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Social anxiety disorder (SAD) is a psychiatric disorder characterized by severe 
fear in social situations and avoidance of these. Multiple genetic as well as 
environmental factors contribute to the etiopathology of SAD. One of the main 
risk factors for SAD is stress, especially during early periods of life (early life 
adversity; ELA). ELA leads to structural and regulatory alterations contributing to 
disease vulnerability. This includes the dysregulation of the immune response. 
However, the molecular link between ELA and the risk for SAD in adulthood 
remains largely unclear. Evidence is emerging that long-lasting changes of gene 
expression patterns play an important role in the biological mechanisms linking 
ELA and SAD. Therefore, we conducted a transcriptome study of SAD and ELA 
performing RNA sequencing in peripheral blood samples. Analyzing differential 
gene expression between individuals suffering from SAD with high or low levels 
of ELA and healthy individuals with high or low levels of ELA, 13 significantly 
differentially expressed genes (DEGs) were identified with respect to SAD while no 
significant differences in expression were identified with respect to ELA. The most 
significantly expressed gene was MAPK3 (p = 0.003) being upregulated in the SAD 
group compared to control individuals. In contrary, weighted gene co-expression 
network analysis (WGCNA) identified only modules significantly associated with 
ELA (p ≤ 0.05), not with SAD. Furthermore, analyzing interaction networks of the 
genes from the ELA-associated modules and the SAD-related MAPK3 revealed 
complex interactions of those genes. Gene functional enrichment analyses 
indicate a role of signal transduction pathways as well as inflammatory responses 
supporting an involvement of the immune system in the association of ELA and 
SAD. In conclusion, we did not identify a direct molecular link between ELA and 
adult SAD by transcriptional changes. However, our data indicate an indirect 
association of ELA and SAD mediated by the interaction of genes involved in 
immune-related signal transduction.
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1. Introduction

Anxiety disorders are common and highly comorbid with other 
psychiatric disorders (1). A distinctive form is Social Anxiety Disorder 
(SAD) with an estimated worldwide lifetime prevalence of 4% (2). 
SAD is described by severe fear and avoidance behavior in social 
situations, such as fear of being the center of attention or fear of 
negative social evaluation, which can have a detrimental impact on 
daily life (3). The etiology of SAD is influenced by genetic (4, 5) as well 
as environmental factors. One of the most relevant environmental 
influences is stress. Stressful experiences in critical periods of life, 
especially during childhood and adolescence, such as physical or 
emotional neglect, sexual or physical abuse, or exposure to other types 
of violence as well as limited family resources (6), can lead to structural 
and regulatory alterations—such as disturbed programming of the 
hypothalamic–pituitary–adrenal (HPA) axis—contributing to disease 
vulnerability (7–9). Furthermore, dysregulation of the (inflammatory) 
immune response through childhood stress exposure can affect brain 
development and neurophysiology, cognition, stress reactivity and 
resilience and, hence, the risk for psychopathology later in life (10–
14). Early life adversity (ELA) therefore represents one of the main 
environmental factors contributing to an increased risk for SAD (15, 
16). However, the molecular link between an early stressor, such as 
adverse events during childhood, and the risk for SAD in adulthood 
remains unclear.

Changes of gene expression patterns following ELA have been 
identified in different organisms (17–19). In humans, monocytes of 
individuals exposed to early childhood maltreatment showed altered 
HPA axis responses to stress, evidenced by lower blood adreno-
corticotropic hormone and cortisol levels. Moreover, the analysis of 
transcriptome-wide gene expression patterns in the same samples 
showed that stress-responsive transcripts were enriched for genes 
involved in cytokine- and inflammation-related pathways (20). In 
addition, co-expression network analysis identified an association of 
ELA with inflammation-related pathways (21). Furthermore, RNA 
sequencing (RNA-seq) in brain tissue revealed enrichment of 
differentially expressed genes in immune and GTPase function in 
individuals with a history of ELA as compared to control individuals 
without the experience of ELA (22).

Aberrant gene expression patterns of various genes, with some of 
them involved in the immune system, have also been identified in 
humans across different social environments such as social isolation 
or low socioeconomic status (23–25). Moreover, the expression of 
genes involved in immune response as well as transcriptional 
regulation and cell proliferation has been shown to be sensitive to 
social regulation [more precisely, the level of loneliness, (26)]. 
Therefore, not only ELA, but also acute social stress is likely to impact 
gene expression in humans as it has already been proven in mice, in 
which the vascular system and inflammatory pathways were mainly 
affected (27). Furthermore, several studies have indicated an 
association between expression changes of diverse genes in mouse 

brain and social fear (28) as well as anxiety (29, 30). In humans, an 
investigation of the blood transcriptome has suggested altered 
immune function in generalized anxiety disorder (31). In addition, 
expression differences of α-endomannosidase (MANEA) are 
associated with SAD and panic disorder in human blood (32). 
Moreover, RNA-seq (33) has identified higher ITM2B gene expression 
levels associated with higher anxiety scores in a cohort of 25 
monozygotic (MZ) twins, which has been validated in a second cohort 
of 22 MZ twins (33).

