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Objective: We designed a diagnostic test to evaluate the e�ectiveness and

accuracy of a multidimensional voiceprint feature diagnostic assessment (MVFDA)

system vs. the 24-item Hamilton Rating Scale for Depression (HAMD-24)

for adjunctive diagnosis of children and adolescents with major depressive

disorder (MDD).

Methods: This study included 55 children aged 6–16 years who were clinically

diagnosed with MDD according to the DSM-5 and analyzed by professional

physicians, and 55 healthy children (typically developing). Each subject completed

a voice recording and was scored on the HAMD-24 scale by a trained rater. We

calculated the validity indices, including sensitivity, specificity, Youden’s index,

likelihood ratio, and other indices including predictive value, diagnostic odds ratio,

diagnostic accuracy, and area under the curve (AUC), to assess the e�ectiveness

of the MVFDA system in addition to the HAMD-24.

Results: The sensitivity (92.73 vs. 76.36%) and the specificity (90.91 vs. 85.45%) of

theMVFDA system are significantly higher than those of the HAMD-24. The AUC of

the MVFDA system is also higher than that of the HAMD-24. There is a statistically

significant di�erence between the groups (p < 0.05), and both of them have high

diagnostic accuracy. In addition, the diagnostic e�cacy of the MVFDA system is

higher than that of HAMD-24 in terms of the Youden index, diagnostic accuracy,

likelihood ratio, diagnostic odds ratio, and predictive value.

Conclusion: The MVFDA has performed well in clinical diagnostic trials for the

identification of MDD in children and adolescents by capturing objective sound

features. Compared with the scale assessment method, the MVFDA system could

be further promoted in clinical practice due to its advantages of simple operation,

objective rating, and high diagnostic e�ciency.
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Introduction

Major depressive disorder (MDD) is a type of common

mental illness. MDD could become the first-class diseases for the

heavy burden worldwide by 2030 (1). However, the prevalence

of depression tends to increase among adolescents. In the

United States, the lifetime prevalence of MDD among adolescents

aged 13 to 18 years is 11.0%, and the 12-month prevalence

probability is 7.5% (2). In addition to the high probability of

prevalence, the cure rate for adolescent depression is extremely

low, and the suicide rate is quite high (3, 4). Moreover, as children

and adolescents are in a crucial period of psychophysiological

development, their depression has a more serious impact on

the performance of both academic and social functions (5, 6).

Therefore, early diagnosis and identification of MDD are essential.

There are two major diagnostic systems for depression:

the DSM-5 (the Diagnostic and Statistical Manual of Mental

Disorders) and the ICD (the International Classification of

Diseases) systems. The recognition of depression depends on

some basic clinical symptoms. In addition, clinicians will also

assist in the diagnosis according to some classical scales, such

as the HAMD (7), which can assess the severity of depression.

The establishment of the HAMD depression scale includes some

basic symptoms of depression, such as decreased interest and

fatigue, and some additional symptoms like anxiety/somatization,

cognition, and round-the-clock changes (7). However, these scales

require rich clinical experiences (8, 9). Even senior physicians

are prone to misdiagnosis when patients atypically conceal

their illness or symptoms. Moreover, compared with adults, the

clinical manifestations of children and adolescents with depressive

disorders aremore atypical, and the degree of coordination is lower,

which makes it more difficult for clinicians, especially primary

care medical workers, to identify adolescents with the depressive

disorder (10–12). Considering the shortcomings of the scales,

research on the objective adjunctive diagnosis of MDD patients has

become a hot topic.

Patients with depression display different physiological

indicators from healthy individuals, such as altered body posture,

facial expressions, and voice. Researchers have extracted some

specific features to diagnose depression. Studies show that the

voice of patients with depression can change significantly; for

instance, voice speed is extremely slow, and pauses are longer,

more rigid, and more frequent (13–15). With the development

of artificial intelligence (AI), it is easier to design Al-related

algorithms based on the voice features of patients with depression

that could help identify some classical symptoms of MDD (16).

