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Objective: The application of advanced Cognitive Diagnosis Models (CDMs) in the
Patient Reported Outcome (PRO) is limited due to its complex statistics. This study
was designed to measure resilience using CDMs and its prediction of 6-month
Quality of Life (Qol) in breast cancer.

Methods: A total of 492 patients were longitudinally enrolled from Be Resilient to
Breast Cancer (BRBC) and administered with 10-item Resilience Scale Specific to
Cancer (RS-SC-10) and Functional Assessment of Cancer Therapy-Breast (FACT-
B). Generalized Deterministic Input, Noisy "And” Gate (G-DINA) was performed
to measure cognitive diagnostic probabilities (CDPs) of resilience. Integrated
Discrimination Improvement (IDI) and Net Reclassification Improvement (NRI)
were utilized to estimate the incremental prediction value of cognitive diagnostic
probabilities over total score.

Results: CDPs of resilience improved prediction of 6-month QoL above conventional
total score. AUC increased from 82.6-88.8% to 95.2-96.5% in four cohorts (all
P < 0.001). The NRI ranged from 15.13 to 54.01% and IDI ranged from 24.69 to 47.55%
(all P < 0.001).

Conclusion: CDPs of resilience contribute to a more accurate prediction of 6-month
Qol above conventional total score. CDMs could help optimize Patient Reported
Outcomes (PROs) measurement in breast cancer.

cognitive diagnosis models (CDMs), cognitive diagnostic probabilities, resilience, 6-month
quality of life (Qol), breast cancer, prediction model, multicenter cohorts
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Introduction

Breast cancer accounts for 24.5% of all cancer cases in women
and 2.3 million new cases are identified worldwide in 2020
(1). Among which, 18.3% of all breast cancer cases (about 420
thousand) occur in China. In addition, with advances in early
detection and new therapies of breast cancer, 5-year survival has
increased to near 90% and breast cancer is now treated as a
chronic disease (1, 2). However, breast cancer survivors still suffer
from many psychosocial burdens including stigma, depression,
anxiety, fear of cancer recurrence, etc., which will result in
reduced Quality of Life (QoL) (3, 4). Different from physical
symptoms (i.e., lymphedema), psychosocial burdens cannot be
measured by objective indicators and Patient Reported Outcomes
(PROs) are developed to improve the detection of the patients’
subjective experience (5). For example, Self-Rating Depression Scale
(SDS), the Center for Epidemiologic Studies Depression Scale
(CES-D) and the Beck Depression Inventory (BDI) have been
well developed to assess the severity of the depressive disorder
(6-8). However, many existing PROs instruments are developed
based on classical test theory (CTT) and focus on the accurate
estimation of the symptom severity (i.e., depression, fatigue, etc.),
which cannot provide detailed information at item-level. For
example, most depression inventories are unidimensional and total
scores are calculated to estimate the severity of the depressive
symptoms with several cutoffs as reference. This procedure is
straightforward but item-level information (specific symptom) is
neglected, which is not consistent with definition in 10th revision
of the International Classification of Diseases (ICD-10) and 5th
edition of the Diagnostic and Statistical Manual of Mental Disorders
(DSM-5) (9, 10).

Cognitive Diagnosis Models (CDMs), or diagnostic classification
models (DCMs), are state of art psychometric models, which
have been developed to classify participants into latent classes
with unique profiles of attributes (11). Compared with CTT or
item response theory (IRT), the CDMs provide an alternative
psychometric framework for test development and score reporting.
Due to the complex statistics in CDMs, most CDMs-related
articles are published in the field of education measurement.
However, multidiscipline researchers have been recently aware of
their usefulness in PROs assessments for symptom profiles at item-
level, which will be helpful to screening or intervention (12-14).
Further, compared with factor analysis in CCT, CDMs allow latent
attributes/symptom criteria to interact resulting in a more flexible
psychometric model. Therefore, from a different perspective, the
current study was designed to provide more information for
the screening and monitoring of resilience as an example under
the framework of CDMs. Based on the data from our previous
Be Resilient to Breast Cancer (15-18), the current study was
designed to compare the prediction ability of resilience to 6-
month Quality of Life (QoL), between total score based on CTT
and cognitive diagnostic probabilities (CDPs) based on CDMs.
We hypothesized that: (1) CDMs could well extract diagnostic
details about patients’ resilience strengths and weaknesses, (2)
CDPs of resilience could offer incremental predictive value above
conventional total score.
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Materials and methods