A molecular link between ELA and the sensitivity to social stress 
on the transcriptome level has been shown in mouse brain tissue, 
where distinct transcriptional patterns depending on ELA in socially 
stressed adult mice have been revealed: Several genes involved in, 
among others, cell differentiation and nervous system development 
have been identified as differentially expressed in mice with social 
stress in adulthood and ELA compared to controls without 
ELA. Interestingly, their gene expression levels have not been altered 
when exposed to either ELA or adult social stress alone (19). However, 
in humans the association between transcriptional changes induced 
by ELA and adult SAD still remain elusive.

In the current study, we aimed to identify gene expression patterns 
associated with SAD, ELA, and their interaction on a transcriptome-
wide level in order to identify in a hypothesis-free approach molecular 
pathways induced by ELA which could contribute to the development 
of SAD later in life.

2. Materials and methods

2.1. Study population

In total, 159 participants of German ancestry (not genetically 
verified) between 19 and 50 years of age took part in the study. 
Assuming a medium effect size of 0.25, the sample size is sufficient to 
detect a significant effect at p  < 0.05 with a power > 0.8. Power 
calculation has been carried out using GPower 3.1.9.2 (34) and 
applying an ANOVA test (fixed effects, special, main effects and 
interactions, no. of groups = 4). All participants were assessed using 
the Structured Clinical Interview for DSM-IV (SCID) and 70 
participants were found to be  suffering from SAD as a primary 
diagnosis. The severity of social anxiety was evaluated using the 
Liebowitz Social Anxiety Scale [LSAS, (35)]. ELA was assessed using 
the Childhood Trauma Questionnaire (CTQ) that measures five 
dimensions (further referred to as subscales) of maltreatment: 
emotional and physical neglect and emotional, physical, and sexual 
abuse (36, 37). Responses are measured on a 5-point Likert scale 
(1 = never true, 2 = rarely true, 3 = sometimes true, 4 = often true, 
5 = very often true). Each subscale is represented by five questions with 
a score range from 5 to 25. Participants with at least a moderate score 
in one of the five categories (sexual abuse: >8; physical abuse: >10; 
physical neglect: >10; emotional abuse: >13; emotional neglect: >15) 
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(Supplementary Table S1) were classified as participants with high 
levels of ELA (37, 38). Thus, four groups emerged: (1) control 
participants without SAD and low levels of ELA (n = 62), (2) control 
participants without SAD and high levels of ELA (n  = 27), (3) 
participants suffering from SAD with low levels of ELA (n = 43), and 
(4) participants suffering from SAD with high levels of ELA (n = 27). 
All participants gave written informed consent to the experimental 
procedure prior to inclusion in the study. The study was performed in 
accordance with the Declaration of Helsinki and approved by the 
University of Tübingen local ethics committee.

2.2. RNA extraction, library preparation, 
and 3’RNA-sequencing

Total RNA from whole blood stored in PAXgene Blood RNA 
tubes was extracted using the PaxGene Blood miRNA kit (Qiagen, 
Hilden, Germany). Quality of RNA was assessed using a Bioanalyzer 
(Agilent, Santa Clara, USA). Only samples with an RNA integrity 
number (RIN) of 7 and higher were used for sequencing library 
preparation. Libraries for 3′ RNA-seq were prepared using the 3′ 
method by Lexogen (39) as used in the NGS Competence Center 
Tübingen (NCCT) where both library preparation and sequencing in 
randomized batches was performed. First strand synthesis of polyA-
tailed RNA from total RNA using oligo dT primers was followed by 
degradation of the RNA template, second strand synthesis with 
random primers containing 5′ Illumina-compatible linker sequences, 
and amplification using random primers that add barcodes and cluster 
generation sequences (39). The libraries were sequenced on the NCCT 
Nova sequencing platform at a depth of about 10 million reads with 
100 bp in length.

2.3. RNA-seq reads preprocessing

Read preprocessing was performed using the Lexogen pipeline 
(40) implementing the bbduk tool from the BBTools suite1 for quality 
trimming and the STAR aligner (41) that has been shown to 
consistently provide a well-balanced ratio between a high accuracy 
and sensitivity compared to runtime as well as computational 
resources (42) for mapping to the reference genome (vGRCh38.104). 
Principal component analysis (PCA) was performed using normalized 
reads (standard DESeq2 read normalization) to detect sample outliers 
by DESeq2 (43). The R package OUTRIDER (44) was used to identify 
gene count outliers that were excluded from further analyses 
(Supplementary Table S2).

To control for the effect of blood cell type composition 
variability on gene expression, blood cell type proportions were 
estimated using the granulator package in R using TPM 
(transcripts per million) normalized counts. Benchmarking in 
granulator was performed using reference cell type counts of a 
subset of the cohort (Supplementary Figure S2). The R package 
variancePartition (45) was used to calculate the variance 
explained by differential cell type composition and covariates. 

1 https://sourceforge.net/projects/bbmap/

The package implements a linear mixed model method to 
characterize the contribution of selected variables to 
transcriptional variability. As deconvolution results showed a 
minor contribution of most cell types to the variance between the 
samples (Supplementary Figure S3), we  used an adjustment 
approach of the gene counts to all cell type ratios resulting from 
the deconvolution approach based on a linear model adapted 
from Jones et  al. (46) instead of using the cell type ratios as 
covariates in the later analyses.

2.4. Data analyses

2.4.1. Statistical analysis
All statistical analyses were performed using the software 

environment R. Statistical tests, that are available within the R package 
ggpubr, were used depending on the analysis specified in the 
following sections.

