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Amygdala’s T1-weighted image
radiomics outperforms volume
for di�erentiation of anxiety
disorder and its subtype

Qingfeng Li1†, Wenzheng Wang1† and Zhishan Hu1,2*

1Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China,
2State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China

Introduction: Anxiety disorder is the most common psychiatric disorder among

adolescents, with generalized anxiety disorder (GAD) being a common subtype

of anxiety disorder. Current studies have revealed abnormal amygdala function

in patients with anxiety compared with healthy people. However, the diagnosis

of anxiety disorder and its subtypes still lack specific features of amygdala from

T1-weighted structural magnetic resonance (MR) imaging. The purpose of our

study was to investigate the feasibility of using radiomics approach to distinguish

anxiety disorder and its subtype from healthy controls on T1-weighted images of

the amygdala, and provide a basis for the clinical diagnosis of anxiety disorder.

Methods: T1-weightedMR images of 200 patients with anxiety disorder (including

103 GAD patients) as well as 138 healthy controls were obtained in the Healthy

Brain Network (HBN) dataset. We extracted 107 radiomics features for the left and

right amygdala, respectively, and then performed feature selection using the 10-

fold LASSO regression algorithm. For the selected features, we performed group-

wise comparisons, and use di�erent machine learning algorithms, including linear

kernel support vector machine (SVM), to achieve the classification between the

patients and healthy controls.

Results: For the classification task of anxiety patients vs. healthy controls, 2 and

4 radiomics features were selected from left and right amygdala, respectively, and

the area under receiver operating characteristic curve (AUC) of linear kernel SVM

in cross-validation experiments was 0.6739±0.0708 for the left amygdala features

and 0.6403±0.0519 for the right amygdala features; for classification task for GAD

patients vs. healthy controls, 7 and 3 features were selected from left and right

amygdala, respectively, and the cross-validation AUCs were 0.6755±0.0615 for

the left amygdala features and 0.6966±0.0854 for the right amygdala features.

In both classification tasks, the selected amygdala radiomics features had higher

discriminatory significance and e�ect sizes compared with the amygdala volume.

Discussion: Our study suggest that radiomics features of bilateral amygdala

potentially could serve as a basis for the clinical diagnosis of anxiety disorder.
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anxiety disorder, generalized anxiety disorder, magnetic resonance imaging, amygdala,

radiomics
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1. Introduction

As a common brain and behavioral disorder (1), anxiety

disorder manifests primarily as excessive fear, worry and avoidance,

leading to severe emotional distress, physical illness, cognitive, and

behavioral impairments, which further impairs social functioning

and quality of life (2). Generalized anxiety disorder (GAD) is a

common subtype of anxiety disorder, which is characterized by

chronic, excessive anxiety, and worry accompanied by somatic

symptoms such as restless, muscle tension, cardiopalmus, and sleep

disturbance. The diagnosis of anxiety disorder and its subtypes

mainly bases on the presenting symptom, which is subjective

and is heavily influenced by the experience of psychiatrist.

Biomarkers from neuroimaging, genetics, neurochemistry, and

neurophysiology are in critical need for more precise identification

of patients with anxiety disorder.

Amygdala plays an important role in the development of

anxiety disorder and its subtypes (3, 4). A resting state fMRI study

found that adult GAD patients exhibited decreased amygdala sub-

regions functional connectivity with the cingulate gyrus insula (5).

In addition, numerous structural MR imaging studies have revealed

alterations in the volume of the amygdala and its microstructures in

patients with anxiety disorder and its subtypes (6–10).

The T1-weighted structural magnetic resonance (MR) imaging

is necessary for the spatial registration of other MRI scan. Using

the T1-weighted MR imaging only as a biomarker for mental

disorders would save a lot of time. Radiomics is a candidate

technique to achieve this. Radiomics uses different automated

feature extraction algorithms to transform medical images to

multi-dimensional advanced quantitative imaging features with

high throughput (11, 12). It can be used to explore inherent

relationships between image features and clinical diagnosis and

symptom presentation. Radiomics was first used in the evaluation

of tumor-like diseases (13, 14), and has recently been applied

to investigate neurodegenerative diseases (15–18) and psychiatric

disorders (19–22).

The T1-weighted MR images are also suitable for radiomics

analysis. Previous studies have reported that radiomics features

of T1-weighted MR images can be used to distinguish mental

disorders such as schizophrenia (19), panic disorder (23),

Parkinson’s disease with depression (24), and temporal lobe

epilepsy (25). Yet, to the best of our knowledge, this technique has

not been used for the detection of anxiety disorders.