Patients and data collection

Four cohorts were developed based on our previous Be Resilient
to Breast Cancer (BRBC) (15-18), including: (1) Cohort A, 151
patients were consecutively enrolled from hospital A in Guangzhou
between February 2017 and May 2017, (2) Cohort B, 95 patients
were consecutively enrolled from hospital B in Foshan between June
2017 and August 2017, (3) Cohort C, 111 patients were consecutively
enrolled from hospital C in Jiangmen between July 2017 and
September 2017, and (4) Cohort D, 135 patients were consecutively
enrolled from hospital D in Zhuhai between September 2017 and
November 2017. The enrollment line was described in Figure 1A.
The inclusion criteria were: (1) confirmed diagnosis of breast cancer
(within 4 weeks), (2) aged >18 years, (3) could communicate in
Mandarin or Cantonese fluently, and (4) receiving active treatment.
The exclusion criteria were: (1) linguistic or intellectual difficulties,
(2) had a currently active Axis I psychiatric disorder, (3) life
expectancy less than 12 months, and (4) unwilling to participate in
the study. The patients were approached by trained research nurses
in the current study and baseline information (T0, i.e., demographics,
QoL, resilience, etc.) was collected when their informed consent were
obtained. Patients can choose telephone or online interview follow-
ups (T1, 6-month) when pencil-and-paper test was not available.

Ethics approval

The current study was part of BRBC trial and ethic approval
number was 2016KYTDO08. Informed consent was obtained before
formal investigation. Other details about BRBC were described
elsewhere (15-18).

Instruments

10-item Resilience Scale Specific to Cancer
(RS-SC-10)

The original RS-SC is a 25-item resilience instrument specific
to cancer that has five domains of generic element, benefit finding,
support and coping, hope for the future, and meaning for existence
(19, 20). RS-SC is rated based on a five-point Likert scale, with
higher scores indicating higher resilience levels (score ranges from
25 to 125). In this study, a short-form of 10-item RS-SC (RS-SC-
10) was administered (21-23). RS-SC and RS-SC-10 were attached
in the Supplementary material.

Functional Assessment of Cancer Therapy-Breast
(FACT-B)