In addition, compared to other traits, sound acquisition is easier

and cheaper (15). Therefore, researchers have shown great interest

in speech recognition research (SDR) on depression. The current

research on depression recognition employing speech includes two

main aspects: (1) Analyzing the speech features of patients with

depression. (2) Building a speech depression recognition model.

Early studies mainly focused on the classical and related features

of depression patients. Most studies analyzed the features of their

speech in the time domain. Szabadi et al. found that the pause in

the voice of depressed patients was prolonged, but the phonation

period remained constant (17). Moreover, the length of their voice

pause decreased with the improvement of clinical symptoms.

Then, Greden and Carroll also confirmed Szabadi’s conclusions

(18). Hollien showed that patients with depression speak slower

than healthy individuals, with a more monotonous intonation (19).

However, the features extracted from the time domain are greatly

affected by individual differences and cannot fully represent the

features of patients with depression.

In addition, researchers have committed to investigating the

changes in various acoustic features of speech signals, such as

prosody, sound source, composition, and spectrum. The differences

between the two types of people in the features of speech signals,

such as fundamental frequency (F0), Mel cepstrum coefficient

(MFCC), energy, frequency, and formant, have also been studied.

Based on these features, a recognition model of depression has

been constructed. In recent years, great advancements in SDR

have been made possible thanks to the integration of acoustic

features. Ooi et al. distinguished depressed adolescents from

healthy individuals with a classification accuracy of 73% using four

features (progressive, gross, TEO, and spectrum). The recognition

effects of multi-channel classification with a weighted decision

procedure are superior to all classifications based on a single

feature or single channel (20). Cummins et al. combined features

of MFCC and formant and used the GMM classifier to obtain an

accuracy of 79% (21). Mendirata et al. obtained an accuracy of

80.67% using MFCC features and conducted principal component

analysis (PCA), and clustering classification (22). These studies

show that the designed recognition system based on the vocal

differences of patients with depression has strong feasibility. For the

experimental paradigms, the size of the data set and other aspects

are difficult to compare horizontally with the results. Therefore, a

general and optimal model with higher accuracy is very important.

However, the conclusions drawn from studies on the same sound

features are not consistent. For example, the experimental results

of some studies show that the size of F0 is related to the severity

of depression, while other experiments reveal that there is no

correlation between F0 and depression (23). Even for the same

group of subjects, the relationship between F0 and depression is

also affected by the speech content. Therefore, finding a more

accurate and scientific diagnostic system is very important. All told,

the existing data sets are mostly focused on adults, and the studies

are also inconsistent. There are fewer studies on the identification

of adolescent speech than there are on adult speech. Due to the

physical development of adolescents, the sound of children and

adolescents is somewhat different from that of adults in terms of

the frequency range, pitch, speech rate, fundamental frequency,

resonance peak, and so on. For example, the vocal cords and throat

structure of teenagers are not yet fully mature, so their voices

tend to have a higher frequency range. In contrast, the voices of

adults are more stable, with a relatively smaller frequency range.

Teenagers’ pitch is usually higher and sometimes less stable, while

adults tend to have a more even and stable pitch. In addition,

teenagers generally speak at a faster pace than adults, which may

be related to their more active bodies and faster thinking ability.

Therefore, to obtain a higher identification accuracy, it is essential

to specifically recognize adolescent speech.

In response to the above problems, Beijing Anding Hospital

and Beijing Institute of Technology have developed a new
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multidimensional voice feature diagnostic assessment (MVFDA)

system that overcomes the shortcomings of the state-of-the-art

algorithms and greatly improves the recognition accuracy based

on features extracted from voiceprint. Furthermore, we specifically

evaluated the effectiveness of this diagnostic system and compared

it with the HAMD clinical scales.

