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Background: Obstructive sleep apnea (OSA) has been reported to a�ect

cardiometabolic diseases. However, whether such association is causal is still

unknown. Here, we attempt to explore the e�ect of OSA on type 2 diabetes (T2D),

nonalcoholic fatty liver disease (NAFLD) and coronary heart disease (CHD).

Methods: Genetic variants associated with OSA were requested from a published

genome-wide association study (GWAS) and those qualified ones were selected as

instrumental variables (IV). Then, the IV-outcome associations were acquired from

T2D, NAFLD and CHD GWAS consortia separately. The Mendelian randomization

(MR) was designed to estimate the associations of genetically-predicted OSA on T2D,

NAFLD and CHD respectively, using the inverse-variance weighted (IVW) method. We

applied the Bonferroni method to adjust the p-value. Besides, MR-Egger regression

and weighted median methods were adopted as a supplement to IVW. The Cochran’s

Q valuewas used to evaluate heterogeneity and theMR-Egger interceptwas utilized to

assess horizontal pleiotropy, together with MR-PRESSO. The leave-one-out sensitivity

analysis was carried out as well.

Results: No MR estimate reached the Bonferroni threshold (p < 0.017). Although the

odds ratio of T2D was 3.58 (95% confidence interval (CI) [1.06, 12.11], IVW-p-value =

0.040) using 4 SNPs, such causal association turned insignificant after the removal of

SNP rs9937053 located in FTO [OR = 1.30 [0.68, 2.50], IVW p = 0.432]. Besides, we

did not find that the predisposition to OSA was associated with CHD [OR= 1.16 [0.70,

1.91], IVW p = 0.560] using 4 SNPs.

Conclusion: This MR study reveals that genetic liability to OSA might not be

associated with the risk of T2D after the removal of obesity-related instruments.

Besides, no causal association was observed between NAFLD and CHD. Further

studies should be carried out to verify our findings.
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Introduction

As a kind of severe sleep disorder, obstructive sleep apnea

(OSA) is usually denoted as nocturnally repetitive episodes of

breathing stops caused by upper airway collapse, resulting in

mild to severe sleep deprivation and dysregulation of breathing,

sleep, and blood pressure. It was estimated that at least 9% of

the population suffered from it and its prevalence is increasing

since 35% of individuals over 60 years of age suffer from it (1).

Numerous patients remain underdiagnosed despite several available

diagnostic tools and treatments (2). Continuous OSA status is

usually accompanied by serious comorbidities through systemic

inflammation and intermittent hypoxia (3). Besides, OSA is affected

by multiple risk factors such as obesity, male sex, family history of

OSA, high age and problems of upper airway flow or jaw anatomy (4).

Consequently, OSA burdens the public with increased mortality

(5), which is caused by many cardiometabolic comorbidities

including an increased risk of coronary heart disease (CHD),

nonalcoholic fatty liver disease (NAFLD) (6), type 2 diabetes (T2D)

and its complications (7, 8). Therein, the interplay between T2D and

NAFLD has been reported where the genetically-predicted NAFLD

could increase the risk of T2D and vice versa (9). Also, NAFLD

and T2D could increase the risk of CHD as well (10, 11). However,

whether the observed association is causal is still unknown and can

be biased by potential confounders like socioeconomic status.

As a popular method of causal inference in molecular

epidemiology, Mendelian randomization (MR) uses genetic variants

as instrumental variables to detect the existence of causation and

estimate its magnitude (12). It can simulate a randomized trial as the

allocation of genetic variants at conception is random. Nowadays,

it has made great contributions to causal inference, such as ruling

out the association of genetically-predicted serum HDL with the risk

of myocardial infarction (13). Thanks to the accumulating genome-

wide association studies (GWAS), the summary statistics of the

association between genetic variants and phenotype can be accessed

much easier. However, it is still unknown whether OSA can lead

to deleterious consequences in a causal setting. A recent MR study

indicated that there was no causal association between sleep duration

and glycemic traits (14), and our recent publication suggested that

genetic susceptibility to OSA cannot affect the risk of Alzheimer’s

disease and Parkinson’s disease (15). Additionally, a recent OSA

GWAS only explored its causal relationship with body mass index

(BMI) (16). Besides, there were no other MR studies focused on OSA.

We attempted to evaluate the associations of genetically-

predicted OSA with T2D, CHD and NAFLD where OSA is the

exposure and the remaining diseases are outcomes, hoping to

disentangle their complex causal relationship.

Methods

Data description and study design

We retrieved data from the OSA GWAS using the FinnGen

study (16). The GWAS summary statistics were extracted from it

where 16,761 OSA patients and 201,194 controls were included

in this FinnGen study. The nationwide health registries were

used to identify OSA cases where the diagnosis of OSA was

based on ICD-codes (ICD-10: G47.3, ICD-9: 3472A). The ICD-10

data were collected from the Finnish National Hospital Discharge

Registry and the Causes of Death Registry. Several indicators

were involved in diagnosing OSA, namely subjective symptoms,

clinical examination and sleep registration applying AHI ≥ 5/h

or respiratory event index (REI) ≥ 5/h. The GWAS analysis was

performed using SAIGE, applying saddle point approximation (SPA)

to calibrate unbalanced case-control ratios (17). Analyses were

adjusted for age, sex, genotyping chip, genetic relationship and first

10 principal components.

We extracted IV for CHD from the Coronary ARtery DIsease

Genome wide Replication and Meta-analysis (CARDIoGRAM) plus

the Coronary Artery Disease (C4D) Genetics Consortium, with

60,801 cases and 123,504 controls adjusting for sex and age (18). The

GWAS summary statistics of T2D were obtained from a European

study with 62,892 cases and 596,424 controls, with adjustment of

sex, age and study-specific information (19). The NAFLD GWAS

consisted of 1,483 European NAFLD cases and 17,781 matched

controls, adjusting for the first five principal components in multiple

logistic regression (20).

