevalerophenone (α-PpVP), showed high affinity
for DAT but very low potency inducing hyperlocomotion and
place conditioning (106). Further research is needed to assess
whether this is due to pharmacokinetic issues which prevent this
drug from attaining sufficient concentration in brain, which,
a priori is unlikely due to its high lipophilicity. Alternatively,
the authors point out that α -PpVP could also act as an atypical
DAT inhibitor due to the different binding mode observed
in docking assays, which may trap the dopamine transporter
protein in an atypical conformation. If it was the case, α-PpVP
might also be suggested as a candidate aid for cocaine cessation.

On the other hand, S-mephedrone (S-MEPH), one of the
two stereoisomers of mephedrone, has been reported to reduce
anxiety- and depressant-like effects in cocaine- or MDPV-
abstinent rats (152), suggesting that this compound may be
a possible structural and pharmacological template to develop
maintenance therapy to control the symptoms of withdrawal
from psychostimulant abuse. In fact, the other stereoisomer,
R-MEPH, is the main responsible for the rewarding effects
of MEPH whereas S-MEPH is a 50-fold more potent 5-
HT releaser than R-MEPH and does not induce place
preference in rats.

Psychedelics

Psychedelics are a class of hallucinogenic drugs whose
primary effect is to trigger non-ordinary states of conciousness.
This causes specific psychological, visual and auditory changes,
and often a substantially altered state of conciousness. Apart
from MDMA and ketamine, psychedelics constitute the main
group of substances with ongoing clinical trials in search of new
pharmacotherapies for mood disorders (153) (see Figure 1 for
representative chemical structures).

The psychiatric effects of psychedelics are explained by
their ability to bind and activate serotonergic receptors, which
exist pre- and/or post-synaptically (154). Central serotonergic
pathways, which originate from the raphe nuclei, are spread
to most brain structures, especially the cortex, modulating
the activity of a wide range of neurons (e.g., glutamatergic
and dopaminergic) and many mood-related processes (155).
Among the plethora of 5-HT receptor subtypes, 5-HT2A is
the main subtype attributed to be responsible for such effects,
as it has been shown to be involved in reconsolidation
of contextual fear, object recognition and conditioned food
aversion memories, which are processes affected in psychiatric
disorders such as depression, PTSD, anxiety and even drug
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addiction [see refs. (156, 157) as reviews]. Thereby, psychedelics
may help with neurocircuitry rewiring addressing negative
emotional processing and negativity bias, which can lead to
more rumination, a common symptom of MDD (158).

The neurocircuitry rewiring induced by psychedelics is
a complex process that is starting to be understood using
functional magnetic resonance imaging (fMRI) (159–161).
Psychedelics increase connectivity in high-level association
cortices (partially overlapping with the default-mode, salience,
and frontoparietal attention networks) and the thalamus while
desynchronize and decrease what is called the “default-mode
nertwork” connectivity (159, 160), which appears to be altered
in mood diseases. This allows a new synchronous connectivity
and rewiring responsible for the therapeutic effect. The cortical
areas involved overlap with a map of 5-HT2A receptor densities,
which confirm its major role. The increase in global connectivity
observed under psychedelics correlated with subjective reports
of “ego dissolution” which is described as a sense of oneness with
the universe or the experience of relaxed boundaries between the
self and the world (162) and is related with a decrease in feelings
of depression, anxiety, and stress, as well as with an increase in
mindfulness-related capacities.

In fact, patients who participated in clinical trials
assaying the effects of psychedelics on depression and
reported amelioration of their disorder, related it as sense
of connectedness to others (social connectedness), to the world
and to past values, pleasant activities and hobbies, and felt more
integrated, embodied and at peace with themselves and their
troubled backgrounds (163).

Moreover, activity on 5-HT1A receptor has also been
reported to contribute to the therapeutic effects of psychedelics
while counteracting some of the undesirable effects such as
increased heart rate, vasomotor tone and blood pressure
(164, 165). In fact, 5-HT1A receptors have also been
implicated in mood regulation (166) and are targets for
drugs already approved for anxiety and depression such as
buspirone or trazodone.

Below we will briefly review the psychedelics that have
been investigated and used in the treatment of mood disorders,
with the aim of extracting common characteristics required for
new molecules which, keeping the therapeutic effects, might
overcome some undesirable effects that may preclude their use
in vulnerable patients.

