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Background: The COVID-19 pandemic and its subsequent health restrictions had

an unprecedented impact on mental health, contributing to the emergence and

reinforcement of various psychopathological symptoms. This complex interaction

needs to be examined especially in a vulnerable population such as older adults.

Objective: In the present study we analyzed network structures of depressive

symptoms, anxiety, and loneliness from the English Longitudinal Study of

Aging COVID-19 Substudy over two waves (Months of June–July and

November–December 2020).

Methods: For this purpose, we use measures of centrality (expected and bridge-

expected influence) in addition to the Clique Percolation method to identify

overlapping symptoms between communities. We also use directed networks to

identify direct e�ects between variables at the longitudinal level.

Results: UK adults aged >50 participated, Wave 1: 5,797 (54% female) and Wave

2: 6,512 (56% female). Cross-sectional findings indicated that di�culty relaxing,

anxious mood, and excessive worry symptoms were the strongest and similar

measures of centrality (Expected Influence) in both waves, while depressive mood

was the one that allowed interconnection between all networks (bridge expected

influence). On the other hand, sadness and di�culty sleeping were symptoms that

reflected the highest comorbidity among all variables during the first and second

waves, respectively. Finally, at the longitudinal level, we found a clear predictive

e�ect in the direction of the nervousness symptom, which was reinforced by

depressive symptoms (di�culties in enjoying life) and loneliness (feeling of being

excluded or cut o� from others).

Conclusion: Our findings suggest that depressive, anxious, and loneliness

symptomswere dynamically reinforced as a function of pandemic context in older

adults in the UK.
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Introduction

In 2020, the UK was one of the countries most affected by
the pandemic. Despite the existence of cases since the last days of
January, the British government released the state of containment
by the end of March as they sought other alternatives such as
acquiring herd immunity in the population (1). Along with these
measures, the British government sought to be among the first
to implement the COVID-19 vaccines, being distributed to high-
risk groups such as older adults, their caregivers, and health care
workers in early December (2). However, from September to
December there was an increase in the number of infections due
to a new strain of COVID-19, prompting the UK government
to introduce social restriction measures to control the second
wave outbreak (3). These measures involve continuing the state
of quarantine, forced isolation, and lockdown in most European
countries and around the world, as was the case during the first
wave that lasted until the end of July (2).

Loneliness is defined as an unpleasant subjective perception
resulting from poor interpersonal relationships, both in terms
of the number of friends or companions, as well as the quality
of the social ties established, so that the latter makes it easier
to differentiate from objective isolation (4). The psychological
effects of confinement during COVID-19 pandemic are still being
studied, but some findings so far are concerning. Several systematic
and longitudinal studies have linked the state of confinement to
negative psychological effects such as stress, anxiety, and depression
(5–8). Older adults are particularly vulnerable to these effects
given their higher risk of contagion and fear of infection and
death (9, 10). Additionally, home quarantines can lead to feelings
of fear, insomnia, post-traumatic stress disorder, or distress in
the absence of social connection and perceived social support,
combined with the pandemic context of increased uncertainty and
fatalistic news (11).

Depression is defined as an affective disorder that reduces
vitality and involvement in activities that previously produced
pleasure, accompanied by extreme tiredness, discouragement, and
loss of meaning in life (12). Anxiety is an adaptive response
that involves physiological and cognitive symptomatology to cope
with states of restlessness and agitation in response to real or
imagined danger (13). Both anxiety and depression are considered
as responses to stressful events that produce biological and
psychological changes in the organism (14). These disorders are
considered the most common during old age because as time goes
by and throughout the aging process people lose mobility, chronic
and/or degenerative diseases appear, they show greater fragility and
require the care of other people, which triggers negative emotional
states (15, 16). This, coupled with higher levels of loneliness due
to home quarantine in older adults, reinforces a higher degree of
psychological vulnerability (17, 18).

