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Background: Genome-wide association studies (GWASs) have identified

numerous genetic variants associated with attention-deficit/hyperactivity

disorder (ADHD), which is considered highly genetically heritable. However,

because most of the variants located in the non-coding region of the human

genome, the onset of ADHD requires further exploration.

Methods: The risk genes involved in ADHD were identified by integrating

GWAS summary data and expression quantitative trait locus (eQTL) data using

summary-data-based Mendelian randomization (SMR) method. We then used

a stratified linkage disequilibrium score regression (LDSR) method to estimate

the contribution of ADHD-relevant tissues to its heritability to screen out

disease-relevant tissues. To determine the ADHD-relevant cell types, we used

an R package for expression-weighted cell type enrichment (EWCE) analysis.

Results: By integrating the brain eQTL data and ADHD GWAS data using

SMR, we identified 247 genes associated with ADHD. The LDSR applied to

specifically expressed genes results showed that the ADHD risk genes were

mainly enriched in brain tissue, especially in the mesencephalon, visual cortex,

and frontal lobe regions. Further cell-type-specific analysis suggested that

ADHD risk genes were highly expressed in excitatory neurons.

Conclusion: The study showed that the etiology of ADHD is associated with

excitatory neurons in the midbrain, visual cortex, and frontal lobe regions.
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Introduction

Attention-deficit/hyperactivity disorder (ADHD) is a

commonly diagnosed neurodevelopmental disorder which

is usually characterized by inattention, impulsivity, and

hyperactivity. It has been reported that approximately 5%

of children and 2.5% of adults in worldwide population

were affected by ADHD (1). Moreover, a large proportion

of ADHD patients also have other comorbid psychiatric

disorders, such as anxiety, emotional, and educational

disorders. Research has shown that ADHD patients have a

high risk of educational and occupational failure, accidents,

criminality, social disability, divorce, suicide, and premature

death (2).

Currently, ADHD is diagnosed in clinics using the DSM-5

or ICD10. Furthermore, clinical therapeutics for ADHD usually

require long-term care, and the recurrence of symptoms is

common (1). Therefore, determining the etiology of ADHD

is crucial to improving clinical diagnoses and treatments

for ADHD.

Accumulating epidemiological and clinical evidence

has shown that ADHD is affected by both genetic and

environmental factors. Genetic studies of identical twins have

reported that the heritability of ADHD is approximately

0.76 (3–5), which indicates that genetic factors are primarily

responsible for the onset of ADHD. However, ADHD has also

been demonstrated to undergo polygenic transmission

and be a complex neurodevelopmental disorder that

can be affected by both common and rare variants (2).

Numerous genome-wide association studies (GWAS) have

identified multiple single nucleotide polymorphisms (SNPs)

related to ADHD susceptibility (6, 7). Intriguingly, most

of these genetic loci are positioned in the non-coding

region of the human genome. Furthermore, because

SNPs likely influence complex traits in a tissue- and cell-

type-specific manner, further explorations of the relevant

biological mechanisms of SNPs may become even more

complicated (8).

Extensive research has shown that trait-associated SNPs

in non-coding regions regulate the expression of genes to

further their involvement in ADHD etiology (9–11). Based

on these studies, we applied summary-data-based Mendelian

randomization (SMR) to the analysis of integrating GWAS

and expression quantitative trait locus (eQTL) data to identify

the risk genes of ADHD. Additionally, we used the stratified

linkage disequilibrium score regression (LDSR) method (12),

also known as LDSC, to estimate the contribution of various

tissues to the heritability of ADHD and identify ADHD-relevant

tissues. Finally, an R package for expression-weighted cell type

enrichment (EWCE) analysis (13) was used to perform cell-type

enrichment analysis to identify ADHD-relevant cell types.

Materials and methods

Attention-deficit/hyperactivity disorder
genome-wide association study data

Attention-deficit/hyperactivity disorder genome-wide

association study data were obtained from the meta-

analysis by Demontis et al. (6), which included 20,183

ADHD cases and 35,191 controls from 12 cohorts. The

samples were mainly from European populations. After

quality control, 8,047,421 SNPs were remained for final

meta-analyze. In total, 304 genetic variants in 12 genomic

loci were shown to be significantly related to ADHD (P

< 5 × 10−8). The GWAS summary statistics data are

available for download from the Psychiatric Genomics

Consortium website (https://www.med.unc.edu/pgc/results-

and-downloads).