2.4.2. Demographic and clinical information
Normality of data was tested using Shapiro–Wilk test. The test 

revealed non-normal distributions for all variables 
(Supplementary Table S3). Therefore, the comparison of the trait 
medians between the independent groups was performed using the 
Wilcoxon Mann–Whitney rank sum test.

2.4.3. Differential gene expression
Differential gene expression (DGE) analysis was performed 

using the R package DESeq2 (43), which analyzes differences in gene 
expression based on a negative binomial generalized linear model. 
Cell type adjusted read counts were normalized by DESeq2’s median 
of ratios method (47). Genes with low counts were removed and 
only those with at least 20 counts in all samples were kept, as huge 
on/off changes were not expected due to the research question. A 
linear model with the factors of interest SAD, ELA and covariates 
age and sex was fitted. The Benjamini–Hochberg (FDR) procedure 
was used to correct for multiple testing. Differentially expressed 
genes (DEG) were considered statistically significant at FDR < 0.1 
(DESeq2 default setting, as we did not expect a large number (≤ 100) 
of genes to be differentially expressed) with further visual inspection 
of the count distribution of the DEGs. Results were filtered for DEGs 
with an absolute log2 fold-change larger than 0.3.

2.4.4. Weighted gene co-expression network 
analysis

The R package WGCNA uses a validated principle called guilt by 
association, which relies on the assumption that associated or 
interacting genes share expression patterns and are likely to function 
together. Scale-free co-expression networks were constructed using 
WGCNA that defines modules using a dynamic tree-cutting algorithm 
based on hierarchical clustering of expression values (minimum 
module size = 100, cutting height = 0.99). WGCNA was performed 
using filtered (≥ 20 counts per sample) and variance stabilized count 
data (generated from the read count matrix using DESeq2’s 
getVarianceStabilizedData function). The network was constructed at 
a soft power of 10 at which the scale-free topology fit index reached 
0.9. The module eigenvalue was used to perform the correlation 
analysis with the variables (i.e., questionnaire scores of LSAS and its 
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subcategories as well as CTQ and its subcategories; covariates age and 
sex) with each whole module. Modules additionally significantly 
correlating with sex and age were discarded from further analyses.

2.4.5. Gene functional enrichment analysis
Gene list functional enrichment analysis was performed using the 

R package gProfiler2 (48, 49) by using the Gene Ontology (GO) 
resource [vOBO 1.4, (50, 51)], the Kyoto Encyclopedia Genes and 
Genomes (KEGG) pathways database [v103.0, (52)] and Reactome 
database [v81, (53)]. Terms with FDR-corrected p values of <0.05 were 
considered significantly enriched within modules.

2.4.6. Network analysis and visualization
MAPK3, the top hit of the DGE analysis, was imported into the 

online Search Tool for the Retrieval of Interacting Genes/Proteins 
(STRING) database v11.52 (54) for known and predicted protein–
protein interactions (ppi). We  used the following conditions for 
network generation: medium confidence (0.4), maximum 50 
interactors for the first shell and 10 for the second shell.

The interactome of MAPK3 together with all genes of significant 
WGCNA modules (in total 1815) was generated using the STRING 
database (v11.5) starting with a full network (edges indicating both 
functional and physical protein associations) and then filtering for 
interaction scores >0.9, thereby increasing confidence. For the final 
interactome, all direct neighbors of MAPK3 were selected. The 
interactome was visualized using Cytoscape [v3.9.1., (55)].

3. Results

3.1. Demographic and clinical information

Table 1 shows the sample characteristics with respect to the four 
groups emerging from the factors SAD and ELA in more detail. While 
there was neither a significant group difference in age (Wilcoxon test, 
n = 159, W = 3,370, p = 0.38, with a mean age of 26 ± 7 in the SAD 
group and 26 ± 5 in the control group) nor sex (Pearson’s Chi-square 

2 http://string-db.org

test, χ2 = 1.62, p = 0.20, with 50 female and 20 male participants in the 
SAD group and 55 female and 34 male participants in the control 
group) with respect to SAD, significant differences in age (Wilcoxon 
test, n = 159, W = 3,398, p = 0.040, with a mean age of 28 ± 8 in the 
group with high levels of ELA and 25 ± 5 in the group with low levels 
of ELA), but not sex (Pearson’s Chi-square test, χ2 = 0.05, p = 0.82, 35 
female and 19 male participants in the group with high levels of ELA 
and 70 female and 35 male participants in the group with low levels of 
ELA) emerged with respect to ELA. Additionally, Levene’s test 
revealed variance heterogeneity of the age data among the ELA groups 
(DF = 1, F = 14.814, p < 0.001).

The total score of the CTQ of our cohort was not significantly 
different with respect to sex (Wilcoxon test, n  = 159, W  = 2373.5, 
p = 0.093), but it correlated positively with age (r = 0.117, p < 0.001). 
Nevertheless, we included age (in addition to sex) as covariate in the 
differential gene expression (DGE) analysis and tested each candidate 
gene expression count for correlation with age to exclude age effects 
on the expression of the respective gene (Supplementary Figure S3). 
For the total score of the LSAS, there was no significant difference with 
respect to sex (Wilcoxon test, n = 159, W = 3,337, p = 0.068) and no 
correlation with age (r  = −0.001, p  = 0.83). Finally, there was a 
significant correlation between the total scores of the LSAS and CTQ 
(r = 0.104, p < 0.001). This correlation was mainly due to the highly 
significant correlation of the emotional CTQ subscales emotional 
abuse (r = 0.107, p < 0.001, n = 29) and neglect (r = 0.092, p < 0.001, 
n = 35) with the LSAS score (Supplementary Figure S4), whereas the 
other subscales of the CTQ did not or less significantly correlate with 
the LSAS total score (physical abuse: r = 0.018, p = 0.05; sexual abuse: 
r = 0.018, p = 0.06; physical neglect: r = 0.004, p = 0.010). Importantly, 
in our cohort, we have eight cases of physical and five cases of sexual 
abuse only (Supplementary Table S1), which needs to be kept in mind 
when interpreting the results.

