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Autism Spectrum Disorder (ASD) is defined as a neurodevelopmental disorder 
largely investigated in the neurologic field. Recently, neuroimaging studies have 
been conducted in order to investigate cerebral morphologic alterations in 
ASD patients, demonstrating an atypical brain development before the clinical 
manifestations of the disorder. Cortical Thickness (CT) and Local Gyrification 
Index (LGI) distribution for ASD children were investigated in this study, with 
the aim to evaluate possible relationship between brain measures and individual 
characteristics (i.e., IQ and verbal ability). 3D T1-w sequences from 129 ASD and 
58 age-matched Healthy Controls (HC) were acquired and processed in order 
to assess CT and LGI for each subject. Intergroup differences between ASD and 
HC were investigated, including analyses of 2 ASD subgroups, split according to 
patient verbal ability and IQ. When compared to HC, ASD showed increased CT 
and LGI within several brain areas, both as an overall group and as verbal ability 
an IQ subgroups. Moreover, when comparing language characteristics of the 
ASD subjects, those patients with verbal ability exhibit significant CT and LGI 
increase was found within the occipital lobe of right hemisphere. No significant 
results occurred when comparing ASD patients according to their IQ value. 
These results support the hypothesis of abnormal brain maturation in ASD since 
early childhood with differences among clinical subgroups suggesting different 
anatomical substrates underlying an aberrant connectivity.
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1 Introduction

Autism Spectrum Disorder (ASD) is defined as a neurodevelopmental disorder 
characterized by the presence of persistent deficits in social communication and social 
interaction, restricted and repetitive patterns of behavior, interests or activities (1). By 
definition, the symptoms occur early and affect daily functioning. ASD affects 1 in 54 children 
in the United States, with a prevalence that is four times greater in boys than in girls (2). ASD 
is considered a neurodevelopmental disorder associated with neurologic changes with an onset 
in prenatal or postnatal life, modifying the typical pattern of child development (3). Although 
the etiology is considered multifactorial, genetic and environmental risk factors can both 
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contribute to the development of the disorder. Recently, neuroimaging 
studies have been conducted in order to investigate cerebral 
morphologic alterations in ASD patients and demonstrated an atypical 
brain development before the clinical manifestations of the disease 
thus, suggesting a possible predisposing neuroanatomical prenatal 
condition (4). Recent studies have explored brain maturation in high-
risk children, during the first six months of life, demonstrating an 
atypical development of sensory connectivity in children who will 
later develop ASD (5). Between 6–12 months of age, children who 
develop signs of ASD could show an increase of cortical surface, 
involving regions for auditory and visual processing, followed by a 
more global overgrowth within the following 24 months (6, 7). In 
children with ASD aged 2 to 4 years, cerebral volumes remain 
increased compared to those of children with neurotypical 
development (8), especially in brain areas correlated to social 
cognition, verbal abilities, and emotion regulation. Cerebral growth 
declines in school aged children and adolescents with a slow growth 
and with brain volumes of ASD similar to neurotypical children 
(7–11). Different cortical measures have been investigated, such as 
volume, surface area (SA) cortical thickness (CT) and local cortical 
gyrification (LGI) (12–17). Kohli and colleagues compared cortical 
morphology between individuals with ASD and neurotypical children, 
analyzing cerebral gyrification. Their results indicated that LGI 
measures of children with ASD increased in some cortical regions but 
decreased with older age than neurotypical children (14). Smith and 
colleagues investigated changes in CT and SA in children aged 2 to 
9 years, finding a progressive reduction of CT in neurotypical children 
but not in children with ASD (18). Another study of older children 
and adolescents (8–15 years old) found a faster reduction in CT of 
ASD than neurotypical children, involving temporal and occipital 
brain areas (19). These results confirm conclusions of a previous study 
of Zielinski and colleagues, who performed a longitudinal study of 
cortical thickness in a large group of individuals with ASD with an age 
range of 3–39 years. The authors showed an increased cortical 
thickness in early childhood, followed by accelerated thinning into 
later childhood and adolescence involving frontal and later posterior 
brain areas; finally, a decelerated thinning in young adulthood (17). 
Based on literature evidences reporting brain maturation alteration in 
the first years of ASD patients, the purpose of our study was to 
investigate cortical features such as CT and LGI in a large sample of 
ASD children with respect to a healthy controls group. In particular, 
we investigated possible relationships between brain measures and 
individual characteristics such as intelligence quotient and verbal 
language in the ASD population studied.