A survey conducted in the UK during the onset of confinement
revealed that 22.1% of subjects had depression and 21.6% had
generalized anxiety, where these were the most common symptoms
affecting mental health due to the COVID-19 outbreak (6).
There is a strong correlation between the two variables because
they share similar indicators such as loss of control, difficulty
concentrating, and fear (19, 20). Generalized anxiety disorder
implies a continuum with depression, such that people with this

comorbidity will experience greater functional disability, worse
prognosis and persistence of other diseases (8).

Recently, some authors have begun to reexamine
psychopathology from a more dynamic perspective to explain that
psychological constructs may be conceived as a network of multiple
symptoms correlated with each other (21). A psychometric network
consists of a set of nodes represented as psychological symptoms
and edges for the relationship between such variables. Network
analysis is a tool that facilitates the understanding of different
psychological variables, their comorbidities, possible risk and
protective factors, as well as the most central symptoms within
the network structure (22). Thus, it is necessary to use complex
interaction systems to examine the most significant symptoms
and signs that are affected by the outbreak of COVID-19 and
social isolation.

Although unpleasant feelings of isolation and lack of
meaningful connections are known to be related to depressive and
anxious symptoms, it is not known exactly in which direction these
interconnected associations may occur in a network system, given
the period of the first and second COVID-19 quarantine (11). Based
on these periods of change during the pandemic, it is appropriate
to examine this associative system of psychopathological variables
using longitudinal network analysis. This perspective extends
the application of other traditional network analysis methods by
detecting complex and dynamic interactions across two or more
temporal events through directed networks between symptoms
(23); i.e., it allows to represent and identify those symptoms that
are more predictive in a network based on established time points,
so that it is possible to distinguish the symptoms that reinforce
each other and maintain a certain symptomatology (24).

Given these characteristics, it may be applicable
to understanding the variation in emotional and/or
psychophysiological responses during different periods of
COVID-19 quarantine in the UK. Therefore, the aim of this study
was to examine and compare symptom networks of loneliness,
depression, and anxiety in two specific quarantine periods in a
population of older adults in the United Kingdom. Likewise, in
accordance with previous findings on the overlapping nature of the
variables (25, 26), we use the Clique Percolation Method (CPM) to
examine symptoms that may belong to more than one community
or overlap with it. From this, we sought to identify the most
central measures that would allow the understanding of indirect
associations between systems. Finally, we examined a longitudinal
network structure that allowed us to represent the prediction and
feedback between symptoms that may trigger certain dysfunctional
symptomatological patterns manifesting in older adults during two
critical periods of mandatory 2020 quarantine.

Materials and methods

Participants

We analyzed data from the English Longitudinal Study of

Aging (ELSA) COVID-19 Substudy, a national survey that assessed

variables related to physical and mental health in people over
50 years of age in the United Kingdom during periods of strict
COVID-19 quarantine. The study collected data on the health
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impact of COVID-19 in two stages: between June and July 2020
(Wave 1) and between November and December 2020 (Wave 2).

In the present investigation, we analyzed symptoms of
depression, anxiety, and loneliness, which were assessed by online
questionnaires and computer-assisted telephone interviews. All
participants agreed to be part of the study after being informed
of the study objective and informed consent. Initially, the data
consisted of 7,040 and 6,794 responses in the first and secondwaves,
respectively. After filtering for inaccurate or missing data, the total
number of participants in the first period was 5,797, while in the
second stage it was 6,512 older adults.

Data analysis

Packages
All data and analyzes was processed with R language (27) in the

R Studio IDE (27), using the following packages: qgraph (28, 29),
igraph (30, 31), bootnet (32), glmnet (33–35), CliquePercolation
(36), networktools (37), NetworkComparisonTest (38), and lavaan
(39).

Contemporaneous networks
To identify redundant items, we conducted a Goldbricker

analysis. The results indicated that there was no significant overlap
between any of the items related to anxiety, depression, or
loneliness. This allowed us to say that, although there are similar
items in content, they measured different things, for example,
“feeling isolated” which can be associated with feeling disconnected
from others, while “feeling lonely” can refer to an emotional state
of sadness due to a lack of company.