Methods and materials

Study design

Aiming at diagnosing and evaluating the effectiveness of the

MVFDA system for MDD and comparing it with the HAMD

scale, the design of the trial follows the STARD statement. PASS15

software (NCSS, Kaysville, Utah, USA) was used to calculate

samples. Referring to previous related studies, it has been shown

that machine learning models have promising results with AUC

values generally greater than 0.9. Under the conditions of α = 0.05

(unilateral), β = 0.1, and a 1:1 ratio between groups, 55 subjects

were enrolled in each group of the MDD and healthy control

(HC) groups. Each subject was evaluated and compared using the

MVFDA system and HAMD scale.

Subjects

Subjects in the MDD group were inpatients at the Beijing

Anding Hospital. The inclusion criteria were as follows: (a) meet

the DSM-5 diagnostic criteria for MDD; (b) be between the

ages of 6 and 16, with no gender restriction; (c) be able to

cooperate to complete the study; and (e) sign the informed consent.

Exclusion criteria were as follows: (a) severe physical illness, such

as pharyngeal edema, pharyngeal foreign bodies, hoarseness; (b)

comorbid other psychiatric disorders, such as bipolar disorder and

schizophrenia, and developmental disorders (e.g., autism spectrum

disorder, intellectual impairment); and (c) other conditions deemed

inappropriate for inclusion in the group by the investigators.

Healthy controls were recruited from the community. Typically

developing children and adolescents aged 10 to 18 years with no

other conditions, and who were able to cooperate to complete all

the requirements were recruited from the community and schools.

Ultimately, we successfully recruited 110 subjects according to the

study plan, with no subjects dropping out midway through. The

project was conducted in accordance with the ethical standards of

the Declaration of Helsinki and its subsequent amendments and

was approved by the Ethics Committee of the Beijing Institute of

Technology (Ethical number: BIT-EC-H-2022120). All subjects and

their family members signed an informed consent form prior to the

trial. All subjects were able to comply with the MVFDA system and

HAMD assessment requirements during the study, and the data

collected were valid and reliable.

Gold standard

MDD is diagnosed according to the recommended guidelines

and is based on the patient’s medical history, clinical symptoms,

disease course, and relevant examinations. In this study, two senior

experts conducted detailed clinical interviews with each subject,

obtained their medical history, performed a psychiatric evaluation,

and combined these to form a diagnostic opinion according to the

DSM-5 diagnostic criteria. Finally, the unanimous opinion of the

two experts served as the gold standard for the complete diagnosis.

MVFDA system

This algorithm achieves the recognition of depression based

on voice data. Specifically, as shown in Table 1. First, multi-

dimensional features are extracted from voice data, including

energy-related, spectral, voice-related, and statistical information.

Low-level descriptors (LLDs) of voiceprints are manually designed

and generally calculated from a frame of voice. Various statistical

functions are then calculated based on the LLD. Then, a more

comprehensive feature set is constructed, and features with

significant differences between classes are retained through feature

screening. The next step is to extract features from the transform

domain to optimize their differences. Finally, the integrated

classificationmethod is used to achieve high classification accuracy.

HAMD scale

Themost widely used scale for assessing depression was created

in 1960. There are three versions of this scale: the 17-item, 21-

item, and 24-item. In this study, we used the 24-item HAMD.

The HAMD scale is administered and independently scored by

two trained raters. Most of the items are rated on a 5-point scale

(0 to 4), and a few items are rated on a 3-point scale (0 to 2).

Items 8, 9, and 11 of the scale are rated based on observation of

the patient; the remaining items are rated based on the patient’s

own verbal narrative; item 1 requires a combination of the two. In

addition, for items 7 and 22, information has to be collected from

the patient’s family or ward staff, while item 16 is based on weight

records and can also be rated on the basis of the patient’s complaints

and information provided by their family or ward staff. According

to Davis JM’s delineation score of 24 items total, major depressive

disorder is possible with a score >20. The scale is widely used

in clinical practice and has high reliability and validity (24–27).

All interviewers had passed the HAMD-24 consistency training.

Additionally, the group’s intraclass correlation coefficient (ICC)

was higher than 0.8.