2 Materials and methods

2.1 Subjects

This is an observational, cross-sectional, non-interventional, 
single-center study approved by the Institutional Ethical Committee. 
Written informed consent from a parent/guardian of each participant 
was obtained when filling out the questionnaire. Patients were enrolled 
in the study if fulfilling the following inclusion criteria: a) diagnosis of 
ASD according to the DSM-5 criteria and confirmed by Autism 
Diagnostic Observation Scale-2 (ADOS-2); b) age between 2 and 

8 years. Exclusion criteria were: a) the presence of behavioral problems 
that did not allow testing; b) genetic abnormalities based on pathogenic 
findings from CGH microarray or syndromic autism. Additionally, a 
group of age-matched healthy controls (HC) was included. Inclusion 
criteria for HC were: a) age between 2 and 8 years and b) absence of 
neurological or psychiatric disorders, while exclusion criteria were: a) 
presence of MRI abnormalities; b) having a first-degree relative with 
ASD; c) history of premature birth or extremely low birth weight and 
d) history of special education services/early intervention before 
enrollment. All subjects underwent MRI examination that was 
reviewed in consensus by two pediatric neuroradiologists. Moreover, 
all ASD subjects were also evaluated with verbal cognitive (IQ) score. 
All neuropsychological tests were conducted by trained developmental 
psychiatrists and neuropsychologists.

2.2 Neurophsycological measures

The ADOS-2 is a semi-structured direct assessment of 
communication, social interaction, and play or imaginative use of 
materials for individuals with a suspected diagnosis of ASD. The 
ADOS-2 consists of five modules designed for children and adults 
with different language levels, ranging from nonverbal to verbally 
fluent. The ADOS-2 was administered and scored by licensed 
clinicians who have demonstrated clinical proficiency on the 
instrument. The calibrated severity score of each domain was also 
calculated and was used to endorse the diagnosis of ASD. Comparison 
scores (CS) were considered for the ADOS-2 analysis. Cognitive 
development was assessed by the nonverbal intelligence quotient (IQ) 
obtained from the Leiter International Performance Scale, Revised 
(Leiter-R) (20) or Third Edition Leiter-3 (21), or by the Griffiths 
Mental Development Scales-Extended Revised for age 2–8 (GMDS-ER 
2–8) (22) and Griffith III. The Leiter-R and Leiter-3 offer a completely 
nonverbal measure of intelligence and evaluate the ability to reason by 
analogy, by matching and perceptual reasoning in general, irrespective 
of language and formal schooling. The brief IQ composite obtained 
from the Leiter-R is based on four subtests: Figure Ground, Form 
Completion, Sequential Order, and Repeated Patterns. Similarly, the 
complete IQ composite obtained from the Leiter-3 is based on four 
subtests: Figure Ground, Form Completion, Classification and 
Analogies, and Sequential Order. The GMDS-ER 2–8 was 
administered when a child failed to complete the Leiter scales because 
of his/her reduced attentional resources. The GMDS-ER 2–8 was 
completed by 53 children, 28 children completed Griffith III, while the 
Leiter scales were completed by 48 children (Leiter 3 was completed 
by 44 children and Leiter-R scale was completed by 4 children).

2.3 MR imaging acquisition

All ASD patients and HCs underwent brain MR imaging in the 
same Institution (Bambino Gesù Children’s Hospital, Rome) on a 1.5 T 
(Magnetom Aera, Siemens, Erlangen, Germany) or a 3 T (Magnetom 
Skyra, Siemens Erlangen, Germany) scanner. Brain MRI protocol 
consisted of a T1-weighted 3D magnetization-prepared rapid gradient 
echo (MP-RAGE) sequence (TR = 2060 ms, TE = 2.27 ms, 
TI = 1,040 ms, FA = 9°, ST = 1 mm).
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2.4 Image analysis