3.2. Differentially expressed genes were 
observed in SAD, but not in ELA condition

Investigating gene expression of all participants, visual inspection 
of the PCA revealed no obvious grouping of samples 
(Supplementary Figure S5). This is in line with rather subtle gene 
expression changes that one may expect in blood in the context of 
mental disorders (56, 57). Analyzing DGE using DESeq2 (43), 13 
significantly (FDR-corrected p  ≤ 0.1 for multiple correction) 
differentially expressed genes (DEGs) were identified which had a 
|l2fc| ≥ 0.3 in SAD condition compared to healthy individuals without 
SAD (Figure  1A; Supplementary Table S4), while no significant 
differences in expression were identified in ELA condition compared 
to individuals without the experience of ELA (Supplementary Table S5).

Visualizing the count distribution of all SAD associated DEGs, 
eight of the candidates exhibited an expression pattern rather caused 
by extreme values or other effects than being a true DEG. After 
removing the sample(s) exhibiting gene-specific extreme values (e.g., 
for MX1, Supplementary Figure S6; Supplementary Table S4), those 
genes no longer appeared as a DEG. Therefore, we excluded these 
genes from further analyses (marked in Supplementary Table S4). The 
remaining DEGs include (in order of significance) MAPK3 (Mitogen-
Activated Protein Kinase 3), ANAPC1 (Anaphase Promoting Complex 
Subunit 1), PFKL (Phosphofructokinase, Liver Type), FGFBP2 

TABLE 1 Sample characteristics for the four groups emerging from the 
factors SAD and ELA.

group

SAD no SAD

high ELA low ELA high ELA low ELA

n 27 43 27 62

LSAS total 

score

75.8 (± 28.3) 68.9 (± 25.3) 23.6 (± 17.2) 14.8 (± 14.1)

CTQ total 

score

56.6 (± 13.8) 32.7 (± 5.2) 48.5 (± 10.3) 29.7 (± 4.6)

Sex ♀18 ♂9 ♀32 ♂11 ♀17 ♂10 ♀38 ♂24

Age [years] 29 (± 8) 24 (± 6) 27 (± 8) 25 (± 3)

Mean ± standard deviation. SAD, Social Anxiety Disorder; ELA, Early Life Adversity; LSAS, 
Liebowitz Social Anxiety Scale; CTQ, Childhood Trauma Questionnaire.
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(Fibroblast Growth Factor Binding Protein 2), and AC008937.2 (long 
non-coding (lnc) RNA, Supplementary Figure S7). The most 
significantly expressed gene MAPK3 (FDR-corrected p  = 0.003, 
l2fc = 0.33) was upregulated in the SAD group compared to control 
individuals without SAD (Figure 1B). Figure 1B shows the counts of 
MAPK3 for each experimental group revealing that there is no ELA 
specific expression pattern within the SAD group. SAD groups with 
high and low levels of ELA displayed an equally high MAPK3 count 
(SAD/ELA: adj. Mean gene count = 132.59 ± 44.71, SAD/no ELA: adj. 
Mean gene count = 135.62 ± 38.59), whereas the groups of individuals 
without SAD showed a significantly lower MAPK3 mean count, no 
matter whether ELA levels were high or low (no SAD/ELA: adj. Mean 
gene count = 101.21 ± 20.60, no SAD/no ELA: adj. Mean gene 
count = 110.49 ± 38.06).

In addition to the comparison of ELA groups, the CTQ subscales 
were classified according to Bernstein and Fink (58), with a score 
moderate and higher indicating the respective trauma 
(Supplementary Table S1). DGE analysis was carried out for each CTQ 
subscale (Supplementary Table S5). Furthermore, we analyzed DGE 
in the SAD group only with respect to ELA and each subscale as well 
as in the ELA group with respect to SAD to examine the potential 
transcriptomic association of ELA and SAD (Supplementary Table S5). 
The subscale DGE analyses resulted in two genes differentially 
expressed in individuals with or without the experience of childhood 
sexual abuse in the entire cohort (Supplementary Table S6) and 197 
genes with respect to physical abuse within the SAD group only 

(Supplementary Table S7). However, as there were only five cases of 
sexual abuse in the entire cohort and four cases of physical abuse in 
the SAD group only (Supplementary Table S1), the DGE analysis in 
those subgroups has to be interpreted with caution. In summary, there 
were no relevant significant DEGs identified for ELA as well as the 
CTQ subscales neither in the entire cohort nor in the SAD group only.