Here, we appraise the effect of genetically-predicted OSA on

three predefined outcomes, which consisted of threemain previously-

reported cardiometabolic comorbidities, including coronary heart

disease, type 2 diabetes (21) and nonalcoholic fatty liver disease.

There was no sample overlapping between exposure and outcome as

the outcomes’ GWAS data contained no FinnGen samples (22). For

OSA cases, the median age was 58.9 years, the median BMI was 31.72

kg/m2, and the proportion of the males was 63.0%. For NAFLD cases,

the median age was 50.1 years, the median BMI was 35.19 kg/m2 and

the proportion of males was 52.7%. The samples of OSA, NAFLD

and T2D were all of the European ancestry while the majority of

CHD were of European ancestry (77%). Although we cannot give

precise estimates on baseline characteristics of CHD and T2D, the two

studies have adjusted for age, sex, and population stratification in the

FIGURE 1

The basic assumptions of Mendelian randomization. IV is instrumental

variable; OSA is obstructive sleep apnea; T2D is type 2 diabetes; NAFLD

is nonalcoholic fatty liver disease; CHD is coronary heart disease.

TABLE 1 Instrumental variables of obstructive sleep apnea.

SNP A1 A2 EAF BETA SE P F

∗rs9937053 G A 0.43 0.104 0.012 4.30× 10−16 82

#rs10507084 C T 0.18 0.104 0.016 2.80× 10−11 42

rs4837016 G A 0.47 −0.073 0.011 1.50× 10−08 44

rs10928560 C T 0.18 −0.083 0.014 2.80× 10−08 36

SNP is the rsID of genetic variants; A1 is the effect allele; A2 is the other allele; EAF is the effect

allele frequency; BETA is the effect size of A1 on the exposure; SE is the standard error of beta; P

is the p value of beta; F is the F statistics. ∗rs9937053 is an obesity-related SNP and was removed

in the main MR analysis. #rs10507084 is the only genome-wide significant SNP after adjusting

for BMI and was used in the single IV analysis.
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analyses. Thus, the bias caused by the imbalance of these distribution

characteristics should not have a main impact on the MR results.

Instrumental variable selection

Three basic assumptions should be satisfied in MR analysis:

(1) The genetic variant should have a strong link to exposure; (2)

There are no other potential confounders associated with the genetic

variant; (3) The association of the genetic variant with the outcome

can only be mediated via the way of exposure (Figure 1). Five genetic

variants were reported to be associated with OSA by Strausz et al.

(16). Considering its low minor allele frequency (MAF = 0.005), the

single nucleotide polymorphism (SNP) rs185932673 was removed

in the subsequent analyses. Generally, hypothesis 2 for MR

analysis is untestable since we cannot determine all the potential

confounders. Thus, we searched all 4 SNPs’ associations in the open

GWAS database (https://gwas.mrcieu.ac.uk/) to identify potential

confounded associations and found that the SNP rs9937053 was

strongly associated with BMI. Besides, the SNP rs9937053 was an

intron in FTO, a well-established gene associated with obesity (23),

and this SNP was marginally associated with OSA after adjustment

of BMI (adjusted p = 0.04). Thus, we considered performing MR

analyses with or without it in our study to assess the impact of

the obesity-associated gene on the results. Therein, we were mainly

focused on the results of MR analysis without SNP rs9937053. All

the remaining SNPs displayed a genome-wide significance (p < 5

× 10−8) and a high imputation quality (INFO > 0.9). When the

information of one SNP is missing the outcome, we would use

another SNP in high linkage disequilibrium with it as the proxy using

a predefined threshold LD r2 > 0.8. It should be noted that only SNP

rs10507084 remained significant after adjusting for BMI and a single

IV-based MR analysis was conducted using it as well.

Statistical analysis

Before MR analysis, each IV’s F-statistic was calculated using the

formula as follows: F =
beta2

se2
. Here, beta represents the effect size of

SNP on exposure and se is its corresponding standard error (24).

Besides, the general F-statistic was calculated as well:

F =
N−k−1

k
×

R2

1−R2
. The N is the sample size of exposure, and

k is the number of used IVs. R2 represents the exposure’s genetic

variance explained by IVs.

The Wald ratio estimation was used to calculate the association

of genetically-predicted OSA with the outcome for each SNP and the

inverse-variance weighted (IVW) method was utilized to synthesize

each SNP’s casual estimation. Cochran’s Q value was used to assess

the heterogeneity and we would adopt a multiplicative random

effect (MRE) model if the heterogeneity exists. Otherwise, we would

combine the results using a fixed effect model. Besides, two other

methods, including MR-Egger and weighted median, would also be

adopted as a supplement to IVW.