Summary-data-based Mendelian
randomization analysis

We applied SMR to integrate ADHD GWAS data and

eQTL data to identify the ADHD risk genes. In the SMR

analysis, ADHD-relevant SNPs were used as instrumental

variables (IVs) to test the causal effect of the exposure

(gene expression) on the outcome (ADHD) (14). Detailed

information about the theoretical principle, model hypothesis,

and algorithm implementation of SMR is available in the original

publication (14). BrainMeta v2 cis-eQTL summary data were

obtained from the SMR website (https://yanglab.westlake.edu.

cn/software/smr/#DataResource), which contained cis-eQTL

information using RNA-seq expression and genotype data of

2,865 brain cortex samples from 2,443 unrelated European

individuals. Qi et al. (15) meta-analyzed the brain frontal

cortex data from GTEx (16), CMC (17), and ROSMAP

(18). This dataset only contained cis-eQTL summary statistics

for 16,704 genes and about 11.6 million SNPs with minor

allele frequency larger than 0.01. We also downloaded the

eQTL data (16) from 13 GTEx (v7) brain tissues for

different brain region SMR analysis. The GTEx project

aims to characterize variation on gene expression levels

across different human tissues. The v7 release of GTEx

contains a total of 11,688 samples, mainly European ancestry,

from 53 tissues of 714 donors within an age range from

20 to 79 years. For SMR analysis, we used the default

parameters, and to decrease the false positive rate, PSMR

< 0.01 was set as the significant level. To further test

the heterogeneity of the IVs, we performed heterogeneity

in dependent instruments (HEIDI) to filter out results with

PHEIDI < 0.01.
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Synapse gene ontology annotations

All risk genes were uploaded to the Synapse Gene Ontology

(SynGO) website (https://syngoportal.org/) (19) for further

annotation. The SynGO cellular component terms are displayed

in the sunburst plot.

LDSC applied to specifically expressed
genes

The LDSC applied to specifically expressed genes (LDSC-

SEG) method was used to identify disease-relevant tissues

using gene expression data from different tissues and GWAS

summary statistics (12). For each gene, the t-statistics was

first calculated for the specific expression in the target tissue

during the LDSC-SEG analysis. The genes were then arranged

in descending order according to the t-statistics, and those

within the top 10% were defined as the tissue-specific gene

set. As an additional step, a 100 kb window was added to both

sides of the transcription region of the genes in the tissue-

specific gene set to construct tissue-specific genome annotations.

The LDSC-SEG analysis was then applied to the different

annotated groups to estimate the contribution of various

tissues or cells to the target phenotypic heritability. Detailed

information about the theoretical principle, model hypothesis,

and algorithm implementation of the LDSC-SEG analysis is

provided in the original publication (12). We downloaded the

microarray-based gene expression data of various tissues and

cell types from Franke’s lab, which contained 152 tissues or cell

types originating from 37,427 human samples for about 3,404

genes (https://alkesgroup.broadinstitute.org/LDSCORE/LDSC_

SEG_ldscores) (20, 21). All datasets were processed using ldsc.py

(version 1.0.1) with default parameters. For the outcomes,

PLDSC−SEG < 0.05 was considered significant.

Expression-weighted cell type
enrichment analysis

Single-cell transcriptome expression data are used to

generate a probability distribution genes list containing the

average expression in a cell of interest. The gene expression

level is then estimated using the target gene set to check

whether it is higher than that of randomly chosen genes in

the cell of interest (13). We used data of single-cell gene

expressions of human neocortical development during mid-

gestation from Polioudakis et al. and Trevino et al. (22, 23).

Polioudakis et al. obtained approximately 40,000 cortical single-

cell expression data from four donors at mid-gestation week 17–

18 using Drop-seq. Using dimension reduction analysis and cell-

type mapping, they screened out 16 transcriptionally distinct

cell types, including excitatory neurons, inhibitory neurons,

interneurons, and microglia (22). Trevino et al. created a gene

expression atlas using 10× genomics from four primary samples

at post-conception weeks 16, 20, 21, and 24. Overall, they

obtained 57,868 single-cell transcriptomes and divided these

cells into 23 clusters (23). Using these two datasets, combined

with the risk gene sets retrieved from the SMR analysis, we were

able to identify ADHD associated tissues using risk genes from

SMR analysis. Details about the EWCE principle are provided in

the original publication (13). The data analysis procedure is also

described at https://github.com/NathanSkene/EWCE/. PEWCE

< 0.05 was considered as significant.