3.3. Gene co-expression clusters correlated 
with emotional ELA, but not SAD

WGCNA was performed on gene counts matching the same filters 
as for the DGE analysis and a soft threshold power of 10 to identify 
ELA and/or SAD specific gene co-expression (for more details on the 
analysis, see Supplementary Figure S8). We  identified 11 gene 
co-expression modules correlating with any of the variables available 
for the cohort (Supplementary Table S8) with sizes ranging from 73 to 
1750 genes. 1559 genes were assigned as not correlated (module gray).

Interestingly, whereas the DGE analysis revealed only associations 
of gene expression and SAD, the WGCNA resulted only in modules 
significantly correlated with ELA but not SAD or LSAS scores, 
respectively. In more detail, the modules red (Supplementary Table S9), 
greenyellow (Supplementary Table S10), and turquoise 
(Supplementary Table S11) were significantly correlated with the ELA 
groups (turquoise), the subscales emotional abuse and emotional 
neglect as well as total CTQ score (red and greenyellow), respectively, 

A B

FIGURE 1

DGE analysis between SAD and control group using normalized gene counts adjusted to cell type ratio. (A) Volcano plot displaying the significantly 
(FDR-corrected p ≥ 0.1) differentially (|l2fc| ≥ 0.3) expressed genes with downregulated genes marked in blue and upregulated genes marked in red. 
(B) The expression patterns of the most significantly differentially expressed gene MAPK3 displayed in gene counts with respect to SAD and ELA show 
increased gene counts in the SAD groups without an influence of ELA. Wilcoxon rank sum test was applied and p values were adjusted for multiple 
testing using Benjamini–Hochberg correction. Kruskal-Wallis-Test additionally shows significantly different MAPK3 expression between the SAD/ no 
SAD (with respect to ELA) groups.
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but not with any of the non-disease-related variables (age, sex, size and 
weight, Table 2). None of the ELA co-expression cluster top hub genes 
(Supplementary Table S12) overlapped with SAD DEGs. Furthermore, 
MAPK3 was found in the gray module containing the genes not 
correlated with any variable. The other relevant DEGs were found in 
the following co-expression modules: the green module that was not 
significantly correlated with any variable (Supplementary Figure S9) 
included ANAPC1 and FGFBP2. PFKL was found in the blue module 
which is associated with, among others, ELA, sex, and size 
(Supplementary Figure S9). Finally, AC008937.2 was co-expressed 
with genes in the red module.

3.4. Gene functional enrichment analysis 
revealed relevance of signal transduction 
pathways and immune system

A protein–protein-interaction (ppi) network of MAPK3 was 
generated using the STRING database to find pathways in which 
co-expressed genes within ELA-specific WGCNA modules and 
MAPK3, associated with SAD, potentially interact. A functional 
enrichment analysis was performed to examine the enrichment of 
annotated terms within the three modules significantly correlating 
with ELA and/or the respective CTQ (sub-)scale modules (turquoise, 
red, and greenyellow) and the MAPK3 ppi network. The MAPK3 ppi 
network was enriched mainly for MAPK signal transduction pathways 

and NTRK (neurotrophin receptor) signaling. The red and the 
turquoise WGCNA modules were enriched for cellular structural 
processes/compartments (Figures  2A,B). The greenyellow 
co-expression cluster contained genes particularly involved in 
immune-related pathways (especially interleukin regulation and 
production) and JAK–STAT signaling (Figure 2C).

The enrichment analysis did not reveal any shared or overlapping 
pathways between the modules. The results therefore do not indicate a 
direct molecular mediation of ELA on adult SAD by one single process.

3.5. Network analysis identified common 
genes between SAD-related MAPK3 and 
ELA associated co-expression modules

The gene lists of each co-expression module correlating with 
ELA and/or CTQ (sub)scales, i.e., of the turquoise, red, and 
greenyellow modules, were compared with the genes contained in 
the MAPK3 ppi network that plays a role in SAD to identify 
overlapping and thus potentially interacting genes. We identified 
PTPN7 (Tyrosine-protein phosphatase non-receptor type 7) as a 
gene present in the MAPK3 ppi network and the red module 
(Supplementary Table S13). PTPN7 is a member of the phosphatase 
family and a known negative regulator of MAPK signal cascade 
activation (59). The turquoise module and the MAPK3 ppi network 
share a set of 20 genes (Supplementary Table S13). Gene set 
enrichment analysis identified an involvement of most of those 
genes especially in signal transduction (MAPK, NTRK, 
neurotrophin, Supplementary Figure S10). The hub gene of the 
greenyellow module STAT3 (Signal transducer and activator of 
transcription 3) as well as RAF1 (RAF Proto-Oncogene Serine/
Threonine-Protein Kinase) were also found in the MAPK3 ppi 
network (Supplementary Table S13). RAF1 activation initiates a 
mitogen-activated protein kinase cascade and is in part regulated 
by cytokine signaling (60) and STAT3 mediates cellular responses 
to interleukins and other growth factors (61–67) as well as 
inflammatory responses by regulating differentiation of naive 
CD4+ T-cells into T-helper Th17 or regulatory T-cells (68). 
Therefore, both genes are involved in the immune response and are 
linked to the mitogen-activated signaling cascade (60, 69, 70), 
where MAPK3 plays a central role (60). Therefore, an interaction 
of STAT3, RAF1, and MAPK3 in immune signaling is likely.