The Chinese version of FACT-B consists of 37 items and are
divided into five domains, including Physical (GP), Social/Family
(GS), Emotional (GE), Functional (GF), and Breast Cancer Subscale
(BCS) (24). The total score ranges from 0 to 144 with higher
scores indicating better functions. In the current study, the changes
of FACT-B between TO and T1 was used as an anchor against
resilience. The change group with loss indicated by >0.5 SD (standard
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Characteristics (%) Cohort A N=145)  Cohort B (N=86)  Cohort C (N=104) Cohort D N=123) Total (N=458)
Age (yrs)
=45 48(33.1) 35(40.7) 32(30.8) 47(38.2) 162(35.4)
>45 97(66.9) 51(59.3) 72(69.2) 76(61.8) 296(64.6)
Education (yrs)
<6 36(24.8) 18(21.0) 35(33.7) 39(31.7) 128(27.9)
>6 109(75.2) 68(79.0) 69(66.3) 84(68.3) 330(72.1)
Income (CNY/month)
<5000 61(42.1) 28(32.6) 43(41.3) 42(34.1) 174(38.0)
>5000 84(57.9) 58(67.4) 61(58.7) 81(65.9) 284(62.0)
Marital Status
Married or cohabiting 113(77.9) 60(69.8) 84(80.8) 88(71.5) 345(75.3)
Single or other 32(22.1) 26(30.2) 20(19.2) 35(28.5) 113(24.7)
Commercial Insurance
Yes 10(6.9) 14(16.3) 10(9.6) 18(14.6) 52(11.4)
No 135(93.1) 72(83.7) 94(90.4) 105(85.4) 406(88.6)
Postmenopausal Status
Yes 56(38.6) 25(29.1) 39(37.5) 49(39.8) 169(36.9)
No 89(61.4) 61(70.9) 65(62.5) 74(60.2) 289(63.1)
Estrogen Receptor
Positive 122(84.1) 75(87.2) 91(87.5) 111(%0.2) 399(87.1)
Negative 23(15.9) 11(12.8) 13(12.5) 12(9.8) 59(12.9)
Combordities
0 93(64.1) 47(54.7) 59(56.7) 77(62.6) 276(60.3)
=1 52(35.9) 39(45.3) 45(43.3) 46(37.4) 182(39.7)
T Stage
1-2 90(62.1) 54(62.8) 74(71.2) 83(67.5) 301(65.7)
3-4 55(37.9) 32(37.2) 30(28.8) 40(32.5) 157(34.3)
N Stage
0-1 115(79.3) 62(72.1) 80(76.9) 92(74.8) 349(76.2)
2-3 30(20.7) 24(27.9) 24(23.1) 31(25.2) 109(23.8)
M Stage
0 133(91.7) 74(86.0) 98(%4.2) 107(87.0) 412(90.0)
1 12(8.3) 12(14.0) 6(5.8) 16(13.0) 46(10.0)

FIGURE 1
(A) The enrollment line (B) and demographics for patients.

deviation) of change was defined as Decreased (outcome = 1) and
other groups were defined as Non-decreased (outcome = 0).

Statistical analysis

First, based on the two-factor structure of RS-SC-10 in
our previous research (21-23), two theory-based Q matrix were
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developed for validating the number of item attributes and detecting
the misidentified elements, including a bifactor Q-matrix and a
non-bifactor one (Figures 2A, B). A cell with the value of 1
indicates that the corresponding item attribute is captured by the
corresponding item.

Second, an unrestricted and saturated model named as
Generalized Deterministic Input, Noisy “And” Gate (G-DINA) was
utilized in the current study with two different Q matrix to avoid
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01, the first trait; 62, the second trait Relative-fit Statistics
No. Description Al A2 A3 LL -2536.809
1 Proud of my achievements 1 0 - Item 1 AIC 5121.619
2 Tend to bounce back after illness or injuries 1 0 - Item 2 o1 BIC 5221.386
3 Can handle emotional distress 1 0 - Item 3 % % CAIC 5245386
4 Can adapt to changes in surroundings 1 0 - Item 4 SABIC 5145214
5 Try to see the good side 0 1 - Item 5
6 Pay more attention to the family 0 1 - Item 6
7 Accept things more easily [ 1 - Item 7 62 Absolute-fit Statistics
8  Cancer can be cured 0 1 - Item 8 M2 81.807
9  Good fortune will come after surviving from a disaster 0 1 - Item 9 RMSEA2  0.0589
10 Feel the happiness in my life 0 1 - Item 10 SRMSR  0.0881
B Model 2: C e Diagnosis Modeling with a bifactor Q-matrix 61, the first trait; 62, the second trait; 83, the third trait Relative-fit Statistics
No. Description Al A2 A3 LL -2403.537
1 Proud of my achievements 1 0 1 Item 1 AIC 4899.073
21 Tend to bownce back after ess oc apaies 10 1 Ttem 2 >’ o | BIC 5090294
3 Can handle emotional distress 1 0 1 Item 3 CAIC 5136.294
4 Can adapt to changes in surroundings 1 0 1 Item 4 SABIC  4944.298
5 Try to see the good side 0 1 1 . Item 5 P value*  <0.0001
6 Pay more attention to the family 0 1 1 Item 6
7 Accept things more easily 0 1 1 Item 7 02 | Absolute-fit Statistics
8 Cancer can be cured 0 1 1 Item 8 M2 15.331
9  Good fortune will come after surviving from a disaster 0 1 1 Item 9 RMSEA  0.0386
10 _ Feel the happiness in my life 0 1 1 Item 10 SRMSR 0.0321
LL, Log-likelihood; AIC, Akaibe ion Criterion; BIC, Bayesian Information Criterion; CAIC, Consistent AIC; SABIC, Sample Adjusted BIC
M2, the Second-order Marginal Statistic; RVMISEA2, Limited Information Root Mean Square Error of il i SRMSR, i Mean Square Root of Squared Resi
* Likelihood Ratio Test
C Heatmap plot for adjusted pvalues of transformed correlation Heatmap plot for adjusted pvalues of transformed correlation
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FIGURE 2