Horizontal pleiotropy is a major issue in MR analysis and it

should be sophisticatedly addressed. In our study, two methods

were adopted, namely, MR-Egger intercept (25) and Mendelian

randomization pleiotropy residual sum and outlier (MR-PRESSO)

(26). For the MR-Egger intercept, there should be no difference

FIGURE 2

The forest plot of Mendelian randomization. OSA is obstructive sleep apnea; T2D is type 2 diabetes; NAFLD is nonalcoholic fatty liver disease; CHD is

coronary heart disease; OR is odds ratio; 95%LCI is the lower limit of 95% confidence interval of OR; 95%UCI is the upper limit of 95% confidence interval

of OR.
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FIGURE 3

(A) The scatterplot of OSA-T2D results. Di�erent colors represent di�erent methods and each point is a single nucleotide polymorphism. The horizontal

and vertical lines of each point represent the 95% confidence interval of the e�ect size. (B) The leave-one-out-sensitivity forest plot of OSA-T2D results.

between 0 and it if no horizontal pleiotropy exists. If the intercept

significantly differs from 0, we assume there is horizontal pleiotropy

and the results should be corrected by MR-Egger regression and

be interpreted carefully. The MR-PRESSO is an effective method to

detect outliers that might introduce horizontal pleiotropy into MR

analyses using the residual sum. The MR analysis was performed

using the R package “TwoSampleMR” (27) and “MRPRESSO” (26).

Sensitivity analysis and power calculation

The sensitivity analysis was mainly carried out using a leave-

one-out sensitivity analysis where each SNP was removed and the

remaining SNPs were assumed as the IVs to estimate the associations

of genetically-predicted exposure with the outcomes. If an SNP

was detected as a driving IV obviously, we would drop it in the

MR analysis. Such a “leave-one-out” method was used to judge

whether the causal conclusion was robust to the outlier. This analysis

was performed using the R package “TwoSampleMR” (27). We

applied the mRnd to statistical power calculation (Power calculations

for Mendelian Randomization) (https://cnsgenomics.shinyapps.io/

mRnd/) (28).

Results

Four genetic variants were used as eligible IVs in this MR analysis

(Table 1). The general and each IV’s F were all greater than the

empirical threshold 10.

In the main analysis, three SNPs were used, including

rs10507084, rs4837016 and rs10928560. This analysis suggested

genetic susceptibility to OSA cannot affect the risk of T2D [OR =

1.30 [0.68, 2.50], IVW p = 0.432], NAFLD [OR = 0.65 [0.18, 2.37],

IVW p = 0.513] and CHD [OR = 0.93 [0.45, 1.91], IVW p = 0.842]

(Supplementary Figures 1–3). The leave-one-out sensitivity analyses

suggested that the SNP rs10928560 might drive the main estimates

among the 3 SNPs (Supplementary Figures 1B, 3B).

The odds ratio of T2D was 3.58 [95% confidence interval (CI)

[1.06, 12.11], IVW-p = 0.040] per 1-unit increase in log OR of OSA

(Figures 2, 3A). From Figure 3A, the results of IVW and weighted

median were similar while they were different from that ofMR-Egger.

However, there was significant heterogeneity (Cochrane’s Q = 90.56,

Q p = 1.66 × 10−19) and outliers were detected by MR-PRESSO.

Besides, there was no pleiotropy by MR-Egger intercept (intercept =

−0.19, se = 0.12, p = 0.252), thus, the results of IVW and weighted

median should be more plausible. After the removal of outliers (SNP

rs10928560 and rs9937053) in MR-PRESSO, the corrected OR was

2.16 [95%CI [1.08, 4.34], p = 0.030] per 1-unit increase in log OR

of OSA. Also, the weighted median suggested a causal relationship

between OSA and T2D [OR = 1.76 [1.15, 2.71], weighted median

p = 0.010]. All the evidence indicated that the liability to OSA could

elevate the risk of T2D.

Besides, the MR results indicated that genetically-predicted OSA

could not be directly associated with the risk of NAFLD [OR

= 1.57 [0.42, 5.82], IVW p = 0.501] (Figures 2, 4A) and CHD

[OR = 1.16 [0.70, 1.91], IVW p = 0.560] (Figures 2, 5A). There

was neither heterogeneity nor horizontal pleiotropy in OSA-NAFLD

causal estimation (heterogeneity: Cochran’s Q = 5.41, Q p = 0.144;
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FIGURE 4

(A) The scatterplot of OSA-NAFLD results. Di�erent colors represent di�erent methods and each point is a single nucleotide polymorphism. The

horizontal and vertical lines of each point represent the 95% confidence interval of the e�ect size. (B) The leave-one-out-sensitivity forest plot of

OSA-NAFLD results.

pleiotropy: intercept=−0.24, se= 0.17, p= 0.302]. Also, no outliers

were detected for it. While in OSA-CHD estimation, there was slight

heterogeneity (Cochran’s Q= 10.24, Q p= 0.017), and the corrected

OR was 0.80 [95%CI [0.54, 1.20], p = 0.396] by MR-PRESSO. No

horizontal pleiotropy was detected (intercept = −0.10, se = 0.04,

p= 0.114).

After the removal of SNP rs9937053 located in FTO, the causal

association with T2D turned insignificant [OR = 1.30 [0.68, 2.50],

IVW p = 0.432]. No horizontal pleiotropy was observed (intercept

= −0.01, se = 0.13, p = 0.960). However, there was heterogeneity

(Cochrane’s Q = 8.82, Q p = 0.012). And the weighted median

also suggested a null association [OR = 1.42 [0.91, 2.21], weighted

median p = 0.124]. Besides, no significant association was observed

for CHD [OR = 0.93 [0.45, 1.91], IVW p = 0.842] and NAFLD [OR

= 0.65 [0.18, 2.37], IVW p = 0.513]. No heterogeneity or horizontal

pleiotropy was detected for OSA-CHD andOSA-NAFLD associations

(Cochran’s Q p > 0.05 and MR-Egger intercept p > 0.05). The single

IV analysis revealed that genetic predisposition to OSA can increase

the risk of T2D [OR = 1.36 [1.03, 1.80], p = 0.030] after adjustment

of BMI while not for NAFLD [OR= 1.45 [0.21, 9.85], p= 0.704] and

CHD [OR= 0.84 [0.66, 1.07], p= 0.153].