Data were pre-processed with FreeSurfer 5.3 software,1 using a 
standard automatic pipeline (i.e., recon-all) that sequentially 
performed skull stripping, intensity correction and transformation to 
Talairach-Tournoux space to produce grey matter (GM) and white 
matter (WM) segmentation. Specifically, motion correction was 
performed prior to averaging when using different source volumes in 
order to compensate for small variations in motion between volumes. 
In addition, intensity normalisation was applied to the original volume 
and the intensities of all voxels were scaled to the mean value of the 
white matter (23). After correcting the movements and normalising 
the data, FS removed the skull to isolate the brain from extracranial or 
non-brain tissue in a process known as skull stripping (24). 
Particularly, combining information from tissue intensity and 
neighborhood constraints, the FreeSurfer automatic pipeline, firstly 
determined and then tessellated the GM–WM boundary to generate 
the inner cortical surface (white surface). The outer surface (pial 
surface) was generated through the expansion of the white surface 
with a point-to-point correspondence. For each subject, the FreeSurfer 
automatic pipeline computed the CT parameter as the average 
distance measured from each surface to the other, according to Fischl 
and Dale approach (25). FreeSurfer-preprocessed scans quality was 
assessed using the Qoala-T Tool (26).2 Scans that had a borderline 
Qoala-T score were also visually inspected. The reconstructed white 
and pial surfaces were visually checked to verify and correct any 
algorithmic misinterpretation of gyri and sulci. LGI were computed 
vertex-wise over the entire cortex using the method of Schaer et al., 
which measures the amount of cortex buried within the sulcal folds as 
compared with the amount of visible cortex in spherical regions of 
interest (ROIs) (27).

2.5 Statistical analysis

In order to pool data from our 2 different scanners, we adjust the 
CT and LGI values via COMBAT-GAM approach. The CT and LGI 
scanner variability was removed by including diagnosis, age, and sex 
as biological variables, and age was specified as a non-linear term in 
the model. The ComBat-GAM code used was implemented in Python 
(ver. 3.7.6).3 The corrected data were then used for the further 
comparison analysis.

Intergroup differences were analyzed through analysis of 
variance. We  investigated differences in cortical parameter 
distributions among groups. To this purpose, we mapped vertex-wise 
CT and LGI values on a common spherical coordinate system (i.e., 
fsaverage), using spherical transformation. A two-group Generalized 
Linear Model (GLM) analyses of both CT and LGI measures were 
performed by vertex-wise analysis with permutation-based cluster 
correction for multiple comparisons (mri_glmfit). Permutation 
correction was done by permuting the design matrix, recomputing 
the significance map, thresholding, and extracting the largest cluster 
over 1,000 iterations. The value of p for a cluster in the real data was 

1 http://surfer.nmr.harvard.edu/

2 https://github.com/Qoala-T/Qoala-T

3 https://github.com/rpomponio/neuroHarmonize

then computed as the probability of seeing a maximum cluster of that 
size or larger in a given hemisphere, followed by the correction for 
two hemispheres (28). Subject age was set as a silent regressor in the 
group intercept GLM model. Bidirectional contrasts were applied to 
both CT and LGI analyses (i.e., group1 > group2, group1 < group2). 
This cluster-wise correction simulation (repeated over 5,000 
iterations) is a way to get a measure of the maximum cluster size 
distribution under the null hypothesis. Resulted clusters were 
displayed on a common inflated surface template. All the statistical 
analysis were corrected for the global brain size, setting the total 
intracranial volume as covariate. The effect of the gender was 
considered adding in the model of the statistical analysis the gender 
as covariate.

3 Results

3.1 Subjects

Between January 2016 and December 2018, a total 140 subjects 
were enrolled in the study. Among 140 subjects, 129 ASD patients (20 
females and 109 males, mean age = 5.17 y, age range = 2.4–8 y) 
underwent MRI investigation. Among ASD group, 71/135 ASD 
patients demonstrated verbal ability (ASD_VERB1, mean age = 5.2 y), 
while the remaining 58/135 patients revealed no verbal ability (ASD_
VERB2; mean age = 5,1 y), operationalized as the absence of fluent 
language during the clinical observation. Moreover, ASD patients 
were also split according to the IQ score, revealing 54/135 ASD 
patients with IQ greater than 70 (ASD_IQ1, mean age = 5.2 y) and 
75/135 with IQ less than 70 (ASD_IQ2, mean age 5.1 y). A group of 
58 HC (24 females and 34 males, mean age = 4.8 y, age range = 2–8 y) 
was also included. The reason for MRI brain acquisition was suspected 
spinal dysraphism (12/58), headache (17/58), vertigo (4/58), pineal 
cyst (3/58), facial vascular malformation (4/58), delayed growth 
(3/58); precocious puberty (3/58); torticollis (3/58); strabismus (6/58) 
and syncope (3/58).