In this study, we performed radiomic analysis on the high-

resolution T1-weighted MR images of bilateral amygdala. Using

radiomics features of bilateral amygdala extracted from T1-

weighted MR images, we aim to evaluate their feasibility in

differentiating anxiety disorders and one of its subtypes (i.e., GAD)

from the healthy population.

2. Material and methods

2.1. Dataset

We analyzed dataset from Child Mind Institute Healthy Brain

Network (HBN) (26). The HBN protocol consists of four 3-

h sessions collecting general information, behavioral measures,

diagnostic assessments, and neuroimaging data. Details of the

data acquisition were provided in HBN webpages.1 Psychiatric

diagnoses were assessed and reported by clinicians according to

DSM-5 criteria (27). Among 2,743 subjects in release 1–9 with

T1-weighted MR images, we restricted inclusion to participants

with diagnosis of anxiety disorder. These patients were further

categorized into separation anxiety, specific phobia, GAD, social

anxiety and other specified anxiety disorders. Considering the

sample size, we selected GAD as a typical subtype of anxiety

disorder for our study. After the data quality control (see

“Processing” section), 338 participants with 138 healthy controls

(HC), 200 patients with anxiety disorders (include 103 GAD

patients) were included for further analysis. We randomly sampled

2/3 of the above data into training set and the rest as test set. Feature

selection were performed on the training set, and the test set was

used as independent validation data to avoid data leakage (Table 1).

Note that feature selection, and subsequent machine learning

experiments were performed independently for the Anxiety vs. HC

and GAD vs. HC tasks.

2.2. Processing

Quality control using Computational Anatomy Toolbox

12 (CAT12) (28) was performed on T1-weighted MR images.

CAT 12 includes various image quality control options,

include image resolution, noise, bias field, and weighted

overall image quality. Subjects with weighted overall image

quality scores of “C+” or lower level were excluded. The

remained images were further pre-processed using the standard

FreeSurfer recon-all pipeline (version 6.0.0) (29). A probabilistic

subcortical structure atlas (i.e., aseg atlas) (30) was used to

generate an automated segmentation of bilateral amygdala

in native space. The segmentation results were checked by

visual inspection.

2.3. Radiomics feature extraction

The workflow of our study is shown in Figure 1. PyRadiomics

(version 3.0.1) (31), an open-access Python toolkit, was used to

extract radiomics features. Radiomics features were calculated

using T1-weighted images of left or right amygdala, respectively,

which included 18 first-order statistics features, 14 3D shape-based

features, 24 gray level co-occurrence matrix (GLCM) features,

16 gray level run length matrix (GLRLM) features, 16 gray level

size zone matrix (GLSZM) features, five neighboring gray tone

difference matrix (NGTDM) features and 14 gray level dependence

matrix (GLDM) features (Supplementary Table 7). In specific, the

first-order statistics describes the distribution of voxel intensities

within the image region defined by the mask through commonly

used and basic metrics. 3D shape-based features are descriptors

of the 3D size and shape of the ROI, i.e., amygdala, which

are independent from the gray-level intensity distribution in the

ROI. GLCM obtains the co-occurrence matrix by counting the

1 http://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network
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probability of the occurrence of pixel pairs in different directions

and displacement vectors. It describes the complexity of the lesion,

the level variation, and the degree of texture thickness (32, 33).

GLRLM obtains the length matrix by calculating the probability

of the pixels appearing repeatedly in succession with different

directions and displacement vectors, and describes the complexity

of the lesion, the level variation and the degree of texture thickness

(34). GLSZM quantifies gray level zones in an image (a gray level

zone is defined as the number of connected voxels that share the

same gray level intensity) (35). NGTDM quantifies the difference

between a gray value and the average gray value of its neighbors

(36). LDM quantifies gray level dependencies in an image (a gray

level dependency is defined as the number of connected voxels that

are dependent on the center voxel) (37).

2.4. Statistical analysis

2.4.1. Feature selection
The range of radiomics features were rescaled via z-

score normalization. Feature selection was performed on the

training dataset from the left and right amygdala, respectively,

using the least absolute shrinkage and selection operator

(LASSO) regression model with 10-fold cross-validation

(Figure 2).