The leave-one sensitivity suggested that the SNP rs10928560

might drive the causal estimation in OSA-T2D (Figure 3B) and OSA-

NAFLD (Figure 4B) since its association was different from that of the

other 3 SNPs. After removing rs10928560, the genetic predisposition

to OSA would increase the risk of NAFLD [OR = 4.11 [1.14, 14.85],

IVW p = 0.031] and T2D [OR = 4.92 [1.50, 16.18], IVW p = 0.009]

(Figures 6, 7). And the estimates of IVW and weighted median

methods are similar. We did not find SNPs that could drive the

results in OSA-CHD estimation (Figure 5B). All statistical powers

were above 80%.

Generally, we observed that genetic liability to OSA could

increase the risk of T2D. However, such causation disappeared

after the removal of SNP rs9937053 in FTO, an obesity-related

gene. In leave-one-out sensitivity analysis, the genetic predisposition

to OSA could elevate the risk of T2D and NAFLD after

removing the driving SNP rs10928560. Besides, we did not discover

any association between OSA and CHD. There was no other

heterogeneity or horizontal pleiotropy detected in the analyses except

the abovementioned.

Discussion

Our MR study rules out the associations of genetically-predicted

OSA with the risk of T2D, NAFLD, and CHD in a robust way

and suggests that obesity-related genes might confound previous

observational findings.

A recent dose-response meta-analysis indicated that a linear

association should exist between OSA and T2D, and such an

association was still significant after the adjustment of BMI (29).

However, our MR analysis did not find a robust association,
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FIGURE 5

(A) The scatterplot of OSA-CHD results. Di�erent colors represent di�erent methods and each point is a single nucleotide polymorphism. The horizontal

and vertical lines of each point represent the 95% confidence interval of the e�ect size. (B) The leave-one-out-sensitivity forest plot of OSA-CHD results.

suggesting the previous finding might be mediated by obesity as

the OSA-T2D association turned insignificant after the removal of

SNP rs9937053 in FTO, an obesity-related gene. The relationship

between OSA and BMI has been well recognized where a shared

genetic background of them was reported and obesity played (30) an

important role in the initiation of OSA (16). It should be noted that

obesity is not always linked to an increased risk of cardiometabolic

diseases and that accounting for metabolically healthy obesity (31)

may provide clearer results about the proposed pathophysiological

relationships. This might account for the heterogeneity in the

MR results and why the OSA-T2D association turned insignificant

after the removal of SNP rs9937053 in FTO. However, we cannot

separate the effects of metabolically healthy and unhealthy obesity

due to the unavailability of individual-level data, which needs

further exploration. A higher risk for OSA could lead to an

increased level of glycated hemoglobin (HbA1c) (32), and many

studies reported that sleep restriction, intermittent hypoxia, and

sleep fragmentation could lead to compromised insulin sensitivity

in healthy individuals (33–35). Moreover, experimental studies have

shown that intermittent hypoxia and sleep fragmentation can cause

β-cell dysfunction or β-cell death (36). Additionally, it was reported

that OSA can increase the T2D risk via the alteration of circadian

rhythm (37). The possible intermediary pathways include increased

sympathetic activity, altered hypothalamic-pituitary-adrenal axis,

increased oxidative stress, activation of inflammatory pathways, and

altered levels of circulating adipokines (38).

Many studies have implicated that the association of OSA

with the initiation and development of NAFLD is independent

of obesity or other shared risk factors (6). A recent large meta-

analysis confirmed the strong association between the severity of OSA

and steatosis (39). And previous large meta-analysis demonstrated

that OSA was associated with higher triglycerides, low-density

lipoprotein (LDL), and total cholesterol concentrations, as well as

lower HDL concentrations after analyzing 107 datasets with over

18,000 patients (40). All the evidence corroborated the strong

association between OSA and NAFLD. Our MR analysis found a

high risk of OSA could elevate the risk of NAFLD after removing

the SNP rs10928560 which could drive the result. This result

further lent support to the OSA-NAFLD association. The OSA

usually leads to sleep fragmentation, intrathoracic pressure swings,

hypercapnia and intermittent hypoxia (41, 42). Rodent models

suggested that the hypoxic status associated with OSA could play an

important role in the development of dyslipidemia in OSA. Chronic

intermittent hypoxia in obese mice could increase liver triglyceride

concentration (43), promote hepatic lipid biosynthesis (43), and in

lean mice, it could elevate total cholesterol and LDL concentrations

(44), and induce atherosclerosis (45). These results help to explain

why the genetic predisposition to OSA can increase the risk of

NAFLD. However, NAFLD is also not homogenous regarding its

pathophysiology and particularly genetically-induced fatty liver is,

in most cases, not associated with an increased cardiometabolic risk

(46). The innate heterogeneity of NAFLD might lead to opposite
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FIGURE 6

(A) The scatterplot of OSA-T2D results after removal of SNP rs10928560. Di�erent colors represent di�erent methods and each point is a single

nucleotide polymorphism. The horizontal and vertical lines of each point represent the 95% confidence interval of the e�ect size. (B) The scatterplot of

OSA-NAFLD results after removal of SNP rs10928560. Di�erent colors represent di�erent methods and each point is a single nucleotide polymorphism.

The horizontal and vertical lines of each point represent the 95% confidence interval of the e�ect size.

effects caused by OSA, and these effects might cancel out each other

leading to a null association.

We did not discover a causal relationship betweenOSA andCHD,

and this result is inconsistent with many previous studies where that

suggested a high risk of OSA could elevate the risk of CHD (47).