The partial correlation network structure for both models
was calculated with bootnet package (32), through huge estimator
(40, 41), a non-paranormal conversion of the data (42), and the
rotation information criterion (ric) were used for model selection
(43). The communities were explored using the spinglass clustering
algorithm (44–46) through 500 spins at both times.

Then, an analysis of overlapped community was conducted
with the cpAlgorithm function in the CliquePercolation package
(36), percolated items were founded through the weighted CFinder
method (47) by a k = 4 cliques and an intensity of I = 0.08, for
two-waves networks.

The centrality was explored by the Expected Influence one-step
(EI1; i.e., sums of the edge weights at directly related nodes), and
two-step (EI2; i.e., sums of the edge weights at indirectly related
nodes) (48), also the Bridge Expected Influence one-step (BEI1; i.e.,
sum of edge weights that connect each node with nodes of other
communities directly related) and two-step (BEI2; i.e., sum of edge
weights that connect each node with nodes of other communities
indirectly related) (49).

Finally, two-time networks were compared with the “NCT”
function of the NetworkComparisonTest package (38), with
a bonferroni-holm correction technique (50, 51), and 1,000
permutations. The similarity of the networks was explored through
correlation of the adjacency matrices and its centrality indices, if
the result is 1 the networks have a perfect linear relationship, which

means that networks have the same structure; if the correlation
coefficient is 0, networks have no detectable linear correspondence;
and if correlation coefficient is −1, networks are exact opposites
(52).

Temporal network
The temporal network from a Cross-Lagged Panel Network

(CLPN) approach where the relations among individual items are
modeled, both within a time point and across time. This was
applied into two steps. First: Fit a series of regularized regression
models to estimate the cross-lagged and auto-regressive coefficients
across time. Second: Summarize the results by producing plots and
computing summary statistics such as nodewise in-prediction and
nodewise out-prediction (53).

To estimate linear regression coefficients of each variable at T2
on itself and all other variables at T1, we used penalized maximum
likelihood with a lasso penalty (33). This shrinks all small regression
paths to exactly zero, whilemaking the other paths larger. The result
is a sparse network, in which many of the paths from variables at
T1–T2 will be estimated as exactly zero. The regularized regression
estimates were obtained for a sequence of 100λ values, and the one
that produces the lowest cross-validation error is chosen for the
final model.

Then, the in- and out- predictions of the network were
estimated, like two centrality measures, the first (in-prediction) is
the extent to which each variable is predicted by other network
variables. This can be obtained through the proportion of variance
in each variable at T2 that is explained by the full set of variables at
T1, which can take values from 0 to 1. The second (out-prediction)
is the extent to which each variable at T1 predicts other network
variables at T2. This can be computed as a sum of squared outgoing
standardized regression coefficients of the target variable at T1
predicting each variable at T2.

All the procedure and codes can be revised in Rhemtulla
et al. (53).

Instruments
Center for Epidemiological Studies-Depression Scale

Depression was measured with the Center for Epidemiological
Studies-Depression Scale (CES-D) developed by Radloff (54) in
its 7-item version (e.g., “Much of the time during the past week:
felt sad”) under a unidimensional model. It aims to recognize
depressive symptomatology within the last week, with a Likert-type
response scale of four alternatives ranging from 0 to 3 points (rarely,
sometimes, a moderate amount of time, most of the time). The
minimum score is 0 and the maximum score is 21.

Generalized Anxiety Disorder scale

To measure anxiety, the Generalized Anxiety Disorder scale
(GAD-7) created by Spitzer et al. (55) was used to detect the severity
of generalized anxiety symptomatology according to DSM-V
criteria over the last 2 weeks. It consists of seven items (e.g., “Over
the last 2 weeks: Feeling nervous, anxious or on edge”) within a
unidimensional model, with a Likert-type response mode ranging
from 0 to 3 points (never, several days, half of the days, and
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almost every day). The total scale has a minimum score of 0 and
a maximum of 21.