Q-matrix comparison and validation. (A) A non-bifactor Q-matrix, (B) a bifactor Q-matrix, (C) heatmaps for adjusted p-values of transformed correlation,
and (D) mesa plots mapping attributes to items.

potential model misspecifications. The item response function (IRF) ~ where g[-] represents an identity, logit, or log link function, 3;¢ is the

of G-DINA was detailed as below (25): intercept of item j, 8 is the main effect of attribute k, 354’ is the two-

way interaction effect of attributes k and k', and 815 gj+ is Kj*-way

K7 K K-l interaction effect of attributes 1 to Kj*. In addition, a higher-order

g[P(Tij = 1|a;})] =djo+ Z Sjkalk + Z z Sjkk’alk“lkk/ . 2PL model was chosen for the attribute distribution and monotonic
k=1 K=k+1 k=1 constraints was also applied in the G-DINA model.

KF Third, relative-fit statistics including Akaike Information

+ 8]'12,,.Kj* H ag Criterion (AIC), Bayesian Information Criterion (BIC), Consistent

k=1 AIC (CAIC), Sample Adjusted BIC (SABIC), as well as a likelihood
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ratio (LR) test were compared between the two models with different
Q matrix (26). In addition, absolute-fit statistics including Second-
order Marginal Statistic (M2, less is better), Root Mean Square Error
of Approximation (RMSEA, RMSEA < 0.045 is defined as a good fit)
and Standardized Mean Square Root of Squared Residuals (SRMSR,
SRMSR < 0.05 is defined as a good fit) were also considered (26).
Further, a heatmap for residuals between the observed and predicted
correlations of item pairs was checked and the optimal G-DINA
model was retained for further model evaluation (27).

Fourth, Q-matrix was validated by mesa plots mapping attributes
to items (28). The cutoff of Proportion of Variance Accounted For
(PVAF) by a particular q-vector was set at 0.95.

Fifth, item parameter including success probabilities of reduced
latent classes, guessing and slip parameters, delta parameters, and
success probabilities of all latent classes with or without standard
errors (SEs) were estimated in the G-DINA model (25).

Sixth, success probabilities of attributes for each person were
extracted from the G-DINA model and two models, Model 1: (TNM
stage + Total Score) vs. Model 2: (TNM stage + Cognitive Diagnostic
Probabilities, were compared based on indicators of AUC, NRI
(Net Reclassification Improvement), IDI (Integrated Discrimination
Improvement), calibration curves (estimated by Brier score), and
Decision Curve Analysis (29, 30). In addition, Clinical Impact Curve
were also estimated to evaluate Model 2 clinical utilizations (31).

At last, Wald test was performed to compare G-DINA model
against other reduced model (i.e., DINA, DINO, etc.) at the item
level, which could provide better classification results without losing
significant fits to models (32). All statistical analyses were performed
by GDINA R Package (33).

Results

Demographics

Overall, 151, 95, 111, 135 patients were enrolled from four
different cohorts. Finally, 145 (96.0%), 86 (90.5%), 104 (93.7%),123
(91.1%) patients completed 6-month follow-up assessments at T1 and
a total of 458 patients were analyzed. Compared to those enrolled in
the analysis, patients lost to follow-up were reported to have more
combordities (P = 0.078) and no other significant demographics
were identified. The baseline characteristics of the patients were
summarized in Figure 1B.