Also, a recent meta-analysis indicated OSA, especially severe OSA,

is associated with reduced coronary flow reserve (48). Recently, Li

et al. performed an MR analysis and found that genetically-predicted

OSA should increase the risk of heart failure, however, the OSA-

CHD association was not significant either. Li et al. included the

SNPs rs9937053 and rs185932673 in their MR analyses, however,

we removed them to avoid the bias caused by horizontal pleiotropy

and imprecise statistical estimates since the SNP rs9937053 is located

in the FTO gene, which is closely associated with obesity and the

allele frequency of SNP rs185932673 is extremely low (< 0.01), which

might cause statistical issues. Thus, we removed them in the main

analysis. Additionally, we also included the SNPs rs9937053 in the

supplementary analyses and found that genetic susceptibility to OSA

should increase the risk of T2D [OR = 3.58 [1.06, 12.11], IVW-p

= 0.040], suggesting the FTO variant should have a great impact

on the results. To give conservative results, we chose to remove two

ineligible SNPs in the main analysis and obtained negative results.

OSA is common in patients with heart failure, stroke, and atrial

fibrillation (49). Many studies have emphasized nuclear factor (NF)-

κB–mediated pathways where rapid reoxygenation at the end of

apnea produces free radicals, accelerating the reaction of oxidative

stress and up-regulation of nuclear factor-κB (50). The pathogenesis

of OSA can be attributed to another molecular signature called

increased catecholamines, which is consistent with perturbations

in the autonomic nervous system. As explained in NAFLD, OSA

could disturb lipid metabolism, elevate total cholesterol and LDL

concentrations (44), and induce atherosclerosis (45). All these mean

OSA should be associated with CHD no matter of epidemiological or

experimental studies and we cannot rule out their causal relationship

merely based on MR results. This MR analysis failed to detect such

association, and several reasons might account for it: (1) The strict

criteria of IV selection might reduce the statistical power and lead

to an increased false negative rate. This is common in MR analysis;

(2) We failed to observed the total effect of OSA on CHD, but

we cannot disregard the possibility that OSA can lead to CHD via

mediated ways, such as obesity, T2D, and NAFLD; (3) The direct and

indirect effects can cancel out and further result in null association,

possibly due to undetected mediators. Another important aspect is

that the OSA might be caused by CHD or obesity, which might

lead to the observed association between OSA and cardiometabolic

diseases, however, the observed association did not indicate that OSA

was a risk factor and such reverse causation for CHD-OSA cannot

be assessed currently due to a lack of full summary statistics of OSA

GWAS. These potential reasons warrant further investigations into

the causal relationship between OSA and CHD.

Our MR study strengthens the OSA-T2D and OSA-NAFLD

causal associations using a robust causal inference method. However,
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FIGURE 7

(A) The leave-one-out-sensitivity forest plot of OSA-T2D results after removal of SNP rs10928560. (B) The leave-one-out-sensitivity forest plot of

OSA-NAFLD results after removal of SNP rs10928560.

we have to clarify several limitations for future investigations: (1)

Horizontal pleiotropy is the main issue in MR analysis and our

study is no exception. We have applied MR-Egger interception and

MR-PRESSO to evaluate it. Furthermore, we excluded the SNP

rs9937053 in the FTO gene and reevaluate the result. It should

be noted that the OSA-T2D association became insignificant after

the removal of SNP rs9937053 and we deemed obesity might play

an important role in OSA-T2D association. However, considering

that SNP rs9937053 was still significantly associated with OSA

after adjustment of BMI, we still included it in our main analysis.

(2) Since OSA is a binary exposure, we cannot appropriately

appraise the selection bias and exclusive restriction bias due to data

limitations. (3) Neither multivariable nor mediation MR analysis can

be performed to disentangle the mediation effects and we cannot

include more genetic instruments because of the unavailability of

the full summary GWAS statistics for OSA. (4) We are mainly

focused on the European population and the generalizability of

our conclusion is limited. We cannot easily expand our conclusion

to other populations. (5) The relationship between the severity

of OSA and other parameters cannot be assessed due to a lack

of individual-level data. Overall, such negative results pinpointed

that OSA might not directly affect T2D, NAFLD, and CHD if

not using the SNP shared by OSA and obesity. Obesity might

be a key factor that links OSA to T2D, NAFLD and CHD,

which should be paid attention to in future clinical and scientific

research work.

Conclusion

This MR analysis indicated that genetically-

predicted OSA might not affect the risk of type 2

diabetes, nonalcoholic fatty liver disease and coronary

heart disease.
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SUPPLEMENTARY FIGURE 1

(A) The scatterplot of OSA-T2D results after removal of SNP rs9937053.

Di�erent colors represent di�erent methods and each point is a single

nucleotide polymorphism. The horizontal and vertical lines of each point

represent the 95% confidence interval of the e�ect size. (B) The

leave-one-out-sensitivity forest plot of OSA-T2D results after removal of SNP

rs9937053.

SUPPLEMENTARY FIGURE 2

(A) The scatterplot of OSA-NAFLD results after removal of SNP rs9937053.

Di�erent colors represent di�erent methods and each point is a single

nucleotide polymorphism. The horizontal and vertical lines of each point

represent the 95% confidence interval of the e�ect size. (B) The

leave-one-out-sensitivity forest plot of OSA-NAFLD results after removal of

SNP rs9937053.

SUPPLEMENTARY FIGURE 3

(A) The scatterplot of OSA-CHD results after removal of SNP rs9937053.

Di�erent colors represent di�erent methods and each point is a single

nucleotide polymorphism. The horizontal and vertical lines of each point

represent the 95% confidence interval of the e�ect size. (B) The

leave-one-out-sensitivity forest plot of OSA-CHD results after removal of SNP

rs9937053.