3.2 Overall results

Average values of CT and LGI were computed for both hemispheres 
in ASD (CTLEFT = 2.829 ± 0.789 mm; CTRIGHT = 2.831 ± 0.789 mm; 
LGILEFT = 3.455 ± 0.931; LGIRIGHT = 3.459 ± 0.901) and HC 
(CTLEFT = 2.780 ± 0.778 mm; CTRIGHT = 2.785 ± 0.776 mm; LGILEFT = 
3.406 ± 0.807; LGIRIGHT = 3.419 ± 0.862). Cluster-wise analysis revealed 
cortical areas of significantly higher CT and LGI values for ASD 
patients when compared to HC (Figure 1). Table 1 reported both CT 
and LGI results obtained for ASD-HC comparison, showing cortical 
lobe, and mean cortical parameter values of both groups for each 
cluster of significant results.

3.3 Verbal ability results

Average values of CT and LGI were computed for both hemispheres 
in ASD_VERB1 (CTLEFT = 2.834 ± 0.791 mm; CTRIGHT = 2.837 ± 0.793 mm; 
LGILEFT = 3.457 ± 0.941; LGIRIGHT = 3.466 ± 0.916) and ASD_VERB2 
(CTLEFT = 2.823 ± 0.792 mm; CTRIGHT = 2.824 ± 0.790 mm; LGILEFT = 3.452 ± 

https://doi.org/10.3389/fpsyt.2023.1098265
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
http://surfer.nmr.harvard.edu/
https://github.com/Qoala-T/Qoala-T
https://github.com/rpomponio/neuroHarmonize


Napolitano et al. 10.3389/fpsyt.2023.1098265

Frontiers in Psychiatry 04 frontiersin.org

0.91; LGIRIGHT = 3.450 ± 0.882). Cluster-wise analysis revealed cortical 
areas of significantly higher CT and LGI values for both ASD_VERB1 
and ASD_VERB2 patients when compared to HC (respectively 
Figures 2, 3). All the statistical verbal ability results were summarized in 
Table 2.

3.4 IQ results

Average values of CT and LGI were computed for both hemispheres 
in ASD_IQ1 (CTLEFT = 2.823 ± 0.786 mm; CTRIGHT = 2.815 ± 0.786 mm; 
LGILEFT = 3.440 ± 0.926; LGIRIGHT = 3.443 ± 0.892) and ASD_IQ2 

FIGURE 1

Cluster-wise analysis mapped on the inflated common surface. Overall CT (left) and LGI (right) results, where each color is associated with different 
clusters; CT, cortical thickness; LGI, local gyrification.

TABLE 1 Overall CT and LGI results for ASD-HC comparison.

G1  >  G2 
condition

Lateral # clusters Lobes % significant 
lobe area

p-value G1 mean 
CT

G2 mean 
CT

ASD > HC

LH 1/1

Frontal 12.6% 0.002 2.82 (0.81) 2.76 (0.80)

Parietal 11.1% 0.002 2.84 (0.73) 2.79 (0.72)

Temporal 9.1% 0.002 2.80 (0.84) 2.75 (0.83)

Occipital 9.8% 0.002 2.85 (0.76) 2.80 (0.75)

RH

1/3

Parietal 4.11% 0.002 2.88 (0.75) 2.83 (0.73)

Temporal 8.94% 0.002 2.83 (0.80) 2.78 (0.79)

Occipital 8.49% 0.002 2.84 (0.76) 2.79 (0.74)

2/3
Frontal 12.85% 0.002 2.83 (0.77) 2.78 (0.76)

Parietal 2.21% 0.002 2.79 (0.87) 2.74 (0.85)

3/3 Frontal 2.36% 0.002 2.81 (0.85) 2.76 (0.84)

G1  >  G2 Lateral # clusters Lobes
% significant 

lobe area
p-value G1 mean 

LGI
G2 mean 

LGI

ASD > HC

LH 1/1

Frontal 12.19% 0.002 3.43 (0.91) 3.39 (0.87)

Parietal 9.52% 0.002 3.41 (0.90) 3.36 (0.86)

Temporal 6.53% 0.002 3.42 (0.94) 3.37 (0.89)

Occipital 1.20% 0.002 3.39 (0.94) 3.34 (0.90)

RH 1/1

Frontal 10.96% 0.002 3.44 (0.89) 3.40 (0.85)

Parietal 7.59% 0.002 3.45 (0.91) 3.40 (0.87)

Temporal 4.72% 0.002 3.49 (0.94) 3.44 (0.90)

The value of ps reported are corrected for multiple comparisons; CT, cortical thickness; LGI, local gyrification; ASD, autism spectrum disorder; HC, health control.

https://doi.org/10.3389/fpsyt.2023.1098265
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Napolitano et al. 10.3389/fpsyt.2023.1098265

Frontiers in Psychiatry 05 frontiersin.org

(CTLEFT = 2.833 ± 0.795 mm; CTRIGHT = 2.843 ± 0.796 mm; LGILEFT = 
3.466 ± 0.935; LGIRIGHT = 3.471 ± 0.908). Cluster-wise analysis revealed 
cortical areas of significantly higher CT and LGI values for both ASD_
IQ1 and ASD_IQ2 patients when compared to HC (respectively 
Figures  4, 5). The ASD_IQ1 group also revealed cortical areas of 
decreased CT within the limbic lobe of right hemisphere when 
compared to HC. No significant results were found when comparing 
CT and LGI between ASD_IQ1 and ASD_IQ2. All the statistical IQ 
results were summarized in Table 3.