To verify the interaction of MAPK3 and genes from the 
ELA-correlated modules, we used the STRING database to extract 
information on interaction scores of the 1815 genes 
(MAPK3 + genes from the three modules). After removing all 
genes with an interaction score ≤ 0.9 indicating the highest 
confidence, 51 genes remained. We generated an interactome of 
those genes (Figure 3). The interactome highlighted the interaction 
of MAPK3 and the before-mentioned STAT3, RAF1, and PTPN7. 
However, the interactome also revealed complex interrelations 
between the genes with several to many interaction partners of 
each gene (Figure 3).

The functional enrichment of the gene list was performed by using 
the Reactome database only. This enabled focusing on interaction of 
the genes to form a biologically relevant network. The analysis 
revealed mainly enrichment of the genes in terms related to immune-
related signaling (Figure 4, Signaling by Receptor Tyrosine Kinase, 

TABLE 2 WGCNA module gene count and correlation coefficients (r) and 
corresponding p-values (p) for each variable.

Modules

Turquoise Green-
yellow

Red

r p r p r p

n 1750 73 105

SAD −0.036 0.688 −0.127 0.155 −0.016 0.856

ELA 0.261 0.003 −0.284 0.001 −0.295 0.001

Age 0.106 0.236 −0.092 0.302 −0.123 0.168

Sex 0.139 0.120 0.065 0.469 −0.015 0.864

Size −0.090 0.314 −0.100 0.267 −0.046 0.608

Weight −0.137 0.1242 0.111 0.211 0.071 0.426

LSAS total −0.059 0.507 −0.088 0.325 −0.003 0.976

CTQ

Emotional 

abuse
0.156 0.080 −0.179 0.045 −0.211 0.017

Physical 

abuse
−0.030 0.736 −0.130 0.145 −0.055 0.540

Sexual 

abuse
−0.080 0.372 0.018 0.842 0.060 0.505

Emotional 

neglect
0.146 0.102 −0.192 0.031 −0.205 0.021

Physical 

neglect
0.098 0.271 −0.173 0.052 −0.174 0.050

Total 0.111 0.215 −0.186 0.037 −0.184 0.038

p ≤ 0.05 are marked in bold.
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Signaling by NTRKs, etc.). However, the most significantly enriched 
pathway was Signal Transduction (Figure 4).

4. Discussion

Transcriptome analyses have become highly relevant over recent 
years to investigate the molecular basis of psychiatric disorders. In 
particular, RNA-seq has been widely used to analyze psychiatric 
disorders and interrelations (71–73). In the study presented here, 
we focused on social anxiety disorder and the molecular connection 
with a potential environmental trigger—early life adversity.

DGE analysis revealed genes associated with SAD, with MAPK3 
being the most significantly upregulated in individuals with SAD 
compared to control individuals. No DEGs were identified between 
individuals with and without a history of ELA. MAPK3 is a serine/
threonine kinase which acts as an essential component of the MAP 
kinase signal transduction pathway. MAPK1/ERK2 and MAPK3/
ERK1 play an important role in the MAPK/ERK cascade (extracellular 
signal-regulated kinase-dependent cascade). Depending on the 
cellular context, the MAPK/ERK cascade mediates diverse biological 
functions such as cell growth, adhesion, survival, and differentiation 
through the regulation of transcription, translation, and cytoskeletal 
rearrangements. The MAPK/ERK cascade also plays a role in initiation 
and regulation of meiosis, mitosis, and postmitotic functions in 

differentiated cells by phosphorylating a number of transcription 
factors that, for example, promote breast cancer (74). Interestingly, 
another finding was the differential expression of the lncRNA 
AC0008937.2 in the context of SAD, which—as an antisense lncRNA 
to MAP3K1—has a potentially regulative role (75) in the MAPK 
signaling cascade. Another important gene that can regulate and is 
regulated by MAPK signaling is the brain-derived neurotrophic factor 
(BDNF) (76, 77), which is an important player in neurogenesis (78). 
The neurotrophin BDNF, which is known to be  affected by 
neuroinflammation (79), is essential for dendritic development in 
peripheral and central nervous system and regulates dendritic growth 
(80). Moreover, BDNF level changes in serum are associated with 
anxiety disorders (81, 82). Furthermore, BDNF protein levels were 
shown to be reduced in brain tissue of rats with a history of ELA 
which were subsequently exposed to stress (83). However, in our data 
derived from whole blood, we  did not identify a SAD-specific 
expression pattern of BDNF. MAPK3 may function as a transporter 
in blood to regulate the expression of BDNF in brain tissue which, in 
turn, may lead to altered structural brain plasticity playing a role in 
SAD. Therefore, the analysis of BDNF expression levels would be of 
interest in different brain areas in the context of SAD. MAPK3 
expression might also be altered in the brain of patients as MAPK 
phosphorylation levels in the amygdala were directly associated with 
anxiety symptoms in a previous study (84). The authors demonstrate 
that the rate of extracellular signal-related kinase phosphorylation in 