Processing

We used the recording function of the MacBook Air 2020 to

gather the voice data of all subjects. The data were collected in a

quiet room at Beijing Anding Hospital to evaluate the MVFDA

system. First, the entire evaluation process was briefly introduced

and described. Then, the investigator read part of the story or

some words to demonstrate. The recording was initiated once

the participant comprehended the lists that needed to be read.

Children were required to read one story and six groups of words in
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TABLE 1 Description of the features applied in the MVFDA system.

Types of features Names of features Meaning

LLD Energy-related LLD Sum of the auditory spectrum The auditory spectrum includes information from the time and

frequency domains of a sound signal

RMS energy Root mean square value of all samples in a frame

Zero crossing rate Number of times the signal crosses the horizontal axis

Sum of RASTA-style filtered auditory spectrum Auditory spectrum after RASTA filtering

Spectral LLD Mel Frequency Cepstrum Coefficient (MFCC)

Energy, variance, and kurtosis of the spectral

Coefficients of Mel frequency cepstrum Energy and variance of

spectral, and kurtosis of each spectral line

Voice-related LLD Fundamental frequency (F0)

Jitter and shimmer

Harmonics-to-Noise ratio (HNR)

The frequency of the fundamental tone in a polyphony

Basic frequency and amplitude change of acoustic wave between

adjacent periods

Ratio of harmonic to noise components

Statistical features Mean, Maximum, Minimum Variance Linear

regression slope

Average, Maximum, Minimum, and Variance of samples

Slope of linear regression line

succession. For the purpose of feature extraction and classification,

speech differences between depressed adolescents and healthy

ones were applied. A 10-min break was taken after completing

the MVFDA system assessment, and then two professional raters

assessed them using the HAMD scale.

Statistical analysis

Data were analyzed using SPSS25.0 software (IBM, Armonk,

NY, USA). Age differences between the two groups were analyzed

by t-test, and gender differences were analyzed by chi-squared.

Descriptive statistics were conducted to analyze the medication

use of patients in the MDD group. The consistency of the results

between the twoHAMD scale raters (ML and JLuo) was determined

by kappa analysis. A series of indicators, including sensitivity,

specificity, the Youden index, diagnostic odds ratios, likelihood

ratios, predictive values, and diagnostic accuracy, were calculated to

evaluate the diagnostic validity of MVFDA compared with HAMD.

Drawing the ROC curve, calculating the area under the curve

(AUC), and applying Z-tests should all be performed to test for

differences in the AUC, as it is generally believed that the closer

the AUC is to 1, the more reliable the test method is.

Results

Subject characteristics

A total of 55 subjects, 20 boys and 35 girls, with a mean age of

14.40± 1.72 years, were included in the MDD group of this trial. A

total of 55 subjects, 22 boys and 33 girls, with a mean age of 14.83±

1.50 years, were included in the HC group. There was no statistical

difference in age (p = 0.16) or gender (p = 0.43) between the two

groups. The medication use of the patients in the MDD group is

shown in Table 2.

Diagnostic e�cacy

The kappa analysis result was 0.964, indicating that the

HAMD scale findings were reliable and had a good agreement.

TABLE 2 Medication use by patients in the MDD group.

Medication MDD (n = 55)

Antidepressants, n (%) 55 (100.00%)

SSRI (sertraline, escitalopram oxalate, fluvoxamine) 45 (81.8%)

SNRI (duloxetine) 2 (3.6%)

NDRI (bupropion) 5 (9.1%)

Others (vortioxetine, agomelatine) 3 (5.5%)

Antipsychotics, n (%) 32 (58.2%)

Aripiprazole 11 (20.0%)

Lurasidone 7 (12.7%)

Quetiapine 8 (14.5%)

Others (olanzapine, paliperidone, peropirox) 6 (10.9%)

Mood stabilizers, n (%) 18 (32.7%)

Lithium 7 (12.7%)

Sodium valproate 6 (10.9%)

Lamotrigine 5 (9.1%)

SSRI, selective serotonin reuptake inhibitor; SNRI, serotonin-norepinephrine reuptake

inhibitor; NDRI, norepinephrine-dopamine reuptake inhibitor.