4 Discussion

The first aim of this study was to compare measures of cortical 
thickness and local gyrification between a large sample of preschoolers 

and schoolers ASD and a group of neurotypical children matched for 
gender and age. The results of our study showed abnormalities in LGI 
and CT in patients affected by ASD compared to HC and among the 
subgroups of patients. This evidence suggests that ASD is a complex 
neurodevelopmental disorder dependent on brain abnormalities 
presenting from a very young age, probably during a prenatal life and 
the first three postnatal years (29).

4.1 Cortical thickness

Inconsistencies result from several neuroimaging studies of 
cortical morphometry, showing both increased, decreased CT, and 
no CT differences in ASD compared to HC (12, 30–33). These 
evidences could be  related to differences in diagnostic/inclusion 

FIGURE 2

Cluster-wise analysis mapped on the inflated common surface. CT (left) and LGI (right) results for VERB1-HC comparison, where each color is 
associated with different clusters; CT, cortical thickness; LGI, local gyrification; VERB1, verbal ability – health control.

FIGURE 3

Cluster-wise analysis mapped on the inflated common surface. CT (left) and LGI (right) results for VERB2-HC comparison, where each color is 
associated with different clusters; CT, cortical thickness; LGI, local gyrification; VERB2, no verbal ability; HC, health control.

https://doi.org/10.3389/fpsyt.2023.1098265
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Napolitano et al. 10.3389/fpsyt.2023.1098265

Frontiers in Psychiatry 06 frontiersin.org

TABLE 2 Language CT and LGI results for ASD subgroups (VERB1 and VERB2) and HC comparison.

G1  >  G2 condition Lateral # clusters Lobes % significant lobe area p-value G1 mean CT G2 mean CT

VERB1 > HC

LH
1/2

Frontal 8.89%

0.002

2.79 (0.83) 2.73 (0.81)

Parietal 9.12% 2.85 (0.73) 2.79 (0.72)

Temporal 5.39% 2.80 (0.84) 2. 74 (0.83)

Occipital 7.26% 2.85 (0.78) 2.79 (0.76)

2/2 Frontal 1.41% 0.028 2.84 (0.81) 2.79 (0.79)

RH

1/3
Parietal 3.43%

0.002
2.90 (0.75) 2.85 (0.74)

Occipital 6.86% 2.84 (0.76) 2.78 (0.74)

2/3 Frontal 11.13% 0.002 2.83 (0.78) 2.78 (0.77)

3/3 Temporal 6.38% 0.002 2.81 (0.83) 2.76 (0.81)

G1  >  G2 Lateral # clusters Lobes % significant lobe area p-value G1 mean LGI G2 mean LGI

VERB1 > HC

LH 1/1

Frontal 12.55%

0.002

3.46 (0.93) 3.41 (0.88)

Parietal 9.71% 3.41 (0.92) 3.36 (0.87)

Temporal 8.59% 3.43 (0.95) 3.37 (0.90)

Occipital 1.16% 3.40 (0.96) 3.36 (0.91)

RH 1/1

Frontal 9.02%

0.002

3.46 (0.91) 3.42 (0.86)

Parietal 7.24% 3.47 (0.93) 3.42 (0.88)

Temporal 9.36% 3.49 (0.94) 3.44 (0.88)

Occipital 3.36% 3.56 (1.00) 3.51 (0.94)

G1  >  G2 Lateral # clusters Lobes % significant lobe area p-value G1 mean CT G2 mean CT

VERB2 > HC

LH

1/5
Parietal 1.02%

0.002
2.75 (0.79) 2.71 (0.77)

Temporal 5.11% 2.77 (0.86) 2.72 (0.85)

2/5 Occipital 1.74% 0.002 2.81 (0.83) 2.77 (0.81)

3/5 Parietal 1.34% 0.004 2.85 (0.69) 2.80 (0.67)

