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Introduction: The COVID-19 pandemic increased public use of digital mental 
health technologies. However, little is known about changes in user engagement 
with these platforms during the pandemic. This study aims to assess engagement 
changes with a digital mental healthcare service during COVID-19.

Methods: A cohort study based on routinely collected service usage data from a 
digital mental health support service in the United Kingdom. Returning users aged 
14–25 years that interacted for a maximum of two months were included. The 
study population was divided into pre-COVID and COVID cohorts. Demographic 
and usage information between cohorts were compared and usage clusters were 
identified within each cohort. Differences were tested using Chi-squared, two-
sample Kolmogorov–Smirnov tests and logit regressions.

Results: Of the 624,103 users who joined the service between May 1, 2019, 
and October 1, 2021, 18,889 (32.81%) met the inclusion criteria: 5,048  in the 
pre-COVID cohort and 13,841  in the COVID cohort. The COVID cohort wrote 
more journals; maintained the same focus on messaging practitioners, posting 
discussions, commenting on posts, and having booked chats; and engaged less in 
writing journals, setting personal goals, posting articles, and having ad-hoc chats. 
Four usage profiles were identified in both cohorts: one relatively disengaged, one 
focused on contacting practitioners through chats/messages, and two broadly 
interested in writing discussions and comments within the digital community. 
Despite their broad similarities, usage patterns also exhibited differences between 
cohorts. For example, all four clusters had over 70% of users attempting to have 
ad-hoc chats with practitioners in the pre-COVID cohort, compared to one out of 
four clusters in the COVID cohort. Overall, engagement change patterns during 
the COVID-19 pandemic were not equal across clusters. Sensitivity analysis 
revealed varying strength of these defined clusters.

Discussion: Our study identified changes in user activity and engagement behavior 
within a digital mental healthcare service during the COVID-19 pandemic. These 
findings suggest that usage patterns within digital mental health services may 
be  susceptible to change in response to external events such as a pandemic. 
Continuous monitoring of engagement patterns is important for informed design 
and personalized interventions.
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Introduction

Research suggests that the COVID-19 pandemic has exacerbated 
the mental health crisis across many countries, including the 
United Kingdom (UK) (1). Furthermore, there is a growing body of 
evidence highlighting effects of the pandemic and consequent 
lockdowns on children and young people’s (CYP) mental health (2–4). 
At the same time, contacts and interactions with all types of healthcare 
services reduced dramatically during the pandemic (5). This was also 
true for mental health-related contacts, particularly face-to-face 
contacts, with patients having to access to video and over-the-phone 
contacts (6, 7). Electronic mental healthcare and telemedicine rapidly 
became the “new normal” (8). By mid-2020, more than 80% of high-
income countries shifted to digital mental health technologies to 
replace or supplement in-person mental health consultations (1).

The use of digital mental health technologies has provided data 
for several machine learning studies focusing on patterns of 
engagement within user-led digital support systems. These studies 
have illustrated several different ways in which mental health support 
can be personalized in a digital setting: based on engagement type, 
frequency of access, session duration, timing, and clinical outcomes 
(9–11). Segmenting users according to behaviors within digital mental 
health services can be  a first step in personalizing support and 
improving design effectiveness (12).

However, to the best of our knowledge, there are no studies 
exploring whether user engagement and behaviors within these 
platforms are subject to change during major events like the 
COVID-19 pandemic, in which patterns of engagement can 
be  disrupted and present some challenges to machine learning 
assumptions or solutions based on this type of information. At the 
same time, such knowledge could inform the use of digital mental 
health interventions (an important psychological support component 
during the COVID-19 pandemic) in future disasters (13) and help to 
resource and prevent overload or saturation of healthcare provision 
using data-driven technology and decisions.

We hypothesize that stable engagement types exist within Kooth, 
which could inform the personalization of services. The COVID-19 
pandemic provides a unique opportunity to test this hypothesis, as it was 
an exceptional situation that could potentially affect user engagement 
patterns with digital mental health services. This cohort study aims to 
assess changes in engagement within a digital mental health service in the 
UK during the COVID-19 pandemic, comparing routinely collected 
usage data between a pre-COVID and a COVID cohort of users.