Psychedelics used in psychiatric
disorders

Psilocybin/psilocin
Psilocybin is the most widely studied psychedelic nowadays,

but the assays with this drug date back several decades,
when Sandoz marketed and sold pure psilocybin to physicians
and clinicians worldwide to use in psychedelic psychotherapy.

Although the increasingly restrictive drug laws of the late 1960s
curbed scientific research into the effects of psilocybin and
other hallucinogens, its popularity as an entheogen (spirituality-
enhancing agent) grew in the next decade, owing largely to
the increased availability of information on how to cultivate
psilocybin-containing mushrooms (167). The promising results
from ulterior controlled clinical trials led to its placement
as breakthrough therapy by the FDA for treatment-resistant
depression in 2018 (168) and in major depressive disorder in
2019 (169), but it has also been postulated as a treatment
for anxiety and substance use disorders (170). Recently
published clinical trials (171) demonstrate that psilocybin exerts
robust antidepressant effects (better than escitalopram) through
global increases in brain network integration, as assessed by
fMRI. Furthermore, psilocybin dampens the reactivity of the
amygdala to negative stimuli (172) which, together with its
neuroplasticity-inducing properties, gives sense to a possible use
for treating fear-related disorders such as PTSD.

Psilocybin is a naturally occurring tryptamine found in
several fungi genus, including Psilocybe, popularly known as
“magic mushrooms,” and is responsible for its hallucinogenic
effects. Upon oral ingestion, it is dephosphorylated in the liver
into psilocin, its active metabolite, which crosses the blood-brain
barrier to exert its psychedelic effects. These consist in altered
perception with visual hallucinations and changes in mood,
thought, cognition, and experience of self (173). It invokes
profound and lasting changes in cognition, perception and
emotion, and many consumers report a long-term improvement
in their mental health after having used the drug (13, 174).

Psilocin exerts its effects mainly by activation of 5-HT2A

receptors, but it also binds to 5-HT2C > 5-HT1A > 5-HT1B

(in order of affinity). It also has moderate to lower affinity for
other 5-HT receptors (e.g., 5-HT1B/D, 5-HT5−7), as well as
for adrenergic α2A/B, DA D3 and imidazoline receptors (175).
In addition, psilocin indirectly induces dopaminergic effects
through stimulation of DA release in the caudate nucleus and
putamen (176). The relative contribution of the effects on these
receptors results in the overall effects of this drug. It has no
relevant effect on SERT.

The low toxicity and addictive potential, and the fact that
it is generally well tolerated makes psilocybin especially suitable
for clinical use (177, 178).

N,N-Dimethyltryptamine/ayahuasca
N,N-Dimethyltryptamine (DMT) is a tryptamine derivative

found in several plants and animals and is one of the
main active molecules of ayahauasca. Ayahuasca is a plant
beverage prepared by decoction from the Amazonian jungle
vine Banisteriopsis caapi and the shrub Psychotria viridis [see ref.
(179) for a review]. The first contains β-carbolines, especially
harmine, tetrahydroharmine and harmaline (in traces), which
are MAO-A inhibitors whereas the other contains DMT. β-
carbolines, in addition to having an indirect monoaminergic
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effect, can also activate serotonergic receptors and inhibit the
metabolism of DMT in the gut and the liver and thereby allow
it to reach the CNS, exerting its psychedelic effects. Due to these
properties, ayahuasca has long been used by indigenous groups
from the Northwestern Amazon for ritual purposes. On the
other hand, DMT has been detected endogenously in humans,
and it has been suggested to play a role in the functioning of
the CNS as it has been reported to be transported into the brain
across the blood brain barrier (180).

Due to its resemblance with 5-HT, DMT interacts with many
5-HT receptor subtypes including 5-HT1A, 5-HT1B, 5-HT1D,
5-HT2A, 5-HT2B, 5-HT2C, 5-HT5A, 5-HT6 and 5-HT7 with
varying degrees of affinity (181, 182). From these, we highlight
again agonism at 5-HT2A and HT1A subtypes as preponderant
in the psychiatric effects. DMT can also be substrate for the
SERT and the vesicular monoamine transporter, so it can be
stored in intracellular vesicles (183) and be transported into
the nerve terminals. It has also affinity to trace amine receptors
and been suggested to be a sigma-1 receptor modulator (180,
181) thus exerting complex regulatory effects on immunity
and inflammation.