4/5 Temporal 1.05% 0.004 2.89 (0.81) 2.85 (0.82)

5/5 Parietal 1.20% 0.049 2.88 (0.66) 2.84 (0.66)

RH

1/5 Temporal 3.70% 0.002 2.79 (0.84) 2.75 (0.83)

2/5 Frontal 2.16% 0.002 2.81 (0.76) 2.76 (0.74)

3/5 Frontal 1.57% 0.018 2.92 (0.58) 2.88 (0.57)

4/5 Occipital 0.85% 0.030 2.93 (0.68) 2.89 (0.67)

5/5 Temporal 1.12% 0.032 2.87 (0.76) 2.82 (0.73)

G1  >  G2 Lateral # clusters Lobes % significant lobe area p-value G1 mean LGI G2 mean LGI

VERB2 > HC

LH 1/1

Frontal 13.47%

0.002

3.41 (0.90) 3.37 (0.87)

Parietal 7.00% 3.41 (0.89) 3.36 (0.86)

Limbic 1.06% 3.31 (0.84) 3.27 (0.81)

Temporal 2.42% 2.43 (0.88) 3.39 (0.85)

RH 1/1
Frontal 8.89%

0.002
3.42 (0.87) 3.39 (0.85)

Parietal 3.36% 3.50 (0.88) 3.46 (0.87)

G1  >  G2 Lateral # clusters Lobes % significant lobe area p-value G1 mean CT G2 mean CT

VERB1 > VERB2
LH 0 – – – – –

RH 1/1 Occipital 1.10% 0.006 2.89 (0.66) 2.87 (0.65)

G1  >  G2 Lateral # clusters Lobes % significant lobe area p-value G1 mean LGI G2 mean LGI

VERB1 > VERB2

LH 0 – – – – –

RH 1/1
Temporal 2.87%

0.024
3.53 (0.94) 3.52 (0.90)

occipital 2.42% 3.55 (1.02) 3.53 (0.99)

The p-values reported are corrected for multiple comparisons; CT, cortical thickness; LGI, local gyrification; ASD, autism spectrum disorder; VERB1, verbal ability; VERB2, no verbal ability; 
HC, health control.
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criteria, age, patient characteristics (e.g., intelligence quotient), 
heterogeneity of the disorder and the small sample size considered 
(34, 35). Additionally, neuroimaging studies on ASD patients have 
been reported inconsistent findings across factors influencing clinical 
heterogeneity and their relationship to brain anatomy. In this study, 
morphological characteristic in ASD subgroups was also evaluated, 
distinguishing ASD in terms of clinical subtypes based on IQ and 
verbal abilities in order to evaluate the relationship between brain 
morphometry and different clinical phenotypes. When compared to 
HC, both the complete ASD group and the subgroups (i.e., 

ASD_VERB1, ASD_VERB2, ASD_IQ1 and ASD_IQ2) revealed a 
significant CT increase over broad cortical areas of both hemispheres. 
In particular, we found CT abnormalities in inferior frontal cortex, 
superior temporal sulcus, cingulate gyrus, middle occipital gyrus, 
fusiform gyrus, and inferior parietal lobule, that cooperate in socially-
relevant brain processing (36). Additionally, abnormalities found in 
orbital frontal gyrus, and anterior cingulate gyrus could be related to 
the deficit in repetitive behaviors execution (37). An increased CT in 
inferior frontal gyrus, superior temporal sulcus, inferior parietal 
lobule may play a role in non-verbal communicative behaviors (32), 

FIGURE 4

Cluster-wise analysis mapped on the inflated common surface. CT (left) and LGI (right) results for IQ1-HC comparison, where each color is associated 
with different clusters; CT, cortical thickness; LGI, local gyrification; IQ1, intelligence quotient>70; HC, health control.

FIGURE 5

Cluster-wise analysis mapped on the inflated common surface. CT (left) and LGI (right) results for IQ2-HC comparison, where each color is associated 
with different clusters; CT, cortical thickness; LGI, local gyrification; IQ2, intelligence quotient<70; HC, health control.
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TABLE 3 IQ CT and LGI results for ASD subgroups (IQ1 and IQ2) and HC comparison.