Materials and methods

We used data from Kooth Digital Health,1 the UK’s largest 
provider to the National Health Service of web-based online mental 
health support (14). This service provides mental health support and 
interventions through its pseudonymous platform to CYP aged 
11–25 years at no cost to the service users. Users can self-refer and find 

1 Kooth.com

out about Kooth from school, online promotion, primary and 
secondary health services, social media or word of mouth.

The service allows CYP to self-direct their experience, interacting 
with their preferred type of support from a range of service features: 
personal journals, goal setting, discussion boards, articles, 
asynchronous therapeutic messaging, and live text-based counseling. 
Comprehensive safeguarding procedures are adhered to by moderators 
and practitioners following user interactions with the service. 
Demographic and usage information is stored across databases that 
can be linked at an individual level under the legal basis of ‘legitimate 
interest’ as it informs service improvements (15). In this study, data 
was used from 1 May 2019 to 31 December 2021.

Study sample

This study relied on data from 1 May 2019 to 31 December 2021. 
We  included users between the ages of 14–25 years, and who had 
consented to have their non-identifiable demographic and service 
usage information used for research purposes. Users who were flagged 
by practitioners as not having Gillick competence (16) were excluded 
from the analysis.

To ensure sufficient journey and engagement information per service 
user, only returning users (i.e., with two or more log-ins) were included 
in the analysis. Users with a journey longer than 56 days were excluded 
from the dataset to avoid outliers, in that 99.03% of returning users aged 
14–25 had a usage period of 56 days or less. To reduce bias from cut-off 
or cohort-crossing usage periods, users were excluded if their registration 
was within 56 days of the end date for each cohort dataset.

We divided users into two cohorts: pre-COVID and COVID. The 
World Health Organization declared COVID-19 a global pandemic 
on 11 March 2020 (17). Hence, we defined pre-COVID and COVID 
cohorts as users who signed up from 1 May 2019 to 11 January 2020 
(256 days), and from 11 March 2020 to 1 October 2021 (570 days), 
respectively.

Measures

Demographic variables of interest collected routinely included 
ethnicity (‘Asian’, ‘Black’, ‘Mixed’, ‘White’ and ‘Other’), gender (‘Female’, 
‘Male’ and ‘Non-binary’) and age group (‘14–17’ and ‘18–25’) at the 
time of registration. We measured interaction with the service through 
a number of service usage variables: 3 continuous variables (‘usage 
period’, ‘engagement’ and ‘activeness’) recording the overall level of 
interaction; and 8 dichotomous variables recording whether users 
made use of each component of the service (e.g., journals, discussions, 
ad-hoc chats). Table 1 provides the complete list of variables, including 
activity type, with details.

Analysis

We performed two-stepped analyses: (1) comparison of 
pre-COVID and COVID cohorts and (2) identification of usage 
profiles within pre-COVID and COVID cohorts. All data processing 
and analyses were done in python v3.9.2 (18). Packages sshtunnel 
0.4.0, psycopg2-binary 2.9.5, pymysql 1.0.2, and python-bigquery Abbreviation: CYP, children and young people.
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3.3.5 (19–22) were used to query data sources and construct the 
measures. We used scipy 1.9.3 (23) and statsmodels 0.13.2 packages 
(24) for statistical modeling and tests. The threshold for statistical 
significance for all value of ps was set at p < 0.05.

The main analyses were preceded by an assessment of the 
generalizability of our results for the service population, comparing 
separately for pre-COVID and COVID cohorts the study sample 
(returning, research consenting Kooth users aged 14–25 with a 
journey of ≤56 days) with the corresponding wider study population 
(all returning Kooth users aged 14–25). We used the Mann–Whitney 
U test (25) to measure differences in signup age as a continuous 
variable, and the Chi-squared test (26) to measure differences in 
ethnicity and gender.

In the first step of the analysis, we measured proportion and 95% 
confidence intervals (CI) estimated by Wilson score with continuity 
correction (27). We measured variations between the pre-COVID and 
COVID cohorts using Chi-squared tests (26) for demographic variables; 
two-sample Kolmogorov–Smirnov tests (28) for continuous usage 
variables; and logit regressions for dichotomous usage variables (as 
outcomes) using ‘cohort’ (i.e., pre-COVID or COVID) as the response 
variable and controlling for demographic and service change covariates.