Q-matrix comparison and validation

Two theory-based Q matrix were developed for validating the
number of item attributes and detecting the misidentified elements,
including a non-bifactor Q-matrix (Model 1, Figure 2A) and a
bifactor one (Model 2, Figure 2B). It demonstrated that Model
2 had better fitting indicators in terms of Relative-fit Statistics
(i.e., AIC = 4899.073 vs. 5121.619, BIC = 5090.294 vs. 5221.386,
etc.) and Absolute-fit Statistics (i.e., RMSEA = 0.0386 vs. 0.0589,
SRMSR = 0.0321 vs. 0.0881, etc.) compared to those based on Model
1. The LR test also confirmed these findings (X? = 266.544, df = 24,
P < 0.0001). In addition, the heatmap for Model 1 demonstrated
that residuals between the observed and predicted correlations of
item pairs were significant resulting in misfitting (Figure 2C, adjusted
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P-value for transformed correlation = 0.0058). Thus, Model 2 was
chosen for further Q-matrix validation. Based on the cutoff of 0.95 of
PVAE, mesa plots were provided for mapping attributes to items and
no changes should be made to all 10 items. Full details about different
q-vectors were described in Figure 2D.

Item parameter estimation

At the item-level, guessing (g) and slip (s) parameters with SEs
were presented in Figure 3A, indicating the lower (g) and upper
bound (I-s) of success probabilities. In addition, delta parameters
(3) for IRF of G-DINA, and success probabilities of all latent
classes (i.e., 000, 100, 010, etc.) were also presented in Figure 3A.
The distributions of the success probability across all reduced
latent classes in each item were drawn in Figure 3B. It showed
that an increase was observed in the success probability as a
patient mastered more attributes in most items (i.e., item 8, 9,
10, etc.) indicating a perfect fitting. At the test-level, 67.6, 41.3,
45.6% of patients successfully mastered “Generic Elements (A1),
“Shift-Persist (A2),” “General Factor (A3)” which were described
in Figure 3C. In addition, the most proportions of latent classes
were “111 “100,” and “000,” accounting for 30.0, 27.2, 22.0% of
the patients, respectively. Other details about latent classes could be
identified in Figure 3D. The accuracy at test level was 0.8377 and
were 0.9528 (A1), 0.9042 (A2), and 0.9155 (A3) at attribute level,
respectively.

The comparison of different prediction
models (total score vs. cognitive
diagnostic probabilities)

Two models were developed to construct the prediction model
for Decreased QoL outcome, including: Model 1: TNM stage + Total
Score and Model 2: TNM stage + Cognitive Diagnostic Probabilities.
Compared with Model 1, AUC in Model 2 increased from 82.6-
88.8 t0 95.2-96.5% in four cohorts (all P < 0.001, Figure 4A). The
NRI in Model 2 ranged from 15.13 to 54.01% and IDI ranged from
24.69 to 47.55% (all P < 0.0001, Figure 4A). In addition, Brier scores
in Model 2 ranged from 7.8 to 10.2, which were significantly less
than those in Model 1 (ranged from 14.1 to 20.9, Figure 4B). DCA
indicated that Model 2 showed higher net benefits compared with
Model 1 (Figure 4C) in different cohorts. Thus, Model 2 had better
predictable ability to Decreased QoL outcome than Model 1 and CICs
about Model 2’ clinical utilization in different cohorts were detailed
in Figure 4D.

Item-level model comparison

Wald test indicated that the DINA model could be replaced
by several reduced cognitive diagnostic models. For example, in
item 1, 3, and 6, Linear Logistic Model (LLM) could provide better
classification results without losing significant fits to models. Other
information about Additive Cognitive Diagnosis Model (ACDM)
and Reduced Reparameterized Unified Model (RRUM) could be
recognized in Figure 5.
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Item parameter estimation. (A) ltem parameter estimation, (B) success probabilities distribution, (C) mastery attributes distribution, and (D) latent classes

distribution.