G1  >  G2 condition Lateral # clusters Lobes % significant lobe area p-value G1 mean CT G2 mean CT

IQ1 > HC

LH

1/3

Parietal 5.92%

0.002

2.86 (0.68) 2.81 (0.68)

Temporal 4.62% 2.79 (0.83) 2. 74 (0.82)

Occipital 7.67% 2.83 (0.77) 2.78 (0.75)

2/3
Frontal 5.97%

0.002
2.77 (0.85) 2.73 (0.84)

Parietal 1.62% 2.84 (0.75) 2.78 (0.74)

3/3 Frontal 1.45% 0.014 2.84 (0.79) 2.80 (0.76)

RH

1/6 Occipital 4.73% 0.002 2.82 (0.76) 2.79 (0.75)

2/6 Frontal 1.74% 0.006 2.87 (0.63) 2.83 (0.62)

3/6 Frontal 2.10% 0.006 2.69 (0.93) 2.66 (0.92)

4/6 Occipital 1.06% 0.008 2.97 (0.57) 2.94 (0.55)

5/6 Frontal 1.79% 0.008 2.82 (0.76) 2.79 (0.75)

6/6 Temporal 2.42% 0.01 2.85 (0.80) 2.82 (0.79)

G1  >  G2 condition Lateral # clusters Lobes % significant lobe area p-value G1 mean CT G2 mean CT

HC > IQ1
LH 0 – – – – –

RH 1/1 Limbic 1.37% 0.002 2.78 (0.81) 2.74 (0.80)

G1  >  G2 Lateral # clusters Lobes % significant lobe area p-value G1 mean LGI G2 mean LGI

IQ1 > HC

LH 1/1

Frontal 6.70%

0.002

3.40 (0.91) 3.37 (0.87)

Parietal 6.60% 3.39 (0.89) 3.37 (0.86)

Temporal 1.67% 3.43 (0.89) 3.39 (0.85)

RH 1/1
Frontal 5.19%

0.002
3.41 (0.88) 3.39 (0.85)

Parietal 2.06% 3.54 (0.91) 3.51 (0.88)

G1  >  G2 Lateral # clusters Lobes % significant lobe area p-value G1 mean CT G2 mean CT

IQ2 > HC

LH

1/5

Frontal 1.87%

0.002

2.89 (0.54) 2.85 (0.65)

Parietal 7.69% 2.87 (0.56) 2.79 (0.72)

Temporal 1.52% 2.86 (0.56) 2.85 (0.74)

Occipital 8.26% 2.85 (0.58) 2.79 (0.77)

2/5
Parietal 1.65%

0.002
2.81 (0.60) 2.72 (0.77)

Temporal 6.38% 2.85 (0.57) 2.73 (0.83)

3/5 Frontal 3.86% 0.002 2.81 (0.59) 2.74 (0.84)

4/5 Frontal 2.84% 0.002 2.85 (0.55) 2.76 (0.82)

5/5 Frontal 1.40% 0.01 2.78 (0.62) 2.70 (0.82)

RH
1/2

Frontal 13.92%

0.002

2.86 (0.76) 2.80 (0.74)

Parietal 8.75% 2.87 (0.77) 2.81 (0.76)

Temporal 8.86% 2.82 (0.84) 2.76 (0.82)

Occipital 6.74% 2.87 (0.75) 2.81 (0.73)

2/2 Frontal 2.37% 0.002 2.82 (0.83) 2.77 (0.82)

G1  >  G2 Lateral # clusters Lobes % significant lobe area p-value G1 mean LGI G2 mean LGI

IQ2 > HC

LH 1/1

Frontal 14.82%

0.002

3.44 (0.93) 3.39 (0.88)

Parietal 10.00% 3.41 (0.90) 3.36 (0.86)

Temporal 8.55% 3.44 (0.94) 3.38 (0.89)

Occipital 1.37% 3.37 (0.94) 3.31 (0.90)

RH 1/1

Frontal 11.51%

0.002

3.44 (0.91) 3.39 (0.86)

Parietal 7.36% 3.55 (0.91) 3.40 (0.86)

Temporal 5.71% 3.48 (0.92) 3.42 (0.88)