Several clinical trials have been performed using oral
standardized ayahuasca extracts, demonstrating that acute
administration of ayahuasca in the clinical setting to healthy
volunteers is safe, and presents an acceptable tolerability [see
refs. (179, 184) as reviews]. Moreover, improvements of mood
disorders have been reported after its consumption even after a
single dose (184–186).

Other modes of use include vaporization (smoking) of
preparations containing higher doses of DMT to ensure
reaching sufficient brain concentrations or intravenous or
intramuscular injections to bypass the intestinal enzymatic
breakdown. In both cases, the association with a MAO inhibitor
is not necessary.

After consumption, initial effects of ayahuasca are typically
of a stimulant-type sometimes accompanied by anxiety, elevated
heart rate and blood pressure, confusion and a sense of being
overwhelmed [reviewed by James et al. (184)]. This is followed
by a vivid hallucinogenic experience, both colorfully visual and
auditory, and even experimenting feelings of vibrations. Nausea
and vomiting are the most frequently reported adverse effects
found in the different studies.

5-Methoxy-N,N-dimethyltryptamine
5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) is a

naturally occurring tryptamine that can be found in leaves, bark
and seeds of several plants in South American rainforest such
as Virola calophylla, Anandenantera peregrina and Dictyoloma
incanescens, among others. Other indole alkaloids such as
DMT can also be found in such plants. Because of this
composition, preparations from these plants have long been
used as entheogens in rituals by indigenous populations of these
areas. Also, 5-MeO-DMT is the main psychoactive component

of the venom of the Sonoran Desert toad (Bufo alvarius)
and can also been found in fungi such Amanita citrina and
Amanita porphyria [see refs. (187) and (188) for reviews].
Moreover, it has been speculated that 5-MeO-DMT might also
be endogenously produced in humans, although the existing
reports are controversial (188).

An especial feature of 5-MeO-DMT is its binding profile,
as it is a non-selective agonist of 5-HT receptors which binds
to the 5-HT1A receptors with higher affinity (Ki around 3 nM)
compared to the 5-HT2A receptors (Ki around 900 nM) (182,
189). However, as the authors of the study point out (189),
the binding affinity (Ki) to 5-HT2A receptors must be taken
with caution as these receptors exist in high- and low-affinity
agonist binding conformations depending on whether they are
coupled to G proteins. [3H]ketanserin is the 5-HT2A antagonist
radioligand used to label these receptors and labels both states
with equal affinity, but the binding affinity of agonists for the
5-HT2A receptor varies depending on whether the receptor is
radiolabeled with an agonist or an antagonist, and agonists
generally display 10-100-fold higher affinity for agonist-labeled
5-HT2A receptors compared with antagonist-labeled receptors,
as it was the case. Therefore, the binding affinity of 5-MeO-
DMT for 5-HT2A receptors might have been underestimated. In
fact, a previous report investigating 5-HT2A receptor activation
in transfected SH-SY5Y cells reported an EC50 of about 300
nM (190). Moreover, 5-MeO-DMT is primarily inactivated
through a deamination pathway mediated by MAO-A, and it is
O-demethylated by cytochrome P450 2D6 (CYP2D6) enzyme to
produce an active metabolite, bufotenine (191, 192), which binds
with higher affinity to the 5-HT2A receptor than 5-MeO-DMT
(193) thus enhancing and prolonging the effects.

Also, binding of 5-MeO-DMT to SERT (182) and NET
(189) with low micromolar affinity has been reported and may
contribute to its action.

Human assays using either the inhaled dried toad secretion
(194) or synthetic 5-MeO-DMT (inhaled or IM injection) (162,
195) have reported improvements in mood, mindfulness-related
capacities, and life satisfaction 24 h after (or even sooner) a
single administration, lasting up to 4 weeks after the intake,
although a small proportion (2–10%) reported worsening.
Another study carried out in a naturalistic group setting,
ingestion of 5-MeO-DMT was associated with unintended
improvements in depression, anxiety and stress (196).

The 5-MeO-DMT experience contrasts with the DMT
experience, as the latter is known to produce particularly
vivid and complex visual imagery rather than marked ego-
dissolution (187). 5-MeO-DMT is a potentially useful addition
to the psychedelic pharmacopeia because of its short duration of
action, relative lack of visual effects and putatively higher rates
of ego-dissolution and mystical experiences.