TABLE 3 MVFDA system and HAMD results for all subjects.

MVFDA system HAMD

Positive
(n)

Negative
(n)

Positive
(n)

Negative
(n)

MDD group (n= 55) 51 4 43 12

HC group (n= 55) 5 50 8 47

Total (n= 110) 56 54 51 59

As shown in Table 3, in the MDD group, the MVFDA system’s

correct/incorrect diagnosis was 51/4, and the HAMD scale’s

correct/incorrect diagnosis was 43/12; in the control group, the

MVFDA system’s correct/incorrect diagnosis was 50/5, and the

HAMD scale’s correct/incorrect diagnosis was 47/8. The evaluation

indices are shown in Table 4. The sensitivity (92.73 vs. 76.36%,
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FIGURE 1

Receiver operator characteristic curve of the MVFDA and HAMFDA.

P = 0.04) and the specificity (90.91 vs. 85.45%, P > 0.05) of

MVFDA system are significantly and slightly higher than those

of the HAMD scale. However, the difference is not statistically

significant. The Youden index, likelihood ratios, predictive value,

and diagnostic accuracy of the MVFDA system are also higher

than the corresponding items of the HAMD, as shown in Table 3.

In addition, the ROC curves of MVFDA and HAMD are shown

in Figure 1. The AUC of the MVFDA (0.962) was greater than

that of the HAMD (0.962), and the difference between them was

statistically significant (p = 0.012), indicating that the diagnostic

efficacy of the MVFDA system is significantly higher than that of

the HAMD.

Discussion

A novel voiceprint retrieval algorithm is proposed for the

diagnosis of depression in children and adolescents. We found

that the developed MVFDA system in this paper has exceptional

diagnostic utility. Compared to the voiceprint system, the HAMD

scale has lower sensitivity, likelihood ratios, predictive accuracy,

and other indicators. This result is due to the limitations of

the HAMD scale in its clinical application to children and

adolescents with depressive disorders. The HAMD has the

following drawbacks: (1) The evaluation takes a long time.

The HAMD evaluation process takes at least 15–20min, it can

be challenging for children and adolescents with depression to

maintain steady attention during the interviews, which affects the

quality of the evaluation (28). (2) The Hamilton Depression Scale

raters are highly professional, necessitating professional, consistent

training to ensure the quality of evaluation (29, 30). Compared with

the typical depressive symptoms of adults, the clinical features of

children and adolescents with depression are relatively complex.
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FIGURE 2

The feature visualization results of the HC and MDD groups.

For example, adolescents with depressive disorders may be more

likely to have physical complaints, psychomotor agitation, anxiety,

and other manifestations, and they might have trouble responding

to the item “depressed” (31). For inexperienced evaluators, it

can often be difficult to accurately assess the patient’s disease

status, which leads to misestimation. (3) The level of the patient’s

cooperation must be high. As an interview measure, the HAMD

scale requires effective communication between the evaluator and

patient to gather medical history and assess clinical symptoms.

Children and adolescents often struggle to describe their own

disease condition accurately (10). Communication skills are

required to get the patient to cooperate with the scale’s assessment.

If the patient is unwilling to cooperate with the assessment due to

unfamiliarity or other reasons, the assessment of HAMD will not

proceed smoothly.

The inadequacies of the HAMD may also be present in

other scales; however, the ability to recognize depressive disorders

through speech effectively overcomes these problems. First, the

assessment phase of the MVFDA system is short, lasting less

than 5 min, which means children “and adolescents” attention

remains relatively steady. Second, the operation is simple. The

auxiliary staff only needs to guide the subjects correctly to record

their voices without any formal training. Third, without complex

cooperation in question and answer with raters, the patients only

complete the test by reading aloud the required paradigm. The

data collected by the test is directly extracted from the patients.