The p-values reported are corrected for multiple comparisons; CT, cortical thickness; LGI, local gyrification; ASD, autism spectrum disorder; IQ1, intelligence quotient>70; IQ2, intelligence 
quotient<70; HC, health control.
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and a CT increased in pre- and postcentral gyri may influence facial 
reactions (38). These results are consistent with recent studies 
showing that developmental patterns of CT abnormalities reflect 
delayed cortical maturation, emphasizing the dynamic nature of 
morphological abnormalities in ASD (12, 39, 40). Particularly Hardan 
et  al. found increasing CT in young ASD both in cerebrum and 
several lobes including frontal, parietal, temporal and occipital (12). 
Additionally, Khundrakpam and colleagues observed increased CT 
in children with ASD versus HC in several cortical regions from 
6 years onwards until about 20 years. Since CT MRI-based measures 
are based on the placement of white and pial surfaces on the MRI 
image, the increased CT in children with ASD underlined with MRI 
is likely related to differences in both GM and WM (40). CT increase 
found in ASD could be related to microstructural changes in GM 
including larger numbers of neurons or glia, greater dendritic 
arborization, more synapses, larger or more axons, or greater 
capillary support (41–43) and to differences in WM, reflecting 
reductions in the degree of myelination, the number of myelinated 
axons or a relative increase in myelin adjacent to the cortex (40). 
These findings are also supported by the study of Hyde et al. that 
found increased CT in several brain areas when comparing ASD with 
verbal ability to HC (44). Particularly we found a CT increase in 
superior temporal sulcus and inferior frontal gyrus in both 
hemispheres that could be related to the deficit in communication 
(36). The clinical heterogeneous phenotypes of ASD involve also the 
ability of language, which may range from typical onset and 
development of language to difficulties in speech and language and 
in the absence of verbal abilities (45). Sharda et al. (46) supported the 
role of CT as a functional biomarker for language abilities in children 
with ASD founding a more severe involvement of the frontal regions 
in patients with more compromised verbal abilities. Our results 
revealed a different number of cortical areas with significant CT 
increase when comparing both ASD_VERB1 and ASD_VERB2 to 
HC. When ASD_QI1 patients were compared to HC, CT increases 
were observed in areas in both hemispheres, while significant 
reductions were observed in posterior-cingulate, caudal-anterior-
cingulate and rostra-anterior-cingulate in right hemisphere. Similarly, 
when ASD_QI2 were compared to HC, CT increases were observed 
in several area. These CT differences were greater in individuals with 
lower IQ. Our results are consistent with those of Bedford et al. (39), 
that found greater CT (and greater in individual with lower IQ) in 
regions including the superior cortical gyrus and inferior frontal 
sulcus. Additionally, according to our study Hyde et  al. revealed 
increased CT in ASD with average intelligence (47).

4.2 Local gyrification index

We demonstrated a significant LGI increase in ASD children 
compared to HC. In particular, we found a LGI increase in several 
cortical areas including bilateral fronto-insular regions, thus 
supporting evidences from previous work. Kohli et  al. found an 
increase of LGI in left parietal and temporal regions and in right 
frontal and temporal regions in ASD subjects compared to HC, with 
a trend of bilateral reduction of LGI with age, more steeply in ASD in 
left precentral, right lateral occipital, and middle frontal region (14). 
Although we did not find any laterality when comparing ASD patients 

to HC, a laterality trend occurred when analyzing the patient 
subgroups (i.e., verbal ability and IQ). The hemispheric gyrification 
differences observed could reflect a wide range of presentation of ASD, 
including individual characteristics such as intelligence quotient as 
well as verbal abilities. In this context, Duret et  al. found lower 
gyrification in a fusiform visual area in ASD subjects with speech 
onset delay, whereas gyrification increase occurred in a temporal 
language-related region in ASD without speech onset delay, thus 
suggesting that regional gyrification differences may reflect different 
cognitive defects in subjects with ASD (48). In conclusion, these 
results support the hypothesis of abnormal brain maturation in ASD 
since early childhood with differences among clinical subgroups 
suggesting different anatomical substrates underlying an 
aberrant connectivity.

5 Limitations

The MRI data in this study were analyzed with FreeSurfer version 
5.3. This leads to limitations since a newer version of Freesurfer (i.e., 
version 6, 7), certainly might provide more robust results (49). 
However, the differences in robustness between versions is not huge, 
and we  believe that visual inspection and subsequent manual 
correction mitigated the problem.

6 Conclusion

Our results support the hypothesis of abnormal brain maturation 
in ASD since early childhood with differences among clinical 
subgroups suggesting different anatomical substrates underlying an 
aberrant connectivity. Some limitations should be considered when 
interpreting the results of the current study. They include the cross-
sectional research design. Longitudinal studies would be indicated to 
test morphologic alterations in ASD brain maturation clarifying how 
the trajectories change in following age. Second the sample studied 
comprises a large number of participants limited to patients attending 
the same Tertiary Care Hospital and with a underrepresented group 
of female. Finally verbal abilities have not been quantified by specific 
speech assessment. Future research should aim to fill research gaps by 
addressing multiple issues, such as exploring brain maturation in large 
groups of ASD in longitudinal studies.
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