In the second step, user groups were identified separately for 
pre-COVID and COVID cohorts through clustering of the usage 
variables. Prior to clustering, continuous usage variables were 
transformed to a logarithmic scale to limit the negative impact of 
large outliers (29). The usage data was then transformed into a binary 
indicator of whether the user had interacted with each component of 
the service, to address the sparsity of the data and improve the 
efficacy of dimensionality reduction (30). We  applied Multiple 
Correspondence Analysis to reduce dimensionality and allow for the 
use of Euclidean-based clustering (31).

We ran a sensitivity analysis in which we applied KMeans, Birch, 
DBSCAN, and Gaussian Mixture Models on the resulting dataset to 
explore differences across clustering algorithms. We computed the 
Silhouette Coefficient as (bi – ai)/max(ai, bi), with ai the mean intra-
cluster distance of sample i, bi the mean nearest-cluster distance of 
sample i, and N the number of samples. This ranges from −1 (worst) 
to 1 (best) – values near 0 indicate overlapping clusters (32) 
(Supplementary Tables S3, S4). The cluster number choice was made 
by inspecting the silhouette analysis plots for the highest scoring 
algorithms: Birch and KMeans for 2 to 5 clusters 
(Supplementary Figures S1–S4). After assessing these plots and 

TABLE 1 Characteristic, usage and experience variables of interest.

Variable Type Variable Description

Characteristic

Signup Age Measured in years and split into two groups: 14–18 and 18–25 years.

Ethnicity

One of ‘Asian’, ‘Black’, ‘Mixed’, ‘White’ and ‘Other’. If a user has ‘Other’ as their ethnicity 

status, this could be because they selected ‘Other’ or because they did not state their 

ethnicity.

Gender
One of ‘Agender’, ‘Female’, ‘Gender Fluid’ and ‘Male’. ‘Agender’ and ‘Gender Fluid’ are 

grouped into ‘Non-binary’ due to low counts.

Usage

Engagement Metrics

Usage Period Days between first and last login (absolute).

Engagement Number of active days* divided by Usage Period (defined above).

Activeness Number of activities divided by active days.*

Self Help
Journal Entry Text journal entry and emoji submitted by a user to signify how the user feels.

Personal Goal Created Goal set by a user for themselves.

Community Engagement

Article Created Article submitted by a user.

Discussion Created Discussion thread started by a user.

Comment Created Comment added to an article or discussion by a user.

Asynchronous Practitioner 

Engagement
Message Sent Message sent to a practitioner by a user.

Synchronous Practitioner 

Engagement

Drop-in Chat Requested Impromptu chat requested by joining the chat queue.

Booked Chat Requested Booked chat with a practitioner scheduled.

Experience

Asynchronous Practitioner 

Engagement

Administrative message received Administrative message sent from practitioner to user.

Therapeutic message received
Therapeutic message sent from practitioner to user that includes an assessment, is 

consistent with a model of intervention and is intended to change behavior.

Synchronous Practitioner 

Engagement

Successful chat User and practitioner are in an ad-hoc chat for >5 min.

Failed chat User and practitioner do not successfully stay within an ad-hoc chat for >5 min.

*‘Active days’ is the number of days a user has interacted with the service.
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clusters, we decided to present the output of Birch in the main text, 
but we ran the full analysis using KMeans for comparison.

We made a deliberate decision not to include service user 
demographics in the clustering algorithm to minimize the potential 
biasing effect of demographic factors on the identification of 
engagement behavior patterns. By doing so, we  ensured that the 
resulting clusters were based solely on the observed engagement 
behaviors and not influenced by demographic characteristics. Instead, 
we were interested in observing whether different engagement profiles 
naturally had demographic differences.

Clusters were then further explored using Chi-squared tests (26) 
for demographic variables (not used to compute the clusters), 
Anderson-Darling tests (33) for k-samples for continuous usage 
variables; and logit regressions for dichotomous usage variables (as 
outcomes) with ‘cluster’ as the response and adjusting for covariates 
age group, ethnicity and gender (an overall value of p for variable 
‘cluster’ was calculated through a log-likelihood test). For each cluster, 
we show proportion, 95% CIs and calculated value of ps per variable.

Results

Study sample

Of the 624,103 individuals who joined Kooth between May 1, 2019, 
and October 1, 2021, 57,568 (12.82%) were returning users aged 
14–25 years. Of these, 18,889 (32.81%) met all the inclusion criteria: 
5,048 in the pre-COVID cohort and 13,841 in the COVID cohort. The 
number of signups per day increased from 19.72  in the pre-COVID 
cohort to 24.28 in the COVID cohort. The most common place for service 

users to find out about Kooth is school, which remained consistent across 
both cohorts but with altered proportions (pre-COVID: 45.38%, COVID: 
34.24%). Full details of the cohort selection procedure are in Figure 1.