Analyzing the characteristics of the disease-related voice ensures

the objectivity of the evaluation and prevents the subjectivity of the

rater’s evaluation.

In addition, the research findings that we developed based on

the proposed algorithm could have a high degree of diagnostic

accuracy for children and adolescents. In previous studies, the

voiceprint system was mostly built based on data from adults

with depression (32). However, due to the differences between

adults, children, and adolescents, the voiceprints used in previous

research were not compatible with our collected data. Furthermore,

the number of voiceprint features used in state-of-the-art studies

is small. Also, few attributes could deliver good results for

specific groups, or even specific environments of audio acquisition,

who bears poor robustness (33). In previous studies, a single

voice was used as a sample, so multiple voices of the same

person were used for both training and testing. Because the

association between the voices of the same person is ignored, the

accuracy of the system recognition is relatively high; however,

in the actual application scenario, the accuracy is drastically

decreased (34). To solve the aforementioned issues, we created

an effective data set specifically for children and adolescents,

based on resources acquired from the hospital. Additionally,

in terms of feature extraction, LLD and its statistical features

related to energy, spectrum, and rhythm were used to obtain

a more comprehensive feature set, breaking the defect of a

single feature promoted by existing methods, which leads to

the difficulty in extracting common features of patients with

depression. In addition to the time and frequency domains, our

algorithm is extended to the wavelet domain to maximize the

difference between the two groups of people, as shown by the

feature visualizations in Figure 2. To achieve effective feature

screening, the proposed algorithm applies KS test combined

with maximum information coefficient (MIC), where KS test is

used to screen features with large differences between classes,

and MIC is used to remove features with high correlation.

Finally, based on sufficient samples, and taking into account the
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correlation among the voices of the same person, the proposed

algorithm treats a person as a sample when training the model,

and the voice of the same person can only be applied for

training or testing to achieve higher accuracy, which is more

consistent with the actual application scenarios. Improvements in

ensuring the effective identification of children and adolescents

with depressive disorder.

The MVFDA system is the first generation; hence, it has

some shortcomings. First of all, this study used a single device

to capture speech, which may not reflect the impact of different

devices on recording quality. Second, the dimensionality of the

features extracted by the algorithm is not sufficiently streamlined.

In the future, another dataset might be established where speech

is collected using multiple recording devices and in different

environments to investigate the impact of recording devices and

environments on the MVFDA. Besides, further consideration is

given to screening and reducing redundant features in addition to

ensuring high classification accuracy by maintaining the features

with the greatest differences between classes.

This test verified the scientific validity and reliability of the

algorithm, and the results showed that it is very suitable for clinical

diagnosis and application promotion. The detection system can

reduce the need for a depression examination facility. Under the

premise of solving privacy issues and other issues, the complete

voiceprint evaluation system could be used by families, schools,

and primary medical units. Voices are collected through a simple

paradigm. Data are collected and transferred to the cloud devices to

obtain a report, which is then sent to the doctors for guidance. Its

convenience and efficiency are used for large-scale early screening

of MDD to reduce the medical burden and greatly improve the

diagnostic efficiency of clinicians.

Conclusions

The MVFDA system performed well in clinical diagnostic

studies for identifying MDD in children and adolescents by

capturing objective voiceprint features. The algorithm’s scientific

and dependable characteristics were verified. Simulations revealed

that the sensitivity, the Youden Index, likelihood ratios, predictive

value, and diagnostic accuracy of the MVFDA system were higher

than those of the HAMD. The specificity of the MVFDA system

was also slightly lower than that of the HAMD scale. Furthermore,

considering the ROC and the AUC of the MVFDA system, the

diagnostic efficacy of MVFDA is significantly higher than that of

the HAMD. Compared with the scale assessment, the MVFDA

system deserves to be further promoted in clinical practice for its

advantages in terms of simple operation, objective evaluation, and

high diagnostic efficiency.
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