References

1. Senaratna CV, Perret JL, Lodge CJ, Lowe AJ, Campbell BE, Matheson MC, et al.
Prevalence of obstructive sleep apnea in the general population: a systematic review. Sleep
Med Rev. (2017) 34:70–81. doi: 10.1016/j.smrv.2016.07.002

2. Bottaz-Bosson G, Midelet A, Mendelson M, Borel JC, Martinot JB, Le
Hy R, et al. Remote monitoring of positive airway pressure data: challenges,
pitfalls and strategies to consider for optimal data science applications. Chest.
(2022). doi: 10.1016/j.chest.2022.11.034

3. Paschou SA, Bletsa E, Saltiki K, Kazakou P, Kantreva K, Katsaounou P, et al. Sleep
apnea and cardiovascular risk in patients with prediabetes and type 2 diabetes. Nutrients.
(2022) 14. doi: 10.3390/nu14234989

4. Rundo JV. Obstructive sleep apnea basics. Cleve Clin J Med. (2019) 86(9 Suppl 1):2–
9. doi: 10.3949/ccjm.86.s1.02

5. Fu Y, Xia Y, Yi H, Xu H, Guan J, Yin S. Meta-analysis of all-cause and cardiovascular
mortality in obstructive sleep apnea with or without continuous positive airway pressure
treatment. Sleep Breath. (2017) 21:181–9. doi: 10.1007/s11325-016-1393-1

6. Mesarwi OA, Loomba R, Malhotra A. Obstructive sleep apnea, hypoxia, and
nonalcoholic fatty liver disease. Am J Respir Crit Care Med. (2019) 199:830–
41. doi: 10.1164/rccm.201806-1109TR

7. Strausz S, Havulinna AS, Tuomi T, Bachour A, Groop L, Mäkitie A, et al.
Obstructive sleep apnoea and the risk for coronary heart disease and type 2
diabetes: a longitudinal population-based study in Finland. BMJ Open. (2018)
8:e022752. doi: 10.1136/bmjopen-2018-022752

8. Khalil M, Power N, Graham E, Deschênes SS, Schmitz N. The association between
sleep and diabetes outcomes - a systematic review. Diabetes Res Clin Pract. (2020)
161:108035. doi: 10.1016/j.diabres.2020.108035

9. Liu Z, Zhang Y, Graham S, Wang X, Cai D, Huang M, et al. Causal relationships
between NAFLD, T2D and obesity have implications for disease subphenotyping. J
Hepatol. (2020) 73:263–76. doi: 10.1016/j.jhep.2020.03.006

10. Ren Z, Simons P, Wesselius A, Stehouwer CDA, Brouwers M. Relationship between
NAFLD and coronary artery disease: a Mendelian randomization study. Hepatology.
(2022) 77:230–8. doi: 10.1002/hep.32534

11. Goodarzi MO, Rotter JI. Genetics insights in the relationship between
type 2 diabetes and coronary heart disease. Circ Res. (2020) 126:1526–
48. doi: 10.1161/CIRCRESAHA.119.316065

12. Smith GD, Ebrahim S. ’Mendelian randomization’: can genetic epidemiology
contribute to understanding environmental determinants of disease? Int J Epidemiol.
(2003) 32:1–22. doi: 10.1093/ije/dyg070

13. Voight BF, Peloso GM, Orho-Melander M, Frikke-Schmidt R, Barbalic M, Jensen
MK, et al. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian
randomisation study. Lancet. (2012) 380:572–80. doi: 10.1016/S0140-6736(12)60312-2

14. Bos MM, van Heemst D, Donga E, de Mutsert R, Rosendaal FR, Blauw GJ, et al.
The association between habitual sleep duration and sleep quality with glycemic traits:
assessment by cross-sectional and mendelian randomization analyses. J Clin Med. (2019)
8. doi: 10.3390/jcm8050682

15. Li J, Zhao L, Ding X, Cui X, Qi L, Chen Y. Obstructive sleep apnea and
the risk of Alzheimer’s disease and Parkinson disease: a Mendelian randomization
study OSA, Alzheimer’s disease and Parkinson disease. Sleep Med. (2022) 97:55–
63. doi: 10.1016/j.sleep.2022.06.004

16. Strausz S, Ruotsalainen S, Ollila HM, Karjalainen J, Kiiskinen T, Reeve M,
et al. Genetic analysis of obstructive sleep apnoea discovers a strong association with
cardiometabolic health. Eur Respir J. (2021) 57. doi: 10.1183/13993003.03091-2020

17. Zhou W, Nielsen JB, Fritsche LG, Dey R, Gabrielsen ME, Wolford
BN, et al. Efficiently controlling for case-control imbalance and sample
relatedness in large-scale genetic association studies. Nat Genet. (2018)
50:1335–41. doi: 10.1038/s41588-018-0184-y

18. Nikpay M, Goel A, Won HH, Hall LM, Willenborg C, Kanoni S, et al.
A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of
coronary artery disease. Nat Genet. (2015) 47:1121–30. doi: 10.1038/ng.3396

19. Xue A, Wu Y, Zhu Z, Zhang F, Kemper KE, Zheng Z, et al. Genome-wide
association analyses identify 143 risk variants and putative regulatory mechanisms
for type 2 diabetes. Nat Commun. (2018) 9:2941. doi: 10.1038/s41467-018-0
4951-w

20. Anstee QM, Darlay R, Cockell S, Meroni M, Govaere O, Tiniakos D, et al. Genome-
wide association study of non-alcoholic fatty liver and steatohepatitis in a histologically
characterised cohort(?). J Hepatol. (2020) 73:505–15. doi: 10.1016/j.jhep.2020.04.003