University of California, Los Angeles Loneliness Scale

Loneliness was assessed with the University of California, Los
Angeles Loneliness Scale (UCLA) created by Russell (56) with the
objective of knowing the levels of loneliness. The three-item version
was used (e.g. “How often feel: isolated from others”) constituted
under a unidimensional model. The response rating scale ranges
from 1 to 4 (never, rarely, sometimes, and often), where the total
scoremaintains aminimum value of 3 and amaximumof 12 points.

Results

Table 1 shows the items at the descriptive level, where the
depressive item of feeling lonely (D5) stands out with the highest
score (M = 1.843, SD = 0.364), followed by depressed mood (D1;
M = 1.84.5, SD = 0.371). The highest and lowest skewness and
kurtosis values correspond to the items of difficulty in resting (A5)
and feeling lonely (D5), respectively. On the other hand, in the item
reliability assessment, the item-rest correlation indices proved to be
>0.30, as expected (57).

In the two-waves contemporaneous networkmodels (Figure 1),
positive relationships between nodes were reported, where the
relation between unhappiness (D4) and not enjoying life (D6;
T1 r = 0.433; T2 r = 0.393) was the higher value, while the
relation between trouble with relaxing (A4) and feeling excluded
(L2; r = 0.0005) in time 1 (T1), and restless sleep (D3) with not
enjoying life (D6; r = 0.002) in time 2 (T2) were the lowest values
respectively. The explored clusters showed a coherent partitioning,
while the percolated communities show that in Time 1 (T1),
worry management (A2), trouble with relaxing (A4), and depressed
mood (D1) items were overlapped by anxiety and depression
communities; while the item of feeling lonely (D5) was overlapped
by depression and loneliness communities; and unhappiness (D4)
was overlapped by anxiety, depression and loneliness communities.
Furthermore, in Time 2 (T2), feeling irritable (A6), depressed
mood (D1), and restless sleep (D3) were overlapped by anxiety
and depression communities, while feeling lonely (D5) and not
enjoying life (D6) were overlapped by depression and loneliness
communities. The CS-coefficient at time 1 (T1) and time 2 (T2) was
CS= 0.75 for edge and strength stability.

At T1 the item of feeling nervous (A1) had the higher
predictability (r2 = 0.60), while restless sleep (D3) had the lowest
value (r2 = 0.18). Furthermore, at T2 the item of worry (A3)
showed the higher predictability (r2= 0.62), and restless sleep (D3)
showed the lowest value (r2= 0.20).

The network comparison test between T1 and T2 networks
showed statistically significant differences only between the
centrality indices of networks (p < 0.001); also, the adjacency
matrices correlation coefficient showed linearity (rho = 0.86;
p < 0.001), and in all of its centrality indices (p < 0.001).

Additionally, centrality indices are shown in Figure 2. At
Time 1 the most central item was trouble with relaxing (A4; T1;
EI1= 1.162; EI2 = 2.152), and the lowest was restless sleep (D3;
T1; EI1= 0.479; EI2= 0.932); while the higher bridge centrality was
the item of depressed mood (D1; T1; BEI1 = 0.449; BEI2 = 0.901),

the lowest bridge centrality 1-step was feeling unaccompanied (L1;
BEI1 = 0.034) and bridge centrality 2-step was being afraid (A7;
BEI2= 0.293). On the other hand, at Time 2, some differences were
founded, the highest one-step centrality was trouble with relaxing
(A4; EI1 = 1.127) and two-step centrality was worry management
(A2; EI2 = 2.170); the lowest centrality was restless sleep (D3; T2;
EI1 = 0.499; EI2 = 0.974); while the highest bridge centrality 1-
step was the depressed mood item(D1; T2; BEI1 = 0.478; BEI2 =

0.940) and the lowest were, in 1-step, feeling unaccompanied (L1;
BEI1= 0.057), and in 2-step, restlessness (A5; BEI2= 0.315).