Discussion PROs research. Furthermore, G-DINA-based RS-SC-10 could reduce

This is the first study to measure resilience by CDMs
and its prediction of 6-month Quality of Life (QoL) in breast
cancer, though CDMs have been performed to analyze PROs
in pathological gambler, schizophrenia, internet addition, etc (12,
13, 34). The findings demonstrated in this manuscript confirmed
the usefulness of CDMs as a sophisticated method for jointly
performing resilience assessment and investigating theory-based
structural facets of resilience traits. With the additional item-level
information from G-DINA model, the prediction ability of resilience
to 6-month QoL was significantly enhanced. Thus, the underlying
structure of resilience traits or other psychological indicators (i.e.,
depression, anxiety, etc.) should also be considered in future

Frontiers in Psychiatry

the burden of psychologist/psychiatrist when large patients are
screened or monitored.

However, two important issues in the application of CDMs
should be discussed here. First, a theoretical framework or Q matrix
should be set for CDMs before the formal analysis and the results
will have limited diagnostic information if the theoretical framework
is not relevant to the diagnosis. For example, based on our previous
study, two theory-based Q matrix were developed for validating the
number of item attributes and detecting the misidentified elements,
including a non-bifactor Q-matrix (Model 1, Figure 2A) and a
bifactor one (Model 2, Figure 2B). If both Q matrix are biased,
misguided Q-matrices will lead to meaningless results with inflated
slip and guess parameters, high RMSE and low Monte Carlo p-values.
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Center C (N=104)

Center D (N=123)

NRI (total. 95%CT) = 15.13 (-3.13-33.39)

NRI (positive, 95%CI) = 6.56 (0.92-14.08)

NRI (negative, 95%CT) = 8.57 (4.58-30.26)

IDI (95%CT) = 24.69 (15.77-33.62), P<0.0001

NRI (total. 95%
NRI (positive.
NRI (negative,
IDI (9596CT) =44.61 (34.82-54.39), P<0.0001
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A Center A (N=145) Center B (N=86)
NRI (total. 95%CI) (20.10-48.34) NRI (total. 95%CI)
NRI (positive, 95%C] .81 (0.61-16.64) NRI (positive. 95% .32 (2.
NRI (negative, 95%CT) = 29.41 (10.32-43.48) NRI (negative, 95%CT) = 4
IDI (959CT) = 35.34 (28.70-41.98), P<0.0001 IDI (9596CT) = 47.55 (36.19-58.91), P<0.0001

=
= .
FIGURE 4

The comparison of different prediction models (total score vs. cognitive diagnostic probabilities). (A) Area under curve, net reclassification improvement
and integrated discrimination improvement in Model 1 and Model 2, (B) calibration curves in Model 1 and Model 2, (C) decision curve analysis in Model 1

and Model 2, and (D) clinical impact curves in Model 1 and Model 2.

Item DINA DINO ACDM LLM RRUM Candidate
Wald P value Wald P value Wald P value Wald P value Wald P value

1 62.9755 <0.0001 39.2397 <0.0001 3.3745 0.0662  0.8640 0.3526  9.4169 0.0021 LMM
2 60.45557 <0.0001 103.782 <0.0001 9.5539 0.0020 0.4424 0.5060 0.2636 0.6076 RRUM
3 67.8105 <0.0001 57.9727 <0.0001 6.1365 0.0132 1.7316  0.1882 8.2259 0.0041 LLM

4 149353  <0.0001 110.2278 <0.0001 27.0865 <0.0001  0.7004 0.4027 0.1844 0.6676 RRUM
5 85.8029 <0.0001 102.2123 <0.0001 8.4932 0.0036 0.2602 0.6100 0.0085 0.9267 RRUM
6 544168 <0.0001 99.5518 <0.0001 1.8120 0.1783 0.0651 0.7986 5.3455 0.0208 LMM
i 57.1111 <0.0001 138.3016 <0.0001 19.2589 <0.0001  0.1212 0.7277 0.0112 0.9158 RRUM
8 106.9642 <0.0001 53.7755 <0.0001 3.0414 0.0812 3.4649 0.0627 6.8612 0.0088 ACDM
9 84.1451 <0.0001 81.0537 <0.0001 0.1884 0.6643 0.0008 0.9768 0.0012 0.9724 LMM
10 104.2151 <0.0001  76.5258  <0.0001 3.2226 0.0726 1.6248  0.2024  9.8588 0.0017 LMM

Decision rule: Simpler model + Largest p value rule at 0.05 alpha level.