5-MeO-DMT is not devoid of adverse effects, which include
fear, sadness, anxiety, confusion, fatigue, crying, paranoia,
trembling, vomiting, nausea, headache, pressure on the chest
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or abdomen and loss of body perception [reviewed by
Reckweg et al. (187)]. Subacute effects include flashbacks,
i.e., short re-experiencing of some of the subjective 5-MeO-
DMT effects and reactivations, i.e., brief (seconds) sensory
disturbances such as flashes of light, especially during the
week after 5-MeO-DMT exposure. Reactivations occur more
frequently after vaporization as compared to intramuscular
administration (195).

Lysergic acid diethylamide
Lysergic acid diethylamide is psychedelic drug of the

ergoline family. As a difference with the other psychedelics
exposed in this review, it is only obtained by hemisynthesis,
and cannot be found in any natural source [see ref.
(197) for a review].

LSD binds with nanomolar affinity to 5-HT1A, 5HT2A and
5HT2C receptors, as well as to dopamine D2 and adrenergic
α2 and less potently to adrenergic α1, and dopamine D1, and
D3 receptors (198). At 5-HT2A receptors, LSD behaves as a
partial agonist (175), which primarily mediate its hallucinogenic
effects. In fact, LSD binds 5-HT2A receptors more potently than
other serotonergic psychedelics, which is a possible explanation
to its stronger hallucinatory properties. Besides, LSD has also
been proven to bind 5-HT1A receptors more potently than other
serotonergic psychedelics.

Before the FDA placed LSD in the Schedule I list in 1970,
around a thousand clinical papers assaying LSD had been
published, involving up to 40,000 patients in trials to treat
addictions and other conditions (199). After, decades passed
with barely any publications on the subject, until the 1990s,
when interest into LSD resurfaced (197).

LSD is usually administered orally at doses in the order of
µg (5 µg for a microdose to 400 µg for a heavy dose) being
the most common doses around 150 µg. Its psychedelic effects
start by 30 to 60 minutes post administration, peak at around
two hours post administration and the effects stay high another
3–5 h lasting up to 12 h (200). However, LSD can also be
administered intravenously, with the effects starting 15–30 min
after administration and peak 45–90 min after dosing (201).

Physiologically, LSD induces an increase in blood pressure,
heart rate and body temperature, as well as a plasma
concentration increase in cortisol, prolactin, oxytocin and
epinephrine (200). As it will be detailed below, such endocrine
effects are also a common treat of psychedelics used in
psychotherapy that has been linked to a part of their effects.

LSD can create tolerance. After 2–3 days of daily
moderate doses, a tolerance is developed, and the same
doses produce a decreased psychological effect. However, this
tolerance disappears after 2–3 days of withdrawal, or placebo
administration (202).

When receiving a dose of LSD in a clinical trial
setting, participants experience auditory alterations, a feeling
of well-being, visionary restructuralization (complex imagery

coupled with audio-visual synesthesia during which visions
change meanings) and oceanic boundlessness linked to
depersonalization and derealization creating feelings of unity
(200). Although these acute effects are very similar to those of
other psychedelics, LSD perceptual alterations are reported to
be stronger than those of other psychedelics. Generally, LSD is
physiologically well tolerated and psychological reactions can be
controlled in a medically supervised setting.

On the other hand, LSD creates an empathogenic
mood similar to that experienced after taking MDMA.
This empathogenic mood brings the participants feelings of
closeness, openness and trust that enhance the efficiency of
psychotherapy (200). LSD has also been reported to amplify
the emotional response to music, an effect that is searched
when used recreationally and that has been looked into to
be used in therapeutic settings, as it has been noted that
the combination of music and LSD might increase mystical
experiences (203).

However, LSD has also been reported to induce anxiety
through anxious ego-dissolution and disembodiment (200, 204),
impaired cognition, cognitive disorganization, paranoia and
fears of losing control, delusional thinking and flashbacks.
These effects have informally been called “bad trip” (200)
and are currently being treated to be reconducted to be
valuable experiences for the patients (205). It is also frequent
that the patients experience a combination of positive and
negative sensations, with an overall valuation of positive
experiences (204).

Also, flashbacks, or Hallucinogen Persisting Perception
Disorder (HPPD), have been reported for LSD. This is
an uncommon and poorly understood disorder in which
individuals experience CNS malfunctions for up to a year after a
single dose of a psychedelic drug, including visual distortions
and hallucinations without being under the influence of a
psychedelic drug (206). This is more commonly triggered in
patients already diagnosed with a psychiatric disorder such
as schizophrenia, or with a family history of such psychiatric
illnesses, but can appear in healthy patients as well (206).