The temporal network shows cross-time effects from T1 to T2,
most of the relationships were positive, except for being afraid
(A7) predicted by not enjoying life (D6) that had a negative effect
(β = −0.060). The highest relationships were on feeling isolated
(L3) to feeling nervous (A1; β = 0.370), not enjoying life (D6)
to feeling excluded (L2; β = 0.304), and feeling excluded (L2) to
feeling nervous (A1; β = 0.284). In addition, all variables were
autoregressive, except feeling nervous (A1), which did not show
this characteristic, while feeling excluded (L2; β = 0.440) and not
enjoying life (D6; β = 0.406) were the most autoregressive nodes.
Furthermore, the regression model had excellent fit indices (CFI=
0.965; TLI= 0.965; SRMR= 0.010; RMSEA= 0.038) (Figure 3).

Finally, feeling nervous (A1) was the itemmore predicted at T2
(inPred = 0.544), and feeling isolated (L3) was the least predicted
at T2 (inPred = 0.193). Furthermore, feeling isolated (L3) was the
most predictive item at T1 (outPred= 0.193), while feeling nervous
(A1) was the less predictive item at T1 (outPred = 0.000). This
configures a direct predictive line from the feeling of loneliness
to the enhancement of anxiety symptoms such as nervousness
(Figure 4).

Discussion

The United Kingdom was one of the countries with the highest
number of infections during the beginning of the first wave of
COVID-19 because the authorities expected herd immunity to
develop in its entire population; however, as the number of infected
people increased, they imposed a state of mandatory social isolation
by the end of March as a control measure (1). During the months
of September to December, a second wave occurred as a result of
a new variant of the virus that led to a state of confinement (3).
Of all age groups, older adults experience the greatest risk and
vulnerability to COVID-19 symptoms due to the comorbidities
of advanced age (58). They were also exposed to high levels of
worry, anxiety, distress, sleep difficulties, feelings of loneliness, and
depressive symptomatology due to fear of contracting the virus, fear
of death, and involuntary social isolation (9, 10, 59, 60).

Regarding the first objective of the study, the estimated network
during the first evaluation stage (June–July 2020) showed that
anxiety symptoms were the most important (higher centrality),
where item A4 (difficulty to relax) and item A1 (nervous or
anxious) stood out. These results could be attributed to a stronger
connection with the somatic symptoms of restlessness (A5) and
generalized fear (A7). This could lead to an increased state
of nervousness and difficulty relaxing in response to the rise
in infections, contributing to higher levels of anxiety due to
the increase in infections, hospitalizations and deaths due to
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TABLE 1 Descriptive analysis of items.

Item Wave 1 (N = 5,797) Wave 2 (N = 6,512)