When comparing demographic distributions between the 
pre-COVID and COVID cohorts and their corresponding population 
of interest, we found no significant difference in signup age (p = 0.220) 
and ethnicity (p = 0.999) for the pre-COVID cohort, and a significant 
difference for the COVID cohort (p < 0.001) with mean signup age of 
0.78 years older and a 0.47 percentage points increase in user 
proportion that did not select an ethnicity option. For both cohorts, 
we found no significant differences in gender (p > 0.888).

Comparison between pre-COVID and 
COVID study cohorts

Full results of the comparison between pre-COVID and COVID 
cohorts are in Table 2.

Signup age, and the proportion of users who reported gender as 
‘Non-binary’ increased during the pandemic, as did the proportion of 
users reporting ‘Black’, ‘Mixed’ or ‘Other’ ethnicity against a decrease in 
those reporting ‘White’. More users had relatively longer usage periods 
during the pandemic, with similar engagement rates but a more active 
interaction with the service. The COVID cohort wrote more journals; 
maintained the same focus on messaging practitioners, posting 
discussions, commenting on posts, and having booked chats; and engaged 
less in writing journals, setting personal goals, posting articles, and having 
ad-hoc chats. A visual representation of similarities and differences in 
service usage between pre-COVID and COVID periods can be seen in 
the right-hand side of Supplementary Figures S1–S4.

FIGURE 1

Study cohort flow diagram.
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Identification of usage clusters

During optimization of the clustering algorithms, the silhouette score 
varied between 0.14 and 0.46 for the pre-COVID cohort and between 
0.16 and 0.43 for the COVID cohort across 24 hyperparameter 
configurations. Full results can be seen in Supplementary Tables S1 and S2 
for the pre-COVID and COVID cohorts, respectively. There was no clear 
best configuration for both pre-COVID and COVID cohorts. Inspecting 
both the results of the silhouette analysis (Supplementary Figures S1–S4) 

and the obtained clusters, we decided to continue with the output of 4 
usage clusters for each cohort.

Comparison between pre-COVID and 
COVID usage clusters

Figure 2 and Tables 3–6 show the size, characteristics, and usage 
profiles for each cluster. We observed some broad similarities between 

TABLE 2 Variable distributions for pre-COVID and COVID cohorts.

Variable Pre-COVID COVID Adjusted p value

Summary statistics

Signups 5,048 13,841

Signups per day 19.72 24.28

Demographic variables/Control variables not used for clustering

Gender <0.001

Female 3,899 (77.24% [76.06, 78.37]) 10,406 (75.18% [74.46, 75.89])

Male 971 (19.24% [18.17, 20.35]) 2,629 (18.99% [18.35, 19.66])

Non-binary 178 (3.53% [3.05, 4.07]) 806 (5.82% [5.45, 6.23])

Age group <0.001

14–17 4,683 (92.77% [92.02, 93.45]) 12,290 (88.79% [88.26, 89.31])

18–25 365 (7.23% [6.55, 7.98]) 1,551 (11.21% [10.69, 11.74])

Ethnicity group <0.001

White 4,259 (84.37% [83.34, 85.35]) 11,280 (81.5% [80.84, 82.14])

Asian 331 (6.56% [5.91, 7.27]) 917 (6.63% [6.22, 7.05])

Black 141 (2.79% [2.37, 3.28]) 471 (3.4% [3.11, 3.72])

Mixed 239 (4.73% [4.18, 5.36]) 727 (5.25% [4.89, 5.64])

Other 78 (1.55% [1.24, 1.92]) 446 (3.22% [2.94, 3.53])

White 4,259 (84.37% [83.34, 85.35]) 11,280 (81.5% [80.84, 82.14])

Service usage variables/Dependent variables used for clustering

Period* - 0.016

Engagement* - 0.074

Activeness* - <0.001

Journal entry 3,716 (73.61% [72.38, 74.81]) 11,675 (84.35% [83.74, 84.95]) <0.001

Personal goal created 1,007 (19.95% [18.87, 21.07]) 2,418 (17.47% [16.85, 18.11]) <0.001