A

C

B

FIGURE 2

Gene functional enrichment of the (A) WGCNA module red, (B) WGCNA module greenyellow, and (C) WGCNA module turquoise. Significance values 
are color-coded. Abbreviations indicate the database with G: KEGG database, BP: Biological process (GO term), CC: Cellular component (GO term) 
and MF: Molecular function (GO term).
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the amygdala is negatively and independently associated with anxiety 
symptoms (84). These findings further support our results of an 
involvement of MAPK signaling in SAD. Nevertheless, as BDNF is 
associated with several mental disorders, MAPK3 differential 
expression may also not be restricted to social anxiety. An upregulation 
of MAPK-related genes is also found in Major Depressive Disorder 
[MDD, (85)] especially in cases with a history of ELA. Altered MAPK 
signaling involved in the development of mental disorders may be a 
result of stress on the mental or even cellular (e.g., infection) level. 
Indeed, psychological stressors such as early childhood adversities or 
other factors such as infections are shown to severely affect the 

immune system resulting in an inflammatory phenotype and increase 
the risk for adult psychiatric disorders (10, 86, 87). Therefore, ELA 
may cause (sterile) inflammation (88) and might lead to molecular 
alterations mainly involved in inflammatory processes and those 
changes may induce an aberrant synaptic development in SAD 
transferred by MAPK signaling (89, 90).

Gene co-expression analysis revealed gene clusters significantly 
associated with the emotional aspects of ELA (emotional abuse and 
neglect). Although no direct link on the level of differential gene 
expression was identified, this is an interesting finding as social 
anxiety and especially the emotional forms of childhood 
maltreatment are shown to significantly correlate (91, 92), which is 
supported by our data as well (Supplementary Figure S3). Therefore, 
a connection of emotional ELA and adult SAD on the molecular 
level seems likely. The MAPK3 interaction network shared one gene, 
PTPN7, with the red co-expression module, that significantly 
correlated with the scores of the CTQ subscales emotional abuse and 
emotional neglect as well as the total CTQ score. PTPN7 is a member 
of the phosphatase family and specifically inactivates MAPKs. 
Nothing is known about the regulation of PTPN7 in the context of 
ELA or SAD so far, although Schwieck et al. (2020) did not identify 
differential expression in MDD cases together with suicide risk and 
ELA history (85). However, it acts as a regulator of MAPK signaling 
activity (93, 94). The immune system is a plausible pathway how 
ELA could be molecularly involved in adult psychiatric disorders as 
ELA is known to cause inflammatory mimicking effects—or sterile 
inflammation—that are still measurable in adults, e.g., higher levels 
of typical markers of inflammation such as white blood cell count, 
circulating proinflammatory cytokine levels, and the acute phase 
molecule C-Reactive Protein (CRP) and lower NK cell activity (10, 

FIGURE 3

Network visualization of the interactome of MAPK3 and the genes from the turquoise, red, and greenyellow module. The nodes were colored by 
module, node size displays module membership score from WGCNA, the node sort and node transparency were set by STRING degree and the edge 
transparency was set by STRING score.

FIGURE 4

Gene functional enrichment of the MAPK3 interactome associated 
with genes of the turquoise, red, and greenyellow module. 
Significance values are color-coded.
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95). Although we did not measure cytokine levels or NK cell activity, 
none of the mentioned marker genes associated with emotional 
neglect and/or abuse were differing in the context of ELA and/or 
SAD in our sample (data not shown). Nevertheless, PTPN7 may be a 
promising candidate connecting ELA, the immune response, and 
MAPK signaling as a potential regulator of anxiety disorders. 
Furthermore, blood cell type ratios were estimated and gene counts 
were adjusted to the ratios reflecting the immune activity. However, 
cell type ratios did not differ with respect to ELA or SAD in 
our sample.

The greenyellow co-expression module significantly correlated 
with emotional abuse and neglect in early childhood and was enriched 
for immune-related terms and JAK–STAT signaling. STAT3 and RAF1 
were shared between this module and the MAPK3 ppi network. RAF1 
is a known upstream regulator of MAPK signaling [Raf/MEK/ERK 
cascade, (96)]. RAF1 expression increases upon infection, which is 
mediated by interleukin 2 [IL-2, (97)], whereas inhibition of RAF1 
affects production of IL-6 and IL-8  in cultured human corneal 
epithelial cells (98). STAT3—a transcription factor—regulates 
processes involved in inflammation and tumorigenesis by regulating 
cell proliferation, differentiation and metabolism (99). STAT3 is a 
member of the JAK–STAT signaling pathway whose canonical mode 
is based on cytokine release followed by MAPK signaling activation 
(100). In the non-canonical signaling pathway, unphosphorylated 
STATs are localized on heterochromatin in the nucleus in association 
with proteins regulating the maintenance of heterochromatin state 
(101). Therefore, STAT3—like MAPK3 and RAF1, respectively—is 
involved in a complex crosstalk of signaling pathways and may 
be  involved in epigenetic regulation of downstream processes. A 
STAT3 knockout in mice leads to reduced negative behavioral 
reactivity (102) Additionally, STAT3 is involved in alcohol withdrawal 
(103) and depressive symptoms in rats (104, 105). Therefore, RAF1 
and STAT3 are potential candidates connecting ELA, immune 
response, and SAD.

Gene set functional enrichment of the genes overlapping in the 
turquoise module, that significantly correlated with ELA, and the 
MAPK3 ppi network revealed mainly terms related to signal 
transduction pathways (i.e., MAPK and NTRK and neurotrophin 
signaling, Supplementary Figure S10). Among others, NTRK signaling 
was enriched, pointing toward a role of those genes in BDNF-related 
processes. Moreover, the gene set enrichment of the MAPK3 
interactome substantiates the role of NTRK signaling and therefore in 
(neuro)inflammation in the association of ELA and SAD.