Mean SD Skewness Kurtosis Item-rest
correlation

Mean SD Skewness Kurtosis Item-rest
correlation

A1 1.493 0.773 1.713 2.574 0.777 1.574 0.829 1.501 1.653 0.784

A2 1.343 0.687 2.291 5.168 0.77 1.444 0.761 1.845 2.928 0.795

A3 1.472 0.743 1.715 2.696 0.781 1.559 0.798 1.522 1.901 0.797

A4 1.47 0.76 1.752 2.699 0.743 1.533 0.804 1.583 1.962 0.758

A5 1.335 0.689 2.311 5.135 0.611 1.351 0.713 2.237 4.61 0.637

A6 1.482 0.706 1.583 2.518 0.598 1.533 0.758 1.511 2.025 0.622

A7 1.343 0.669 2.24 5.089 0.693 1.383 0.712 2.072 4.051 0.716

D1 1.835 0.371 −1.803 1.251 0.613 1.813 0.39 −1.604 0.574 0.621

D2 1.781 0.414 −1.357 −0.157 0.591 1.75 0.433 −1.154 −0.668 0.623

D3 1.558 0.497 −0.233 −1.946 0.345 1.526 0.499 −0.103 −1.99 0.38

D4 1.814 0.389 −1.613 0.603 0.576 1.845 0.362 −1.908 1.641 0.573

D5 1.843 0.364 −1.888 1.566 0.471 1.823 0.381 −1.695 0.874 0.476

D6 1.18 0.384 1.669 0.784 0.598 1.82 0.384 −1.669 0.784 0.608

D7 1.787 0.409 −1.403 −0.03 0.564 1.702 0.457 −0.885 −1.218 0.576

L1 1.367 0.587 1.359 0.811 0.726 1.391 0.607 1.296 0.597 0.741

L2 1.332 0.543 1.38 0.944 0.71 1.34 0.55 1.363 0.893 0.707

L3 1.419 0.61 1.164 0.29 0.708 1.454 0.629 1.065 0.041 0.712

A1–A7, GAD-7 Scale items; D1–D7, CES-D Scale items; L1–L3, UCLA Loneliness Scale items.

FIGURE 1

Contemporaneous network at both waves. Red cluster: anxiety; blue cluster: depression; green cluster: loneliness. Percolated nodes show 2 or 3

colors. Node sizes are predictability of each node. Reverse items are marked with (R).

COVID-19 (61), which is greater given the perception of belonging
to an at-risk and more vulnerable population. Difficulty relaxing
(A4) has been one of the most influential symptoms in previous
network research involving symptoms of anxiety and depression
during the initial pandemic stage of 2020 in adults in Asia, North

America, and Europe (62–65). This finding was similar also in
another study in UK adults during the first quarantine social
restriction, which included overlapping symptoms of distress and
loneliness (26).
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FIGURE 2

Centrality Indices for contemporaneous networks. (A1) First wave expected influence two steps; (A2) first wave bridge expected influence two steps;

(B1) second wave expected influence two steps; (B2) second waves expected influence two steps. Values were scaled in z-scores.

FIGURE 3

Cross-lagged network. Red cluster: anxiety; blue cluster: depression; green cluster: loneliness. Percolated nodes show 2 or 3 colors. Node ring is the

in-prediction value of each node. Reverse items are marked with (R).

As for the network analysis with the second wave data
(November–December 2020), in addition to the anxious symptoms
with greater centrality of the first wave, item A3 (overconcern)
and item A2 (lack of control of worry) also stood out, which were
more connected to each other. At the beginning of this period,

obligatory quarantine was reinstated, and the elderly became the
first to be isolated in the face of heightened infection alarm, in
fact, over one million people had been infected in the UK (66). In
this confinement, older adults were again more exposed to media
and social networks that provided more fatalistic news related to
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FIGURE 4

In- and out-prediction plot. Blue group: anxiety; green group: depression; red group: loneliness. Reverse items are marked with (R).

the global pandemic (e.g., new variants of COVID-19), and were
more aware of the perceived risk of death from the loss of a family
member or friend (67). In addition, in early December, the UK
started vaccinating the elderly in the UK as they were considered
a vulnerable population (3), which triggered further distress due
to existing controversies and conspiracy news about vaccination
that reinforced further uncertainty and anxiety about possible side
effects and lack of confidence about the benefits of the vaccine (68–
70). Therefore, it was evident that older adults who were assessed
during the second wave were still experiencing a tendency to worry
in an exaggerated way and with difficulties in controlling worry.
The latter anxious symptom has also been previously reported as
one of the most central among interacting systems of anxious and
depressive symptomatology in young and older adults during the
pandemic (65, 71–73).