21. Borel AL. Sleep apnea and sleep habits: relationships with metabolic syndrome.
Nutrients. (2019) 11. doi: 10.3390/nu11112628

22. Burgess S, Davies NM, Thompson SG. Bias due to participant overlap in two-sample
Mendelian randomization. Genet Epidemiol. (2016) 40:597–608. doi: 10.1002/gepi.21998

23. Loos RJ, Yeo GS. The bigger picture of FTO: the first GWAS-identified obesity gene.
Nat Rev Endocrinol. (2014) 10:51–61. doi: 10.1038/nrendo.2013.227

24. Chen L, Yang H, Li H, He C, Yang L, Lv G. Insights into modifiable risk
factors of cholelithiasis: a Mendelian randomization study. Hepatology. (2022) 75:785–
96. doi: 10.1002/hep.32183

25. Burgess S, Thompson SG. Interpreting findings from Mendelian
randomization using the MR-egger method. Eur J Epidemiol. (2017)
32:377–89. doi: 10.1007/s10654-017-0255-x

26. Verbanck M, Chen CY, Neale B, Do R. Detection of widespread horizontal
pleiotropy in causal relationships inferred from Mendelian randomization between
complex traits and diseases. Nat Genet. (2018) 50:693–8. doi: 10.1038/s41588-018-0099-7

Frontiers in Psychiatry 09 frontiersin.org

https://doi.org/10.3389/fpsyt.2023.1068756
https://www.frontiersin.org/articles/10.3389/fpsyt.2023.1068756/full#supplementary-material
https://doi.org/10.1016/j.smrv.2016.07.002
https://doi.org/10.1016/j.chest.2022.11.034
https://doi.org/10.3390/nu14234989
https://doi.org/10.3949/ccjm.86.s1.02
https://doi.org/10.1007/s11325-016-1393-1
https://doi.org/10.1164/rccm.201806-1109TR
https://doi.org/10.1136/bmjopen-2018-022752
https://doi.org/10.1016/j.diabres.2020.108035
https://doi.org/10.1016/j.jhep.2020.03.006
https://doi.org/10.1002/hep.32534
https://doi.org/10.1161/CIRCRESAHA.119.316065
https://doi.org/10.1093/ije/dyg070
https://doi.org/10.1016/S0140-6736(12)60312-2
https://doi.org/10.3390/jcm8050682
https://doi.org/10.1016/j.sleep.2022.06.004
https://doi.org/10.1183/13993003.03091-2020
https://doi.org/10.1038/s41588-018-0184-y
https://doi.org/10.1038/ng.3396
https://doi.org/10.1038/s41467-018-04951-w
https://doi.org/10.1016/j.jhep.2020.04.003
https://doi.org/10.3390/nu11112628
https://doi.org/10.1002/gepi.21998
https://doi.org/10.1038/nrendo.2013.227
https://doi.org/10.1002/hep.32183
https://doi.org/10.1007/s10654-017-0255-x
https://doi.org/10.1038/s41588-018-0099-7
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Ding et al. 10.3389/fpsyt.2023.1068756

27. Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, et al. The MR-
Base platform supports systematic causal inference across the human phenome. Elife.
(2018) 7. doi: 10.7554/eLife.34408

28. Brion MJ, Shakhbazov K, Visscher PM. Calculating statistical power in Mendelian
randomization studies. Int J Epidemiol. (2013) 42:1497–501. doi: 10.1093/ije/dyt179

29. Qie R, Zhang D, Liu L, Ren Y, Zhao Y, Liu D, et al. Obstructive sleep apnea and risk
of type 2 diabetes mellitus: a systematic review and dose-response meta-analysis of cohort
studies. J Diabetes. (2020) 12:455–64. doi: 10.1111/1753-0407.13017

30. Xu J, Long YS, Gozal D, Epstein PN. Beta-cell death and proliferation after
intermittent hypoxia: role of oxidative stress. Free Radic Biol Med. (2009) 46:783–
90. doi: 10.1016/j.freeradbiomed.2008.11.026

31. Stefan N. Causes, consequences, and treatment of metabolically
unhealthy fat distribution. Lancet Diabetes Endocrinol. (2020) 8:616–
27. doi: 10.1016/S2213-8587(20)30110-8

32. Tan X, Benedict C. Sleep characteristics and HbA1c in patients with type
2 diabetes on glucose-lowering medication. BMJ Open Diabetes Res Care. (2020)
8. doi: 10.1136/bmjdrc-2020-001702

33. Reutrakul S, Van Cauter E. Interactions between sleep, circadian function, and
glucose metabolism: implications for risk and severity of diabetes. Ann N Y Acad Sci.
(2014) 1311:151–73. doi: 10.1111/nyas.12355

34. Broussard JL, Ehrmann DA, Van Cauter E, Tasali E, Brady MJ.
Impaired insulin signaling in human adipocytes after experimental sleep
restriction: a randomized, crossover study. Ann Intern Med. (2012)
157:549–57. doi: 10.7326/0003-4819-157-8-201210160-00005

35. Stamatakis KA, Punjabi NM. Effects of sleep fragmentation on glucose metabolism
in normal subjects. Chest. (2010) 137:95–101. doi: 10.1378/chest.09-0791

36. Donga E, van Dijk M, van Dijk JG, Biermasz NR, Lammers GJ, van Kralingen
KW, et al. A single night of partial sleep deprivation induces insulin resistance in
multiplemetabolic pathways in healthy subjects. J Clin EndocrinolMetab. (2010) 95:2963–
8. doi: 10.1210/jc.2009-2430