4.1. Summary and model

As stated above, ELA is known to have an effect on neuronal 
structures by affecting the immune system (e.g., cytokine levels) via 
(neuro)inflammation (106), which is linked to structural changes 
involved in the development of mental disorders. Our findings 
support this assumption on the molecular level: The gene set 
enrichment of the co-expression clusters revealed terms especially 
involved in the cellular structure, signal transduction, and immune 
response. Genes co-expressed in clusters associated especially with 
emotional ELA are potential interactors of MAPK3, which is 
significantly differentially expressed in individuals suffering from SAD 

compared to controls. Especially STAT3, the hub gene of such a 
co-expression cluster, may be  regulated by the emotional 
ELA-dependent release of interleukins like IL-6 (107, 108) and thus 
may be involved in the cell type-specific regulation of more growth 
factor and cytokine release (109–111) which for their part increase 
MAPK3 expression (112). MAPK3 may be further involved in the 
expression of genes shaping synaptic plasticity, e.g., BDNF.

In a recent study of our group, the blood DNA methylome was 
analyzed in the same cohort presented here. Differentially methylated 
regions (DMRs) specifically associated with SAD, ELA, or the 
interaction of SAD and ELA were identified (113). None of these 
regions were overlapping with the DEGs found in the current gene 
expression analyses. However, STAT3 is shown to interact with the 
DNA methyltransferase DNMT1 (114, 115). Therefore, STAT3-
directed DNA methylation is a possible step in the signal transduction 
cascade transferring ELA to SAD. In the study of Camilo et al. (2019), 
a gene network approach revealed a direct association of MAPK3 
methylation and cocaine use disorder (116). Therefore, in a follow-up 
study, we  aim to conduct a multivariate machine learning-based 
analysis to integrate DNA methylation and gene expression data in the 
context of SAD following ELA.

The approach presented here has several limitations: First, the 
expression of genes can vary between blood cell types and therefore, 
differential cell type composition can affect results. Immune 
responsive cell types are known to play a role in mental disorders 
such as MDD or panic disorder (117–119), which make them 
unsuitable for usage as covariate in statistical tests and DGE 
analysis. Therefore, we adjusted the gene expression data to the 
estimated cell  type composition with the help of reference cell 
counts of a subset of our cohort and showed that the number of real 
counts and estimated ratios correlated for several relevant cell types 
(Supplementary Figure S1). Furthermore, we have to be aware of 
the fact that transcriptomic profiles are not only cell type- but also 
tissue-specific, and that we  therefore cannot assume that the 
differences we observe in blood directly reflect the situation in brain 
(as mentioned for BDNF earlier). In psychiatric transcriptomics, 
we  are faced with the problem, that the tissue of interest—the 
brain—is not easily available for transcriptomic analyses in living 
individuals. However, we can assume that there is some overlap of 
genes expressed similar in blood and brain, as human whole blood 
tissue showed a significant similarity in gene expression to multiple 
brain tissues with a median correlation of 0.5 as revealed by 
microarray analysis (120). Moreover, in rat brain and blood tissue 
more than half of the 29,215 genes analyzed by microarray were 
co-expressed (121). Furthermore, age differed significantly between 
the groups with high and low levels of ELA. Age effects were not 
identified for the expression of the candidate genes 
(Supplementary Figure S3) and co-expression clusters correlating 
with age were excluded from further analyses. An approach in a 
larger cohort would be needed to decipher whether age-dependent 
gene expression has an effect on the results presented here, as well 
as to identify further environmental factors shared by the analyzed 
groups’ influencing gene expression. An enlarged sample size as 
well as less heterogeneity could also increase statistical power of the 
analyses as we  neither identified significant DEGs in an ELA 
condition nor gene co-expression clusters significantly correlating 
with SAD. Moreover, the phosphorylation levels of MAPK3 and 
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MAPK signaling (and therefore the activation of the signal 
transduction cascade) mark an important step in the signal cascade 
that should be included in future experiments to clarify whether 
gene product or phosphorylation abundance are the potential 
drivers behind the molecular development of SAD. Also, genetic 
risk variants may confer susceptibility to anxiety traits by 
influencing gene expression. Therefore, in future studies, genetic 
data should be included in the analyses in order to determine to 
what extent expression of a certain gene is influenced by genetics or 
shaped by an environmental stressor such as ELA, especially as gene 
x environment (G x E) interactions are shown to play a major role 
in anxiety disorders [e.g., (122)].

In summary, by investigating gene expression in the context 
of SAD and its relation to ELA on a transcriptome level, we were 
able to identify DEGs associated with SAD—with MAPK3 being 
the most significant DEG—as well as co-expression clusters 
correlating with ELA and/or its subclasses. Interestingly, 
functional enrichment of MAPK3 protein–protein interaction 
network and ELA associated gene co-expression modules pointed 
toward signal transduction pathways and the immune system. 
Additionally, shared genes are involved in JAK–STAT and ERK 
signaling as well as DNA methylation. Although a direct molecular 
link of ELA leading to adult SAD by gene expression changes was 
not identified, the data indicate an indirect relation of emotional 
ELA and SAD mediated by the interaction of genes involved in 
immune-related signal transduction. Further studies will 
be needed to replicate our findings in independent, larger cohorts 
and to investigate the potential effect of the immune responsive 
gene expression pattern caused by ELA on adult anxiety disorders 
in more detail.
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