Furthermore, after a two-week follow-up, optimism and
openness in most participants had increased and they felt
heightened psychological wellbeing (204). This is supported by
another study, that found improved mental wellbeing up to a
year after a single dose of LSD (207).

LSD was tested in some randomized controlled trials as an
aid in alcoholism treatment programs, and a meta-analysis of
these studies reported that administration of a single dose of this
drug was related with a decrease in alcohol misuse (208). On the
other hand, the only randomized controlled trial that has been
concluded to date with patients suffering from mood disorders is
that performed by Gasser et al. (209). They administered either
200 µg or 20 µg of LSD (the second acting as an active placebo)
during psychotherapy sessions to 12 patients suffering from
anxiety related to life-threatening diseases. The results showed
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reductions in trait anxiety and state anxiety for up to a year post-
treatment with no acute or lasting adverse effects starting at a
day post administration (209).

After this successful trial, the Swiss government approved
the compassionate use of LSD in a case-by-case basis (210).

Other non-completed clinical studies are investigating the
effects of LSD on anxiety with volunteers with or without a life-
threatening illness (ClinicalTrials.gov identifier 03153579).

Mechanisms involved in the
psychotherapeutic effects of
psychedelics

Psychedelic-induced neuroplasticity
It is suggested that mood disorders such as MDD are

consequence of a maladaptive neuronal plasticity and
therefore drugs addressing this problem can be useful
treatments. Nowadays, there is extensive evidence that
psychedelics can rapidly induce neuroplasticity and correct
the maladaptive process (211). This ability is shared with
other new antidepressants such as ketamine, as demonstrated
in a study using a synapse-targeting photoactivatable RAC1
(a small RhoGTPase). This study showed that the sustained
antidepressant-like effects of ketamine in mice are mediated in
part by spinogenesis in the prefrontal cortex (212). Moreover,
the neuroplasticity induction by these drugs presents a
rapid onset and is long-lasting and can be achieved after
the administration of a single or multiple therapeutical
doses (211).

Accordingly, activation of 5-HT2A receptors by psychedelics
induces an increase in extracellular glutamate in the prefrontal
cortex which activates AMPA and NMDA receptors (213)
leading to neuroplastic effects. These include increase in c-fos
expression and early growth response gene 2 (egr-2). Studies
with psilocybin demonstrated that these effects are abolished
with a 5-HT2A antagonist (93), underpinning that psychedelic-
induced plasticity is mediated by these receptors. This ability
to induce neuroplasticity is, again, a key property that makes
this drug a candidate for treating fear-related disorders as the
increased cortical activity could improve top-down regulation
of the activity of the amygdala.

The neuroplastic effects of these compounds play a key
role in their therapeutic effects, as they tend to restore the
decreased neuroplasticity and neural atrophy in the PFC (214–
216), which has been described as a common feature of the
psychiatric diseases for which they are used (217–220). Due
to this common mechanism and pharmacological effect, drugs
capable of inducing neuroplasticity in PFC, as serotonergic
psychedelics, constitute a general option to treat all this sort of
disorders (93).

Brain-derived neurotrophic factor (BDNF) is a key
neuroplasticity-modulating neurotrophin that is involved in

many physiological and pathological brain processes (221, 222).
It has been reported that psychedelics and related compounds,
inducing the activation of AMPA and NMDA receptors, can
positively modulate the levels of BDNF and/or neurotrophins
which, inducing neuroplasticity, would ameliorate disorders
originating from altered neuronal connectivity (223). For
example, a single, low dose of LSD acutely increases BDNF
levels in healthy volunteers (224). Similarly, a double-blind
randomized placebo-controlled clinical trial reported that a
single dose of ayahuasca could modulate serum BDNF in
patients with major depressive disorder which agrees with the
previously reported antidepressant effects of psychedelic brew
(225). The primary psychoactive component of ayahuasca is
DMT, so it is likely that 5-MeO-DMT, which is a very close
structural analog of it, also exerts effects on BDNF and promotes
neuroplasticity in humans.

Psychedelic-induced neuroplasticity includes increased
neurogenesis, spinogenesis, and synaptogenesis, as shown
from in both in vivo and vitro models (93). Among several
beneficial consequences of these processes, it has been suggested
that the increased synaptic plasticity may reverse the stress-
induced changes in prefrontal cortex and contribute to the
antidepressant action of psilocybin in PTSD (226).