2.4.2. General linear model
Group differences regarding the selected features were

tested on the test data. Age, gender and total intracranial

volume (TIV) information were also modeled into the

GLM. In addition, the volume of the amygdala was also

involved in group-wise comparison as a reference to assess

the effect of radiomics features. The p-values were corrected

using Benjamini-Hochberg false discovery rate (FDR)

correction method. Further Cohen’s d (38) was used to

measure the effect size of the difference between patients and

HC groups.

2.4.3. Machine learning
Further, linear kernel support vector machine (SVM) (39), a

classic machine learning model was used to classify the diagnostic

groups. In addition, to verify the performance of radiomics features

on different machine learning algorithms, we also used four other

effective algorithms, including Radial Basis Function (RBF) kernel

SVM, random forest (40), extreme gradient boosting (XGBoost)

(41), and Gradient Boosting Decision Tree (GBDT) (42). Details

of the parameters of the above algorithms are shown in Table 2.

For the radiomics features and volume metric, we also further

tried to train models by combining features from the left and

right amygdala to verify whether such operation could improve

the classification performance. In specific, we used 5-fold cross-

validation approach for model validation, and models were trained

and tested using the abovementioned selected radiomics features.

The model performance was evaluated by the area under curve

(AUC) of the receiver operator curve (ROC) for the classification of

diagnostic groups.
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FIGURE 1

The workflow of this study.

FIGURE 2

Bilateral amygdala radiomics feature coe�cients-lambda graph of the LASSO dimensionality reduction of di�erent tasks. (A) Left amygdala features

in Anxiety disorder vs. HC task; (B) right amygdala features in Anxiety disorder vs. HC task; (C) left amygdala features in GAD vs. HC task; (D) right

amygdala features in GAD vs. HC task.
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TABLE 2 Details of the parameters of the used machine learning

algorithms.

Algorithm Parameter name Parameter setting

Linear kernel SVM C 1

Kernel Linear kernel

Tolerance 1e-3

RBF kernel SVM C 1

Kernel RBF kernel

Tolerance 1e-3

Random forest Estimators number 100

Criterion Gini index

Minimal sample split 2

Minimal samples leaf 1

XGBoost Base score 0.5

Gamma 0

Learning rate 0.1

Maximum depth 10

Estimators number 100

GBDT Loss Deviance

Learning rate 0.1

Estimators number 100

Criterion Friedman mean squared

error

SVM, support vector machine; RBF, Radial basis function; XGBoost, extreme gradient

boosting; GBDT, Gradient boosting decision tree (GBDT).

3. Results

3.1. Anxiety disorder vs. HC radiomics
feature analysis

Using 10-fold LASSO regression model, we selected 2-

dimensional features (i.e., small dependence emphasis and small

dependence high gray level emphasis) for the left amygdala,

and 4-dimensional features (i.e., maximum 2D diameter column,

interquartile range, small dependence emphasis, and gray level

non-uniformity normalized) for the right amygdala.

3.2. Anxiety disorder vs. HC radiomics
feature group-wise comparison

For left amygdala, results of group-wise comparison reveals that

there were significant differences between anxiety disorder patients

and HC group on two selected radiomics features (Figure 3A). As

a comparison, no significant difference in left amygdala volume

was found between anxiety disorder patients and HC group.

The absolute values of the effect sizes of the two radiomics

features were also larger than the amygdala volume. For the right

amygdala, three radiomics features (i.e., interquartile range, small

dependence emphasis, and gray level non-uniformity normalized)

and amygdala volume were significantly different between anxiety

disorder patients and HC group, and results of the interquartile

range and small dependence emphasis was more significant

than amygdala volume in group-wise comparison (Figure 3B). In

addition, the values of the effect size of the interquartile range, small

dependence emphasis, and gray level non-uniformity normalized

were also larger than the amygdala volume (Table 3).

3.3. Anxiety disorder vs. HC classification

Results of cross-validation experiments showed that

the linear kernel SVM models trained separately using

selected left/right amygdala radiomics features achieved the

classification of anxiety disorder vs. HC. Specifically, SVM

trained using two-dimension left amygdala radiomics features

achieved classification AUC of 0.6739, and the SVM model

trained using four-dimension right amygdala radiomics

features achieved classification AUC of 0.6403 (Figures 4A, B,

Supplementary Tables 1, 2). For the left/right amygdala, the

classification performance of various machine learning algorithms

trained with radiomics features were higher than the performance

of classifiers trained with amygdala volume (Figures 4A, B, D, E,

Supplementary Tables 1–4). Combining features from the left and

right amygdala to train machine learning models did not result in

a significant improvement in classification performance, but the

performance of machine learning models trained by combining

radiomics features were still higher than the performance of

models trained by combining volume metrics (Figures 4C, F,

Supplementary Tables 5, 6).