Article created 296 (5.86% [5.25, 6.55]) 466 (3.37% [3.08, 3.68]) <0.001

Discussion created 1,051 (20.82% [19.72, 21.96]) 2,741 (19.8% [19.15, 20.48]) 0.251

Comment created 1,644 (32.57% [31.29, 33.87]) 4,772 (34.48% [33.69, 35.27]) 0.008

Message sent 771 (15.27% [14.31, 16.29]) 2,237 (16.16% [15.56, 16.78]) 0.129

Ad-hoc chat 3,791 (75.1% [73.89, 76.27]) 7,816 (56.47% [55.64, 57.29]) <0.001

Booked chat 196 (3.88% [3.38, 4.45]) 403 (2.91% [2.64, 3.21]) 0.001

Service experience variables/Observational variables not used for clustering

Administrative message received 475 (9.41% [8.63, 10.25]) 7,553 (54.57% [53.74, 55.4]) <0.0001

Therapeutic message received 680 (13.47% [12.56, 14.44]) 7,152 (51.67% [50.84, 52.5]) <0.0001

Successful chat 1,567 (31.04% [29.78, 32.33]) 2,611 (18.86% [18.22, 19.52]) <0.0001

Failed chat 1,065 (21.1% [19.99, 22.24]) 2,675 (19.33% [18.68, 19.99]) 0.008

Reported values are absolute counts, percentages with 95% confidence intervals, and adjusted p values assessing whether variables changed during COVID compared to pre-COVID.
*Continuous variable. See Figure 2.
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FIGURE 2

Distribution plots for period, activeness and engagement variables across pre-COVID and COVID Birch clusters.
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pre-COVID and COVID usage clusters. In both cases, cluster sizes 
were highly unbalanced, with the largest and smallest clusters 
containing 53.80 and 3.74% of pre-COVID users, respectively, and 
51.29 and 2.15% of COVID users, respectively. The largest cluster in 
both cohorts was also the one with the shortest enrolment period 
(1–2 days) and the least engaged in practitioner-based interventions. 
Similarly, the smallest cluster in both cohorts was also the one with 
highest proportion of females, older users, and most engaged with 
practitioner-based interventions. The remaining two clusters where 
the most interested in community-based interventions.

At the same time, there were substantial differences between the 
pre-COVID and COVID clusters. For example, gender differences 
were only significant in the COVID cohort. The unengaged cluster 
(C0) was less active during the pandemic. Over 70% of users in all 
pre-COVID clusters requested and ad-hoc chat with a practitioner, 
compared to only one COVID cluster. The two clusters interested in 
community-based interventions (C1 and C2) showed opposite trends 
in usage period and engagement. One of these (C2) was also the least 
engaged on creating articles before COVID, but the second most 
engaged during COVID. The cluster engaging the most with 
practitioner-based intervention had the highest proportion of users 
who selected Asian and Mixed ethnicity pre-COVID, and the lowest 
during COVID.

Our sensitivity analysis had mixed results 
(Supplementary Figure S5; Supplementary Tables S3–S5). In the 
pre-COVID period, the obtained clusters were substantially different 
to those of Birch, although we still found a cluster of disengaged used 

(this time even more disengaged). Of the remaining clusters, one was 
focused on both self-help and community-based interventions, and 
the other two focused on practitioner-based interventions and had 
moderate interest in community-based interventions. The size of 
pre-COVID clusters based on KMeans was also much more valanced, 
with each accounting for 20–30% of users. Meanwhile, KMeans’ result 
during COVID was similar to Birch’s, with a disengaged cluster, a 
cluster focused on practitioner-based interventions, and a cluster 
focused on community-based interventions. The fourth cluster was 
also relatively focused on community-based interventions. Cluster 
sizes were also similar to Birch’s.

Discussion

Key findings

We found changes in the usage of Kooth, a UK mental health 
digital service, by users aged 14–25 years during the COVID-19 
pandemic. While the number of signups per day increased, these users 
were less engaged with the service, most prominently with less activity 
within each log-in (albeit usage periods were longer on average) and 
focusing less on creating articles and discussions and requesting 
ad-hoc chats with practitioners. This excess of users during the 
pandemic may be driven by a lack of capacity on traditional mental 
health services, a desire to ‘protect’ these services, and/or fear of 
COVID-19 infection in physical settings. We also identified changes 

TABLE 3 Control variables across Birch engagement clusters for the pre-COVID cohort.