Antiinflammatory effects
The activation of 5-HT2A receptors also exerts anti-

inflammatory effects that would help to control the
neuroinflammation associated with mood disorders (227–229).
More concretely, activation of 5-HT2A receptors blocks the
generation of the pro-inflammatory factors TNF-α and IL-1β

and reduces the levels of IL-6 and cyclooxygenase 2 (COX-2).
Moreover, interaction of these substances with sigma-1

receptors has also been suggested to play a key role in the
protection from neuroinflammation and in neurogenesis.
Sigma-1 receptors modulate neuronal differentiation, can
act as intracellular signal transduction amplifiers, protect
cells against reactive oxygen species, modulate inflammation,
regulate BDNF secretion and can inhibit apoptosis signaling
(230–233). For these reasons, compounds with agonist
properties at sigma-1 receptors show antidepressant effects
and are also effective in complications of depression (234,
235). Although it did not involve psychedelics, the recently
published results of a clinical trial with a combination
of dextromethorphan plus bupropion report that this
combination significantly improved depressive symptoms
compared with bupropion and was generally well tolerated
(236). In this case, dextromethorphan combines sigma-
1 receptor agonist and uncompetitive NMDA receptor
antagonist properties. Moreover, dextromethorphan has been
reported to interact with and inhibit NET at low micromolar
concentrations (237–239), which might also contribute to the
antidepressant effect. On the other hand, bupropion increases
dextromethorphan plasma concentrations by inhibiting
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its metabolism (236) and may contribute to the overall
antidepressant effect as well.

Endocrine effects
Some of the studies investigating the therapeutical use

of psychedelics also examined their effects in mood-related
hormones. One of these hormones is oxytocin, whose intranasal
administration has been tested in psychiatry for anxiety,
depression and PTSD (240). Individual assays demonstrate
beneficial effects on the studied disorders, although when
all these studies are reviewed together it has been reported
that the actual efficacy of oxytocin is still inconclusive
(240). However, it has been suggested that there is a
correlation in the methylation of the promoter of the oxytocin
receptor gene, leading to reduced response to oxytocin,
and the severity of depression (241). Moreover, a recent
meta-analysis (242) reported altered endogenous oxytocin
concentrations in several psychiatric disorders compared
with controls, although there were no significant changes
in depression and PTSD was not analyzed. Nevertheless,
another contemporary study showed that the oxytocin level

was inversely related with depressive symptomatology in
women (243).

As cited above, increased oxytocin levels have been
suggested to contribute to the entactogenic effects of MDMA
(80), thus enhancing the effectivity of psychotherapy. Similarly,
LSD, at a dose of 200 µg, moderately increases plasma oxytocin
levels compared with placebo and dose-dependently (25–
200 µg) increases implicit and explicit emotional empathy (244).
The oxytocin increase was prevented by the 5-HT2A antagonist
ketanserin, which demonstrates the direct implication of these
receptors. Another study confirmed this effect for LSD and
compared its effects with psilocybin, reporting that both drugs
significantly increase oxytocin levels and plasma cortisol and
prolactin as well (245).

We could not find any article assessing the effects of
ayahuasca or DMT on oxytocin levels. Instead, it has been
reported that ayahuasca (which contains a mixture of IMAOs
and DMT) induces increases in plasma levels of prolactin,
cortisol, and growth hormone (246). These effects may be the
consequence of the mixed actions of this brew due to the intense
MAO inhibition, leading to potentiation of other monoamines

FIGURE 2

Simplified scheme of the main pathways involved in the psychotherapeutic effects of the drugs subject of this article. Classic antidepressants,
MDMA and cathinones enhance the synaptic levels of monoamines (5-HT, DA, NE) in key brain areas, leading to activation and regulation of the
levels of their receptors, thereby contributing to normalizing the brain circuitry involved in the disorder. Also, the increased synaptic levels of
5-HT induced by these drugs or the direct agonism exerted by psychedelics, activate serotonergic receptors, especially the 5-HT2A subtype,
whose activation triggers intracellular pathways involved in neuroplasticity. In addition, activation of 5-HT2A receptors induces glutamate
release in cortical areas, which activates AMPA and NMDA receptors, further contributing to neuroplasticity and rearrangement of the altered
connectivity in the affected brain areas.
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in addition to 5-HT. Although we could not find reports on
DMT endocrine effects it may be hypothesized that, as it is a
5-HT2A agonist as LSD and psylocibin, it also might increase
oxytocin levels.