For the second objective, it is shown that the symptom
of depressive state (D1) was the most directly and indirectly
interconnected (bridging symptom) in both networks. These
results are similar to other studies that considered psychological
distress symptomatology in Chinese university students during the
COVID-19 pandemic (71, 74, 75). Such a symptom may reinforce
the influential comorbidity between the symptoms of the three
communities, specifically it has a stronger direct connection with
the symptom of lack of control over worry (A2) and exclusion
(L2). People who feel socially excluded often experience negative
emotions to the point of triggering depressive symptoms, such
as feelings of sadness, anger, and decreased self-esteem (76–78).
In addition, all of these symptoms increase worry about daily
activities, which leads to an increase in symptoms of generalized
anxiety. Several network studies during the pandemic reveal an

association between these anxious symptoms and an increased
depressive state (65, 74), indeed, a recent study by Tao et al. (71)
indicates that lack of control over worry and depressed mood
are more influential in the manifestation of psychological distress
symptomatology in later stages of the pandemic. Studies have
reported that adults older than 50 years report greater physical
health problems, especially those with a diagnosis of depression
(79). People with these comorbidities may present somatic and
physiological symptoms that reinforce a greater degree of fatigue,
lack of energy, and insomnia (80).

Another of the common results of both networks is the
recognition of feeling lonely (D5), which is intertwined between the
domains of depression and loneliness. Although this indicator is of
an emotional nature, it is more closely related to symptoms of social
loneliness, especially lack of companionship (L1). Other network
studies found that perceived loneliness was more strongly related
to depressive state in adults residing in Switzerland (81), while
Feiten et al. (82) found that social withdrawal is connected with
the emotional state of sadness. Given that high levels of loneliness
have been reported during the first two waves of confinement in the
UK in conjunction with depressive symptoms, this may reflect that
the loss of social connectedness linked to social loneliness leads to
less social engagement. Indeed, this interpersonal distancing often
persists after the confinement state as a state of chronic loneliness
(83) in the face of increased perceived social isolation, which has
been shown to contribute to higher rates of morbidity andmortality
(84, 85). It is especially of greater interest in older adults who
find themselves with little social companionship, as loneliness is
related to some harmful health behaviors such as poor diet, physical
inactivity, alcohol consumption, and smoking (86).
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In the first network, it is identified that the unhappiness
measure (D4) is intertwined in the three network communities.
This finding using the Clique Percolation method has been
used in previous studies where symptoms and feelings interact
which may be intertwined (87, 88) and partially aligns with
another previous finding that identified the cross overlap of
the symptom of sadness (unhappiness) between depression
and anxiety in psychiatric patients (87). The network results
obtained are more reliable compared to previous work with
overlapping psychopathological symptomatology network that
reported negative relationships between anxiety and depression
symptoms, and even some symptoms did not correspond to any
symptomatological community (26, 87).

In this first network it is also recognized that a greater number
of symptoms are identified with the anxiety domain, which includes
the symptom related to sleep problems (D3). Within the DSM-5
Mental Disorders Manual, such symptom is recognized as one
of the diagnostic criteria for generalized anxiety disorder (GAD)
(89). Therefore, it can be considered as a transdiagnostic symptom
and of greater anxious impact produced by the first months of
mandatory quarantine in older adults (90), which is more closely
linked to difficulty relaxing (A4; higher expected influence and
anxiety/depression overlap) in the first network. These findings are
in line with previous studies pointing to the interaction of such
symptoms in the network (26, 87), even in network outcomes where
such symptoms are central (72, 91).

Additionally, in the second network we identified that the
symptom of sleep difficulties (D3) presented a cross grouping
within the structure of anxiety and depression, which indicated
its more comorbid manifestation during the period of the second
quarantine. Insomnia and difficulty initiating sleep have been
reported to be related to symptoms of worry and depression
in older adults (82). This finding has been evidenced in studies
conducted in the last quarter of 2020, after the first wave,
where the symptom of sleep problems was identified as the most
interconnected measure in psychometric networks comprised of
symptoms of anxiety, insomnia, and depression (62, 91).