Results

Summary-data-based Mendelian
randomization integrative analysis

The SMR analysis identified 247 and 129 risk genes for

ADHD using BrainMeta v2 eQTL data and 13 GTEx brain

tissues data, respectively (Figure 1 and Supplementary Tables S1,

S2). In total, 336 genes were identified to be associated

with ADHD. Intriguingly, multiple risk genes were related to

neurodevelopment. These genes included CAMK1D, a member

of the calcium/calmodulin-dependent protein kinase 1 family

that is responsible for the growth of hippocampal neurons

dendrites; KCTD16, a subunit of the gamma-aminobutyric

acid-B receptor, which is involved in the excitability of

dendrites; and CTNNB1 alongside the transcription factor

LEF1/TCF, which promote the expression of genes responsible

for developmental processes, such as neurogenesis and synaptic

plasticity (24). Moreover, the result of the SynGO annotations

showed that 16 genes were involved in the formation of

synapses (Figure 2).

LDSC applied to specifically expressed
genes analysis to identify ADHD-relevant
tissues

The brain is a complex organ that comprises numerous

brain regions which perform different functions. Therefore,

it is important to analyze disease-associated brain regions.

Results of the enrichment analysis using GWAS data in multiple

tissues showed that the ADHD risk loci were significantly

enriched in the mesencephalon (P = 0.01), visual cortex

(P = 0.02), and frontal lobe (P = 0.02) (Figure 3 and

Supplementary Table S3). This result suggested that risk genes

are involved in the onset of ADHD via the regulation

of gene expression in these brain regions. Moreover, our

results further confirmed that ADHD is a brain-associated

neurodevelopmental disorder.
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FIGURE 1

Manhattan plot of the SMR analysis integrating ADHD GWAS data with the BrainMeta eQTL data. P-value indicates the statistical significance of

the SMR analysis results. The dotted line represented the SMR significant threshold (PSMR < 0.01). For genes with PSMR < 0.001 and PHEIDI > 0.01,

we also marked the gene names in the figure.

FIGURE 2

Mapping of SMR risk genes to synaptic locations using SynGO. According to the location of genes in the synapse, genes were divided into

presynaptic, postsynaptic, synaptic cleft, synaptic membrane, and extrasynaptic genes. Similar to a directed acyclic graph of GO, terms in the

outer ring are a subset of those in the adjacent inner ring.
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FIGURE 3

LDSC-SEG analysis results of ADHD-relevant tissues. Only the top 30 tissues are shown according to the descending order of log10 (p-value).

Expression-weighted cell type
enrichment analysis to identify
ADHD-relevant cell types

Although we found that the risk genes were highly expressed

in brain-associated tissues, the brain contains thousands of

different cell types with distinct gene expression patterns

(25), and similar to the tissue specificity of gene expression,

cell specificity should not be ignored. We considered that

risk genes may only exert function in certain cell types (26,

27). Therefore, we applied EWCE using the R package to

perform cell-type-specific analysis. As mentioned earlier, risk

genes may be involved in neurodevelopment because ADHD

is a neurodevelopmental disorder. Thus, we selected single-

cell gene expression data from the neocortex at mid-gestation

(i.e., gestation weeks 17–18). Expression-weighted cell type

enrichment analysis performed on the risk gene set showed

that the ADHD risk genes were highly expressed in mature

excitatory neurons in the upper layer (ExM-U, PEWCE = 1.6

× 10−3) and excitatory neurons in deep layer 2 (ExDp2,

PEWCE = 0.04) (Figure 4A and Supplementary Table S4) (22).

The cell-type-specific analysis using another single-cell dataset

also highlighted excitatory glutamatergic neurons in ADHD

(Figure 4B and Supplementary Table S5) (23). Taken together,

the results indicated that risk genes are involved in the onset

of ADHD by affecting the relevant gene expressions of the

excitatory cortical neurons.

Discussion

Attention-deficit/hyperactivity disorder is a polygenic and

complex heritable disorder, whose heritability is consisted of

many common variants with small effects and relatively small

number of rare variants with large effects. Most common

variants identified by GWAS were located in non-coding

regions (2, 6), with no influence on the protein sequence. We

hypothesized that these common variants play a role in the onset

of ADHD by regulating the expression of ADHD-relevant genes.