3.4. GAD vs. HC radiomics feature analysis

7-dimensional features (i.e., maximum 2D diameter column,

mean absolute deviation, cluster prominence, cluster tendency,

small dependence high gray level emphasis, short run high gray

level emphasis, and small area high gray level emphasis) for

the left amygdala, and three-dimensional features (i.e., maximum

2D diameter column, interquartile range, and cluster tendency)

for the right amygdala were selected using 10-fold LASSO

regression model.

3.5. GAD vs. HC radiomics feature
group-wise comparison

For left amygdala, results of group-wise comparison reveals that

there were significant differences between anxiety disorder patients

and HC group on 4 selected radiomics features (i.e., mean absolute

deviation, small dependence high gray level emphasis, short run

high gray level emphasis, and small area high gray level emphasis)

(Figure 5A). As a comparison, no significant difference in left

amygdala volume was found between anxiety disorder patients and

HC group. The absolute values of the effect sizes of five radiomics

features (i.e., mean absolute deviation, cluster prominence, small

dependence high gray level emphasis, short run high gray level

emphasis, and small area high gray level emphasis) were also larger
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FIGURE 3

Feature distribution and group-wise comparison results on selected radiomics features of Anxiety disorder vs. HC task. (A) Results of left amygdala

radiomics features; (B) results of right amygdala radiomics features. Points are outliers in the box plot. NS, not significant; *p ≤ 0.05; **p ≤ 0.01; ***p

≤ 0.001; ****p ≤ 0.0001.

than the amygdala volume. For the right amygdala, two radiomics

features (i.e., maximum 2D diameter column, and interquartile

range) and amygdala volume were significantly different between

anxiety disorder patients and HC group (Figure 5B). In addition,

the value of the effect size of the interquartile range was larger than

the amygdala volume (Table 4).

3.6. GAD vs. HC classification

Results showed that the SVM models trained separately

using selected left/right amygdala radiomics features achieved

the classification of anxiety disorder vs. HC. Specifically, SVM

trained using seven-dimension left amygdala radiomics features

achieved classification AUC of 0.6755, and the SVM model

trained using three-dimension right amygdala radiomics features

achieved classification AUC of 0.6966, which were higher than

the performance of classifiers trained with amygdala volume

(Figures 6A, B, D, E, Supplementary Tables 1–4). Combining

features from the left and right amygdala to train machine learning

models did not result in a significant improvement in classification

performance, but the performance of machine learning models

trained by combining radiomics features were still higher than

the performance of models trained by combining volume metrics

(Figures 6C, F, Supplementary Tables 5, 6).

4. Discussion

Our study indicated that patients with anxiety disorders and

GAD showed abnormalities in the left/right amygdala radiomics

features compared with the HC group. Group-wise comparison

revealed that abnormalities of some radiomics features were more

TABLE 3 E�ect sizes of selected radiomics features and bilateral

amygdala volume in anxiety disorder vs. HC task.

Hemisphere Feature
class

Feature
name

E�ect size

Left Volume Amygdala volume 0.3392

GLDM Small dependence

emphasis

0.7587

Small dependence

high gray level

emphasis

0.9016

Right Volume Amygdala volume 0.42

3D shape Maximum 2D

diameter column

0.3146

First order Interquartile range 0.6028

GLDM Small dependence

emphasis

0.8085

GLRLM Gray level

non-uniformity

normalized

0.4667

significant than amygdala volume. Our study is a prospective

research to evaluate the feasibility of differentiating anxiety

disorders and one of its subtypes (i.e., GAD) from the healthy

population using radiomics features of bilateral amygdala extracted

from T1-weighted MR images.

Radiomics analysis has been applied to some neural psychiatric

disorders. A study has found that radiomics features extracted

from the hippocampus structure reflect high-order imaging

patterns and heterogeneity characteristics of microstructure in

hippocampus in AD patients (43). A radiomics study of autism

spectrum disorder has found significant differences in the texture
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FIGURE 4

Cross-validation ROC curves of linear kernel SVM model of Anxiety disorder vs. HC classification task. (A) Model trained using left amygdala

radiomics features, (B) model trained using right amygdala radiomics features, (C) model trained using bilateral amygdala radiomics features, (D)

model trained using left amygdala volume, (E) model trained using right amygdala volume, and (F) model trained using bilateral amygdala volume.