Another difference in this network, was the unique
membership of the unhappiness symptom (D4) in the depression
community. This was likely a result of the re-implementation of
lockdown measures, leading to increased feelings of dissatisfaction
brought about by renewed social isolation and a perceived loss
of freedom (92). This outcome was strengthened because the
occurrence of unhappiness was linked with depressive emotions
(D1). In this way, it could support previous research that highlights
the connection between unhappiness and a depressive state in
adults who had chronic conditions (93) and in pregnant Latina
women (94).

On the other hand, we detected that the networks representing
both waves showed a noticeable sequence of stronger and similar
associative patterns: from the item of feeling lonely (D5), which
reinforced the symptom of feeling depressed (D1), which interacted
with other depressive indicators such as anhedonia (items D2
and D7) and difficulty to rest (D3), until connecting with the
anxiety symptom of difficulty to relax (A4), which reinforced
other anxious manifestations. It is likely that these findings denote
a greater sense of emotional vulnerability that reinforced other
psychophysiological symptoms more characteristic of anxiety in

those older adults who felt a greater need for companionship
during the COVID-19 quarantine period. This makes sense if we
consider that this period originated disruptive events such as family
estrangement and the adoption of new self-care health measures,
events for which many older adults were not prepared to face,
or even imply new burdens to pre-existing ailments or other
difficulties (95, 96).

Finally, for the third objective, we identified the longitudinal
network that included the variables during the two pandemic
waves, we observed a clear influence directed toward the anxious
symptom of nervousness (A1), mainly from the depressive
symptom of difficulties to enjoy life (D6), which activated both
the loneliness items about feeling excluded (L2) and apart from
others (L3), and these in turn had a stronger direct effect on the
nervousness symptom. These effects are similar to other reports
that indicate that the prolongation and typical limitations of
quarantine made the increase of symptoms linked to anhedonia
more likely (97), while this state of low motivation propitiated a
greater sense of helplessness, to the point of having the sensation of
being alone or remaining distant from others (98).

Limitations

On the other hand, it is necessary to mention some limitations.
Although we examined variables relevant to mental health in a
vulnerable population, future research should take into account
other aspects such as socioeconomic, cultural, or relevant physical
health history to contrast our results using the same available
database. Moreover, although the information was collected during
a critical period for the population, it is necessary to continue
evaluating the study variables even during the context of new
variants of COVID-19 or other viruses (e.g., monkeypox). This
would be useful to verify whether the interactions found were
situational, whether they maintain their level of severity or are
part of a more generalized phenomenon over time. Despite these
limitations, we consider that the findings of the present study
contribute to a plausible explanation of the reactions obtained in
older adults in a context of constant threat to their physical and
psychological health. This allows establishing preventive measures
in the medium term, especially when it comes to the importance
of the necessary support (family, friends, and neighbors) to face
adverse experiences, the learning of virtual communication in
future similar events and the usefulness of promoting regulatory
resources of emotions, including recreational activities at home.

Conclusion

In summary, it was evident that for the June-July stage network,
anxiety symptoms were of greater centrality, where item A4
(difficulty in relaxing) and item 1 (nervous or anxious) stood out.
Moreover, the network analysis of the second wave (November–
December) found that in addition to the anxious symptoms with
the highest centrality of the first wave, item A3 (overworrying)
and item A2 (lack of control of worry) also stood out, which
were more connected to each other. Similarly, the symptom of
depressive state (D1) was reported to be the most directly and
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indirectly interconnected symptom (bridging symptom) in both
networks. Another common finding in both networks is the
cross-identification of the symptom of feeling lonely (D5) in the
depression and loneliness domain. Finally, when identifying the
longitudinal network that included the variables during the two
pandemic waves, we observed a clear influence directed toward
the anxious symptom of nervousness (A1), mainly the depressive
symptom of difficulties in enjoying life (D6), which activated both
the loneliness items about feeling excluded (L2) and apart from
others (L3), and these in turn had a stronger direct effect on the
nervousness symptom.
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