Adjusted p values are based on holm correction.

DINA, Deterministic Input, Noisy “and” Gate Model; DINO, Deterministic Input, Noisy “or” Gate Model; ACDM,
Additive Cognitive Diagnosis Model; LLM, Linear Logistic Model; RRUM, Reduced Reparameterized Unified Model

FIGURE 5
Iltem-level model comparison.

However, there exists no golden standard/definition for resilience
and whether resilience should be conceptualized as a trait or a state
is also debated (35-37). Therefore, we should be cautious about
the exploratory Q matrix-based findings derived from the current
study which should be replicated and validated in future research.
Also, Q-matrix discovery techniques have been developed to handle
with the issue about unknown Q-matrix. For example, a Q-matrix
discovery method has been developed to allows for uncertainty in
instrument development process by using experts comments in a
Bayesian algorithm (38).

Frontiers in Psychiatry

Second, the cognitive diagnostic probabilities (CDPs) should
be validated by external indicators. In the current study, CDPs
of resilience were anchored against 6-month QoL based on a
prospective cohort design. However, researchers might prefer that
external validation come not only from PRO instruments but also
from diagnoses elicited from trained physicians. More objective
indicators, i.e., cortisol, C-reactive protein, systolic pressure, etc.,
can be incorporated into the CDMs research, which will give more
confidence to the interpretation of results (39, 40). In addition,
we should be noted that CDMs take complex interactions among
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latent variables into consideration which allows greater flexibility
than most IRT models in modeling item responses. However, this
also results in complex model with too many parameters. In the
current study, several reduced models have been recommended for
replacing G-DINA (Figure 5) and these models can be tried in the
future research to obtain more stable parameter estimates. At last, if a
long item instrument with many attributes is administered in a large
sample, computerized adaptive testing (CAT) can be considered to
reduce the test time without a loss of measurement precision. Some
research on combining CDMs and CAT has been explored in the
field of psychometrics and CDMs-CAT is promising in the field of
medicine (41, 42).

Limitation

There are several limitations should be considered. First, many
parameters are involved in G-DINA and the sample size in the
current study may not be large enough resulting in potential biased
estimation of Wald test for model selection or DIF detection (43).
Larger sample should be considered in future research to get a robust
estimated covariance matrix. Second, our sample was collected from
an extremely narrow Chinese population with breast cancer and the
generalizability of these findings should be further validated in other
populations (i.e., lung cancer, colon-rectal cancer, etc.). In addition,
CDMs allow for measurement of differences in attribute patterns
cross-culturally which can help explain how cultural differences are
manifested in the patterns of attributes mastered (44, 45). Third, RS-
SC-10 has been validated in family caregivers (i.e., parents of children
with cancer) as well as patients with different cancer types, and CDMs
might also have great potentials in these vulnerable populations
(46-50). More CDM-based evaluation and intervention for these
vulnerable groups are urgently warranted. At last, although various
CDMs have been developed to detect mastery and non-mastery of
multiple fine-grained skills or attributes (i.e., DINO, DINA, ACDM,
RRUM, etc.), most researchers in the field of medicine are still not
familiar with CDMs due to their novelty as well as complex statistics.
There exist several software programs available to estimate CDMs,
for example, several R packages are available for the CDM:s analyses.
However, syntax preparation of these programs requires researchers’
substantial effort and more easy-use software should be developed to
facilitate the application of CDMs.

Conclusion
Cognitive diagnostic probabilities of resilience contribute to a
more accurate prediction of 6-month QoL above conventional total

score. CDMs could help optimize Patient Reported Outcomes (PROs)
measurement in breast cancer.
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