FIGURE 5

Feature distribution and group-wise comparison results on selected radiomics features of GAD vs. HC task. (A) Results of left amygdala radiomics

features and (B) results of right amygdala radiomics features. Points are outliers in the box plot. ns: not significant; *: p-value ≤ 0.05; **: p-value ≤

0.01.

features in the right hippocampus, corpus callosum, cerebellar

white matter, and left choroid plexus between patients and

controls (44). However, radiomics studies of anxiety disorder and

its subtypes using T1-weighted structural MR images are still

lacking. Structural MR imaging studies have revealed alterations

in the volume of the amygdala in patients with anxiety disorder

and its subtypes (6–9). In our study, we used radiomics

technique to further analyze the abnormalities of the amygdala
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TABLE 4 E�ect sizes of selected radiomics features and bilateral

amygdala volume in GAD vs. HC task.

Hemisphere Feature
class

Feature
name

E�ect size

Left Volume Amygdala volume 0.4783

3D shape Maximum 2D

diameter column

0.4421

First order Mean absolute

deviation

0.9455

GLCM Cluster

prominence

0.5997

Cluster tendency 0.2273

GLDM Small dependence

high gray level

emphasis

0.9212

GLRLM Short run high gray

level emphasis

0.801

GLSZM Small area high

gray level emphasis

0.7675

Right Volume Amygdala volume 0.6312

3D shape Maximum 2D

diameter column

0.5661

First order Interquartile range 0.757

GLCM Cluster tendency 0.1039

in anxiety disorders and its subtype (i.e., GAD). Radiomics

features selected by LASSO regression model reflect the gray value

distribution, spatial heterogeneity, texture characteristics and other

microstructural information.

For anxiety disorders, there were 2 selected radiomics features

of left amygdala, i.e., small dependence emphasis and small

dependence high gray level emphasis are GLDM parameters.

According to existing study (37), gray level dependency is defined

as the number of connected voxels that are dependent on the

center voxel, and small dependence emphasis is a measure of the

distribution of small dependencies, with a lower value indicative

of greater dependence and more homogeneous textures of left

amygdala of anxiety disorder patients compared with HC group.

Small dependence high gray level emphasis measures the joint

distribution of small dependence with higher gray-level values, with

a lower value indicating a smaller concentration of high gray-level

values in the image. For right amygdala, there were 4 selected

radiomics features, including maximum 2D diameter column,

interquartile range, small dependence emphasis, and gray level

non-uniformity normalized. Maximum 2D diameter (Column) is

defined as the largest pairwise Euclidean distance between ROI

surface mesh vertices in the row-slice (usually the coronal) plane.

Interquartile range is defined as difference between 25th and 75th

percentile of the gray level intensity within the ROI. Gray level

non-uniformity normalized measures the variability of gray-level

intensity values in the image, with a greater value indicating a

smaller similarity in intensity values. The above features indicate

structural and textural heterogeneity in the right amygdala in

patients with anxiety disorder.

For GAD, seven radiomics features of left amygdala were

selected, including maximum 2D diameter column, mean absolute

deviation, cluster prominence, cluster tendency, small dependence

high gray level emphasis, short run high gray level emphasis, and

small area high gray level emphasis. Mean absolute deviation is

the mean distance of all intensity values from the mean value of

the gray level intensity values within the ROI. Cluster prominence

and cluster tendency are GLCM parameters (32). A lower values

of cluster prominence implies less asymmetry of the GLCM, and

cluster tendency is a measure of groupings of voxels with similar

gray-level values. Short run high gray level emphasis measures

the joint distribution of shorter run lengths with higher gray-level

values (34), with a lower value indicating a smaller concentration

of high gray-level values in the image. Small area high gray

level emphasis measures the proportion in the image of the joint

distribution of smaller size zones with higher gray-level values, with

a lower value indicating a smaller proportion of higher gray-level

values of small size zone in the image (35). For right amygdala,

there were 3 selected features, i.e., maximum 2D diameter column,

interquartile range, and cluster tendency. These features extracted

from the left/right amygdala structure reflect high-order imaging

patterns and heterogeneity characteristics of microstructure in

amygdala in GAD patients.