Variable C0 C1 C2 C3

Pre-COVID Birch clusters

Summary statistics

Signups 2,716 1,345 798 189

Proportion of all pre-COVID signups 53.80% 26.64% 15.81% 3.74%

Signups per day 10.61 5.25 3.12 0.74

Control variables not used for clustering

Gender (p = 0.684)

Female 2091 (76.99% [75.37, 78.53]) 1,045 (77.7% [75.39, 79.84]) 612 (76.69% [73.63, 79.49]) 481 (80.84% [77.48, 83.8])

Male 535 (19.7% [18.25, 21.24]) 245 (18.22% [16.24, 20.37]) 158 (19.8% [17.18, 22.71]) 91 (15.29% [12.63, 18.41])

Non-binary 90 (3.31% [2.7, 4.06]) 55 (4.09% [3.16, 5.28]) 28 (3.51% [2.44, 5.02]) 23 (3.87% [2.59, 5.73])

Age group (p = 0.052)

14–17 2,520 (92.78% [91.75, 93.7]) 1,233 (91.67% [90.07, 93.03]) 757 (94.86% [93.1, 96.19]) 173 (91.53% [86.69, 94.72])

18–25 196 (7.22% [6.3, 8.25]) 112 (8.33% [6.97, 9.93]) 41 (5.14% [3.81, 6.9]) 16 (8.47% [5.28, 13.31])

Ethnicity group (p = 0.01)

Asian 183 (6.74% [5.85, 7.74]) 101 (7.51% [6.22, 9.04]) 32 (4.01% [2.85, 5.61]) 15 (7.94% [4.87, 12.68])

Black 75 (2.76% [2.21, 3.45]) 37 (2.75% [2.0, 3.77]) 26 (3.26% [2.23, 4.73]) 3 (1.59% [0.54, 4.56])

Mixed 138 (5.08% [4.32, 5.97]) 54 (4.01% [3.09, 5.2]) 34 (4.26% [3.06, 5.89]) 13 (6.88% [4.06, 11.41])

Other 36 (1.33% [0.96, 1.83]) 29 (2.16% [1.51, 3.08]) 10 (1.25% [0.68, 2.29]) 3 (1.59% [0.54, 4.56])

White 2,284 (84.09% [82.67, 85.42]) 1,124 (83.57% [81.49, 85.45]) 696 (87.22% [84.72, 89.36]) 155 (82.01% [75.91, 86.83])

Messages received

Message received 447 (16.46% [15.11, 17.9]) 344 (25.58% [23.32, 27.98]) 147 (18.42% [15.88, 21.26]) 88 (46.56% [39.59, 53.67])

Reported values are absolute counts and percentages with 95% confidence intervals. Chi-squared tests across clusters returned p < 0.001 for all variables except otherwise specified.
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in the user experience, with more users being asynchronously 
contacted and fewer having live chats with practitioners during the 
pandemic. This is likely the result of service changes implemented to 
manage the observed increase in the demand, like practitioners 
actively contacting users.

We conducted cluster analyses individually in each time period 
(before and during the COVID-19 pandemic) and identified four clusters 
or usage profiles: one relatively disengaged, one focused on contacting 
practitioners through chats/messages, and two broadly interested in 
writing discussions and comments within the digital community. The 
disengaged profile is likely an extension of our initial observation on the 
high proportion of users not returning to the system after one visit, as this 
profile is also the largest of the four (>50% of users), highlighting the 
importance of this type of interaction and user preference for digital 
interventions. Users seeking only contact with practitioners returned to 
the system sporadically. This is a fitting strategy for them, since there are 
natural idling times between messages and chats. Users more interested 
on posting articles, discussions and comments seemed to be the most 
committed overall, with relatively longer usage periods, engagement and 
activeness metrics. These seemed to be the most valanced users in terms 
of engagement, showing also high interactions in personal- and 
practitioner-based interventions. All clusters had over 70% of users 
requesting ad-hoc chats with practitioners, highlighting the importance 
of this type of interaction for digital interventions.