Another affected hormone can be prolactin (PRL).
Ayahuasca increases blood cortisol and prolactin (PRL)
levels (247, 248) and 5-MeO-DMT also strongly promotes
the release of PRL in rats (249) which is followed by a
decrease and is consequence of hypothalamic 5-HT receptors
activation, resulting in systemic anti-inflammatory and
immunomodulatory effects through prolactin receptor-
expressing immune cell types (187). Furthermore, such
increases were higher than those induced by its tryptamine
analogs, bufotenin and DMT.

Concluding remarks: Clues for
obtaining new psychotherapeutic
compounds inspired by
cathinones and psychedelics

In this article we have reviewed the properties of
drugs useful to treat psychiatric disorders and we have
highlighted the properties they share and that seem to be
responsible for their therapeutic effects. Some of them had
been initially used for recreational or ceremonial purposes
but were reconducted to a clinical setting. As cited in the
introduction, the continuous appearance of NPS, especially
from the cathinone and the tryptamine families, can provide
new chemical structures having the right combination of the
desired properties. Those accomplishing these requirements
may be tested in a clinical setting as new candidates for
treating those disorders. It can also be highlighted that,
although differing in their principal target, most of these
drugs, directly or indirectly converge in the modulation of
intracellular pathways contributing to the therapeutic effects
(Figure 2).

There is no doubt that activation of 5-HT2A receptors is
an important requirement, either directly or indirectly (i.e.,
inducing 5-HT release) which is necessary for the neuroplastic
properties and other effects, but there is evidence that, through
molecular modeling, the affinity and neuroplastic properties of a
molecule can be kept whereas hallucinogenic and other adverse
effects may be removed.

For example, Cameron et al. (250), through careful
chemical design, modified ibogaine (a non- conformationally
restricted analog of 5-MeO-DMT, to a safer, non-hallucinogenic
psychedelic compound variant (called TBG) with therapeutic
potential for treating drug addiction. Most 5-HT2A agonists
also have activity on 5-HT2B receptors, which can lead to
cardiac valvulopathy (251) but, in this case, the compound TBG
behaved as an antagonist on these receptors, thus bypassing this

potential adverse effect. This is also an example that selectivity
for the 5-HT2A in front of other subtypes can be enhanced. The
study of the pharmacological properties of the stereoisomers
of a candidate molecule may also provide valuable information
for enhanced potency and/or selectivity, as in the case of
MDMA (102).

Nevertheless the 5-HT2A receptor activation by the drug
may be optimized in terms of potency and duration, in
order to avoid excessive and negative sensations while
keeping the beneficial effect. Also, pharmacokinetics can be
improved by modifying properties such as lipophilicity and
rapid metabolic inactivation. New tryptamine derivatives are
continuously appearing in the NPS market and detected in
consumers (252, 253) so their pharmacological properties
should be studied to assess and provide information about
their characteristics and about a possible therapeutic use in a
clinical setting.

Also, bearing mild dopaminergic properties without
exerting reinforcing effects may help to the therapeutic effect as
occurs with classical antidepressants. On the other hand, affinity
for sigma-1 receptors is another interesting property that is
shared among these molecules and that has been suggested to be
involved in the intracellular signaling processes in which they
are involved (230). To note, several compounds with NMDA
receptor antagonist properties have also affinity for sigma-1
receptors (e.g., dextromethorphan), both properties reported to
contribute to the antidepressant effect.

Another interesting aspect that is being investigated is
psychedelic microdosing. This consists in administering a
10th, or even less, of the usual therapeutic dose. Studies in
rats report that chronic, intermittent, low doses of DMT
produce antidepressant-like effects and enhanced fear
extinction, without affecting working memory or social
interaction (254). Also, recent studies in humans using two
to four microdoses of LSD or psilocybin (255, 256) report
an increase in positive mood, a decrease in depression,
augmented energy, and improved work effectiveness.
However, more research using double-blind placebo-
controlled trials is needed to really confirm the efficacy of
this dosing approach.

Finally, all the exposed above justifies the need to
study, at different levels, the properties and effects of NPS
as some of them may provide new therapeutic tools for
psychiatric disorders.
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