In this study, we collected ADHD GWAS data, brain eQTL

data, tissue expression profile, and cortical single-cell sequencing

data to identify the ADHD-associated risk genes, relevant

tissues, and cell types. We screened out 336 ADHD-associated

risk genes, including multiple neurodevelopment-related genes

and some of these genes, like KIZ and CTNNB1, were also

indicated to be related to ADHD in previous studies (28, 29). The

tissue-specific analysis showed that the risk genes were highly

expressed in brain tissues, especially in the mesencephalon,

visual cortex, and frontal lobe regions. Moreover, the cell-

specific analysis showed that ADHD risk genes are highly

expressed in excitatory neurons.

The LDSC-SEG results for the integrated tissue expression

profile and ADHD GWAS data revealed that multiple brain

regions were involved in the onset ADHD. Although the results

were not adjusted by multiple correction, the most significant

tissues were located in the brain. Therefore, we consider our
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FIGURE 4

Associations between ADHD and cell types from the human fetal neocortex using scRNA-seq data from Polioudakis et al. (22) (A) and Trevino

et al. (23) (B). Tissues labeled with two asterisks indicate Bonferroni adjusted significance (P < 0.05 for the Polioudakis et al. (22) data; P < 0.05

for the Trevino et al. (24) data). Tissues labeled with one asterisk indicate the nominal significance (P < 0.05). End, endothelial cell; ExDp1,

excitatory deep layer 1; ExDp2, excitatory deep layer 2; ExM, maturing excitatory; ExM-U, maturing excitatory upper enriched; ExN, migrating

excitatory; InCGE, interneuron; InMGE, interneuron MGE; IP, intermediate progenitor; Mic, microglia; OPC, oligodendrocyte precursors; oRG,

outer radial glia; Per, pericyte; PgG2M, cycling progenitors (G2/M phase); PgS, cycling progenitors; vRG, ventricular radial glia; GluN,

glutamatergic neuron; SP, subplate; nIPC, neuronal intermediate progenitor cell; lateRG, late radial glia; earlyRG, early radial glia; VLMC,

leptomeningeal cells; tRG, truncated radial glia; RBC, red blood cells; Peric, pericytes; OPC_oligo, OPC and oligodendrocyte; mGPC,

multipotent glial progenitor; CycProg, cycling progenitors.

results reliable. However, because of the high similarity in

expression profiles among various brain tissues, we were unable

to identify specific ADHD-associated brain tissues using the

current methods.

Although hundreds of risk genes for ADHD have been

identified using SMR analysis, identifying the specific brain

regions in which these risk genes exert its function requires

further exploration because of cellular heterogeneity. Previous

studies have shown that, in contrast to neurological disorders,

GWAS data of psychiatric disorders map primarily onto

neurons, rather than glial cells (26, 30). This is in line with our

findings that ADHD risk genes are highly expressed in excitatory

cortical neurons, which indicated that these genes affect the

biological function of excitatory neurons and, further contribute

to etiology of ADHD.

Furthermore, several researchers consider ADHD as an

omnigenic disorder, whereby all genes contribute to the onset

of ADHD (2, 31). The pathogenic genes can be divided into

two categories: a small proportion of directly ADHD-related

genes, referred to as “core genes” and a large proportion of

“peripheral genes,” which function via the regulation of the

“core genes.” According to this notion, the majority of genes

identified in our study likely belong to the “core genes.”

In addition, we screened out multiple ADHD-associated risk

genes that were also involved in neurodevelopment, which

demonstrated that ADHD is a neurodevelopmental disorder

(1, 32, 33). Furthermore, the risk SNPs of ADHD may cause

neurodevelopmental disorders by regulating the expression of

genes related to neurodevelopment; thus, these SNPs are also

likely involved in the etiology of ADHD.
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Limitations

We summarized several limitations. First, GWAS risk SNPs

can exert its function not only through regulation of gene

expression but also through other pathways (34), such as splicing

(35), histone modification (36), and chromatin accessibility (37).

Second, we did not perform multiple-test correction for the

SMR analysis, which may have increased the potential of false

positives. However, given that the current GWAS only explained

about one-third of the heritability for ADHD, the number of

risk loci identified by current GWAS were far from saturation

(2). Therefore, instead of multiple-test correction, we filtered

the false-positive results using a PSMR threshold of 0.01. Finally,

the ADHD-associated cell types identified in this study require

further validation in other brain regions. As additional single-

cell expression maps of brain regions become available, we

plan to continue to study ADHD-associated cell types in other

brain regions.
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