Pre-COVID and COVID usage profiles, despite being grossly 
similar, had some stark differences particularly with the two 
community-focused clusters. These two clusters exhibited opposite 
changes on some activity in the platform (e.g., practitioner-based 
interventions), even swapping their ranking as most/least engaged as 
a result in some instances. They also swapped the length of usage 
period and engagement. We  originally thought that these 
differences may have been artificially introduced by moving from 
three to four clusters, but inspection of the Silhouette plots 
(Supplementary Figures S1, S2) revealed that this step gave way to the 
practitioner-focused cluster (i.e., the two community-engaged clusters 

were already present with three clusters). We also observed differences 
in demographic variables not used for clustering. These may explain 
part of the usage profile changes between pre-COVID and COVID 
within the platform, but the demographic differences pertained to a 
small proportion of the study sample, and therefore unlikely to explain 
the full range of such changes. Therefore, significant external events 
such as pandemics may impact how users interact with digital mental 
health services and may affect how to effectively identify patterns of 
engagement to form profiles.

Our sensitivity analysis led to a similar conclusion: that usage 
profiles are susceptible to significant external events. However, it also 
showed that the resulting usage profiles are not always strongly 
defined in our data, and thus the selection of clustering algorithm may 
have a big impact on the results – this may also be weakness of our 
data, rather than the methodology itself. As such, the utilization of 
usage profiles to inform the ongoing design of these services and the 
recommendations of personalized interventions may not be  an 
optimal strategy – at least not during major events and not without 
the right data, careful sensitivity analyses and a strong methodology 
leading to robust outcomes.

Our clustering analysis revealed changes in service usage not 
readily apparent from the analysis using the full pre-COVID and 
COVID cohorts. Most prominently, despite community engagement 
variables decreasing (articles created) or not changing (discussions 
and comments created) during the COVID-19 pandemic, the influx 
of users focused on community engagement increased. Therefore, 
even though community engagement decreased during the COVID-19 
pandemic, 2 out of 5 users that registered during this period in fact 
directed their attention to community-based activity. This effect may 
have been driven by the lockdown, self-isolation, and social distancing 
measures in place during the pandemic, and thus reflect users longing 
for social interaction, especially in young people (34). In general 
terms, different clusters show different patterns of change during 
COVID. From a methodological point of view, these results suggest 
that clustering analysis may be a useful tool in the analysis of service 

TABLE 4 Usage variables across Birch engagement clusters for the pre-COVID cohort.

Variable C0 C1 C2 C3

Pre-COVID Birch clusters

Signups 2,716 1,345 798 189

Dependent variables used for clustering

Journal entry 2078 (76.51% [74.88, 78.07]) 992 (73.75% [71.34, 76.04]) 552 (69.17% [65.88, 72.28]) 94 (49.74% [42.68, 56.8])

Personal goal created 520 (19.15% [17.71, 20.67]) 310 (23.05% [20.88, 25.37]) 153 (19.17% [16.59, 22.05]) 24 (12.7% [8.68, 18.2])

Article created 154 (5.67% [4.86, 6.6]) 104 (7.73% [6.42, 9.28]) 32 (4.01% [2.85, 5.61]) 6 (3.17% [1.46, 6.75])

Discussion created 512 (18.85% [17.42, 20.37]) 326 (24.24% [22.02, 26.6]) 194 (24.31% [21.46, 27.41]) 19 (10.05% [6.53, 15.17])

Comment created 810 (29.82% [28.13, 31.57]) 504 (37.47% [34.92, 40.09]) 287 (35.96% [32.71, 39.35]) 43 (22.75% [17.35, 29.24])

Message sent 344 (12.67% [11.47, 13.97]) 251 (18.66% [16.67, 20.83]) 131 (16.42% [14.01, 19.15]) 45 (23.81% [18.3, 30.37])

Ad-hoc chat 1914 (70.47% [68.73, 72.16]) 1,065 (79.18% [76.93, 81.27]) 625 (78.32% [75.33, 81.04]) 187 (98.94% [96.22, 99.71])

Booked chat (no value of p) 0 (0.0% [0.0, 0.14]) 6 (0.45% [0.2, 0.97]) 1 (0.13% [0.02, 0.71]) 189 (100.0% [98.01, 100.0])

Observational variables not used for clustering

Successful chat 581 (21.39% [19.89, 22.97]) 529 (39.33% [36.75, 41.97]) 271 (33.96% [30.76, 37.32]) 186 (98.41% [95.44, 99.46])

Failed chat 425 (15.65% [14.33, 17.06]) 319 (23.72% [21.52, 26.06]) 169 (21.18% [18.48, 24.15]) 152 (80.42% [74.18, 85.45])

Reported values are absolute counts and percentages with 95% confidence intervals. Logistic regression models adjusted for demographic variables returned p < 0.001 for all variables unless 
otherwise specified. Some results are omitted due to convergence issues. Cases where ‘no value of p’ is stated indicate where the algorithm did not converge.
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usage and its change over time, as it can provide insight into previously 
hidden patterns.