It is worth noting that significant results in group-wise

comparison were not observed on some LASSO-selected radiomics

features (e.g., maximum 2D diameter column of right amygdala

and cluster tendency of bilateral amygdala). As a machine

learning method, LASSO integrates each feature dimension to

assess feature importance, while the statistical method of group-

wise comparison performs hypothesis testing independently for a

specific feature dimension. Therefore, the possible reason for the

above experimental results is that certain features that do not differ

significantly between patients and healthy people are important

for the machine learning task. The above reason can also explain

the experimental results related to volume metrics. Although right

amygdala volume was significantly different in both Anxiety vs. HC

and GAD vs. HC group comparisons (Figures 3B, 5B), satisfactory

classification results could not be obtained from machine learning

classifiers that trained using right amygdala volume (Figures 4E,

6F, Supplementary Tables 4, 6). This may due to the fact that such

differences may not necessarily valid for training machine learning

models, e.g., SVM.

Existing studies have used radiomics features for machine

learning-based neuropsychiatric disorders classification. A study

(20) identified 30 radiomics features of corpus callosum to

differentiate participants with schizophrenia from HCs using

Bayesian optimized model. Another study (45) used texture

features based on GLCM to separate autism spectrum disorder

and development control subjects using SVM and random forest

classifiers. In a recent study (46), logistic regression analysis

was performed to build classification models based on amygdala

radiomics features for Alzheimer’s disease and amnestic mild

cognitive impairment, and achieved an AUC of 0.93 for AD vs.

NC classification, an AUC of 0.84 for AD vs. aMCI classification,

and an AUC of 0.80 for aMCI vs. NC classification. However,

there are still lack of studies on radiomics-based anxiety disorder-

related classification. In our study, SVM classification experiments

have demonstrated that selected radiomics features of the left/right

amygdala can be used to separate patients with anxiety disorder and

GAD from HC group, and using radiomics features of amygdala
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FIGURE 6

Cross-validation ROC curves of linear kernel SVM model of GAD vs. HC classification task. (A) Model trained using left amygdala radiomics features;

(B) model trained using right amygdala radiomics features; (C) model trained using bilateral amygdala radiomics features; (D) model trained using left

amygdala volume; (E) model trained using right amygdala volume; (F) model trained using bilateral amygdala volume.

for classification is better than using amygdala volume. In addition,

for both anxiety disorder vs. HC and GAD vs. HC classification

tasks, SVM classifiers trained using radiomics features of left

amygdala achieved higher AUC than that of right amygdala,

which implies that the microstructural changes associated with

anxiety are greater in the left amygdala compared with the

right amygdala.

Exist studies have revealed alterations in the volume of the

amygdala in patients with anxiety disorder and its subtypes.

Research on amygdala subregional structure suggests that

microstructural information of amygdala is also associated with

anxiety-related disorders (10). Radiomics features could reflect

high-order imaging patterns and heterogeneity characteristics of

microstructure in bilateral amygdala. According to group-wise

comparison experiments, the differences between patients

and HC group in most selected radiomics features were

more significant than the amygdala volume. In addition, the

absolute values of the effect sizes of most selected radiomics

features were larger than the amygdala volume. Our study

suggests bilateral amygdala radiomics features could serve

as more effective neuroimaging biomarkers, compared with

amygdala volume, for identifying patients with anxiety disorders

and GAD.

There were several limitations in our study. Firstly, there

are many subtypes of anxiety disorder, including social anxiety,

separation anxiety, etc. Limited by sample size, only GAD was

selected as an example for anxiety disorder subtype in our study.

Secondly, a complete 1:1 match in age, sex and site ratio had

not been achieved. In future works, we will collect data of other

anxiety disorder subtypes scanned from multiple scanners, and

further evaluate relationship between amygdala radiomics features

and behavioral information.

In summary, our study observed that compared with amygdala

volume, bilateral amygdala radiomics features could serve as

more effective neuroimaging biomarkers for identifying patients

with anxiety disorders and GAD. Moreover, we used machine

learning method to evaluate the feasibility of differentiating

patients of anxiety disorders and GAD from the healthy people

using radiomics features of bilateral amygdala extracted from T1-

weighted MR images, thus providing effective biomarkers for the

clinical diagnosis of anxiety disorders.
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