37. Cambras T, Romero O, Díez-Noguera A, Lecube A, Sampol G. Circadian patterns
of patients with type 2 diabetes and obstructive sleep apnea. J Clin Med. (2021)
10. doi: 10.3390/jcm10020244

38. Reutrakul S, Mokhlesi B. Obstructive sleep apnea and diabetes: a state of the art
review. Chest. (2017) 152:1070–86. doi: 10.1016/j.chest.2017.05.009

39. Jullian-Desayes I, Trzepizur W, Boursier J, Joyeux-Faure M, Bailly S, Benmerad
M, et al. Obstructive sleep apnea, chronic obstructive pulmonary disease and
NAFLD: an individual participant data meta-analysis. Sleep Med. (2021) 77:357–
64. doi: 10.1016/j.sleep.2020.04.004

40. Nadeem R, Singh M, Nida M, Waheed I, Khan A, Ahmed S, et al. Effect of
obstructive sleep apnea hypopnea syndrome on lipid profile: a meta-regression analysis. J
Clin Sleep Med. (2014) 10:475–89. doi: 10.5664/jcsm.3690

41. Chopra S, Polotsky VY, Jun JC. Sleep apnea research in animals. Past, present, and
future. Am J Respir Cell Mol Biol. (2016) 54:299–305. doi: 10.1165/rcmb.2015-0218TR

42. Dempsey JA, Veasey SC,Morgan BJ, O’Donnell CP. Pathophysiology of sleep apnea.
Physiol Rev. (2010) 90:47–112. doi: 10.1152/physrev.00043.2008

43. Li J, Grigoryev DN, Ye SQ, Thorne L, Schwartz AR, Smith PL, et al. Chronic
intermittent hypoxia upregulates genes of lipid biosynthesis in obese mice. J Appl Physiol.
(2005) 99:1643–8. doi: 10.1152/japplphysiol.00522.2005

44. Li J, Savransky V, Nanayakkara A, Smith PL, O’Donnell CP,
Polotsky VY. Hyperlipidemia and lipid peroxidation are dependent on the
severity of chronic intermittent hypoxia. J Appl Physiol. (2007) 102:557–
63. doi: 10.1152/japplphysiol.01081.2006

45. Jun J, Reinke C, Bedja D, Berkowitz D, Bevans-Fonti S, Li J, et al.
Effect of intermittent hypoxia on atherosclerosis in apolipoprotein E-deficient mice.
Atherosclerosis. (2010) 209:381–6. doi: 10.1016/j.atherosclerosis.2009.10.017

46. Stefan N, Cusi K. A global view of the interplay between non-
alcoholic fatty liver disease and diabetes. Lancet Diabetes Endocrinol. (2022)
10:284–96. doi: 10.1016/S2213-8587(22)00003-1

47. Bradley TD, Floras JS. Obstructive sleep apnoea and its cardiovascular
consequences. Lancet. (2009) 373:82–93. doi: 10.1016/S0140-6736(08)61622-0

48. Zhang RH, Zhao W, Shu LP, Wang N, Cai YH, Yang JK, et al. Obstructive sleep
apnea is associated with coronary microvascular dysfunction: a systematic review from a
clinical perspective. J Sleep Res. (2020) 29:e13046. doi: 10.1111/jsr.13046

49. Kasai T. Sleep apnea and heart failure. J Cardiol. (2012) 60:78–
85. doi: 10.1016/j.jjcc.2012.05.013

50. De Luca Canto G, Pachêco-Pereira C, Aydinoz S, Major PW, Flores-Mir C,
Gozal D. Diagnostic capability of biological markers in assessment of obstructive
sleep apnea: a systematic review and meta-analysis. J Clin Sleep Med. (2015) 11:27–
36. doi: 10.5664/jcsm.4358

Frontiers in Psychiatry 10 frontiersin.org

https://doi.org/10.3389/fpsyt.2023.1068756
https://doi.org/10.7554/eLife.34408
https://doi.org/10.1093/ije/dyt179
https://doi.org/10.1111/1753-0407.13017
https://doi.org/10.1016/j.freeradbiomed.2008.11.026
https://doi.org/10.1016/S2213-8587(20)30110-8
https://doi.org/10.1136/bmjdrc-2020-001702
https://doi.org/10.1111/nyas.12355
https://doi.org/10.7326/0003-4819-157-8-201210160-00005
https://doi.org/10.1378/chest.09-0791
https://doi.org/10.1210/jc.2009-2430
https://doi.org/10.3390/jcm10020244
https://doi.org/10.1016/j.chest.2017.05.009
https://doi.org/10.1016/j.sleep.2020.04.004
https://doi.org/10.5664/jcsm.3690
https://doi.org/10.1165/rcmb.2015-0218TR
https://doi.org/10.1152/physrev.00043.2008
https://doi.org/10.1152/japplphysiol.00522.2005
https://doi.org/10.1152/japplphysiol.01081.2006
https://doi.org/10.1016/j.atherosclerosis.2009.10.017
https://doi.org/10.1016/S2213-8587(22)00003-1
https://doi.org/10.1016/S0140-6736(08)61622-0
https://doi.org/10.1111/jsr.13046
https://doi.org/10.1016/j.jjcc.2012.05.013
https://doi.org/10.5664/jcsm.4358
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org

	Mendelian randomization reveals no associations of genetically-predicted obstructive sleep apnea with the risk of type 2 diabetes, nonalcoholic fatty liver disease, and coronary heart disease
	Introduction
	Methods
	Data description and study design
	Instrumental variable selection
	Statistical analysis
	Sensitivity analysis and power calculation

	Results
	Discussion
	Conclusion
	Data availability statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