Comparison with prior research

Prior work on mental health service usage profiling incorporates 
time and typically tries to understand where a user is in their lifetime 
with a service (9–11). However, since the average user’s time with the 
service studied here is less than two weeks (pre-COVID: 12.35 [12.91], 
COVID: 12.90 [13.20]), we simplified the analysis by assuming fixed 
usage profiles throughout the users’ journey.

Prior work on mental health service usage profiling incorporates 
outcome variables and relies on a single time period for examination 
(9–11). They typically found between 3 and 5 usage profiles, mostly 
focused on the level of engagement. Since we did not have access to 
outcome variables in our analysis, direct comparison with other study 
results is not possible. However, we found a similar number of usage 
profiles within each cohort, some overall more engaged than others, 
but we  also found differences in the type of engagement, as 
discussed above.

Previous mental health studies have shown a widespread 
deterioration of the population’s mental health during the COVID-19 
pandemic (1), but disproportionately so for young adults and 
minoritized gender and ethnic groups (35, 36). We  found 
corresponding increases in the number of signups to the service (from 
19.72 users/day to 24.28 users/day). The proportion of users increased 

for adults, users who selected ‘Black’, ‘Mixed’ or ‘Other’ ethnicity and 
users who selected ‘Agender’ or ‘Gender Fluid’ gender, but not in the 
proportion of females compared to males.

Strengths and limitations

We have assessed changes in the way users interact with a digital 
mental health service before and after the COVID-19 pandemic 
started in the UK, using routinely collected usage data from 18,969 
users across 30 months, including the first two waves of the pandemic. 
We  explored whether these differences varied across user types, 
themselves defined using clustering techniques on usage information. 
To the authors’ knowledge, this is the first work to study how 
engagement behaviors within a digital mental healthcare service 
change during a global crisis of this kind.

We approached the use of clustering techniques not as a central part 
of the research, but as a tool to answer our research question (i.e., whether 
usage profiles changed during the COVID-19 pandemic). As such, our 
methodological decisions were not driven by clustering performance, but 
by domain knowledge (e.g., access routes of users to the different parts of 
the service, and the way their interactions are recorded) to ensure the 
relevance of all the included variables. Additionally, we validated and 
compared the resulting clusters using traditional statistical methods and 
exploring variable distributions.

There were limitations surrounding the study population, as it 
included only 32.81% of the total population of users ever using the 

TABLE 5 Control variables across Birch engagement clusters for the COVID cohort.

Variable C0 C1 C2 C3

COVID Birch clusters

Summary statistics

Signups 7,099 3,847 2,597 298

Proportion of all COVID signups 51.29% 27.79% 18.76% 2.15%

Signups per day 12.45 6.75 4.56 0.52

Control variables not used for clustering

Gender

Female 5,219 (73.52% [72.48, 74.53]) 2,925 (76.03% [74.66, 77.36]) 2026 (78.01% [76.38, 79.56]) 236 (79.19% [74.23, 83.42])

Male 1,451 (20.44% [19.52, 21.39]) 704 (18.3% [17.11, 19.55]) 420 (16.17% [14.81, 17.64]) 54 (18.12% [14.16, 22.89])

Non-binary 429 (6.04% [5.51, 6.62]) 218 (5.67% [4.98, 6.44]) 151 (5.81% [4.98, 6.78]) 8 (2.68% [1.37, 5.21])

Age group (p = 0.109)

14–17 6,311 (88.9% [88.15, 89.61]) 3,413 (88.72% [87.68, 89.68]) 2,316 (89.18% [87.93, 90.32]) 250 (83.89% [79.29, 87.63])

18–25 788 (11.1% [10.39, 11.85]) 434 (11.28% [10.32, 12.32]) 281 (10.82% [9.68, 12.07]) 48 (16.11% [12.37, 20.71])

Ethnicity group (p = 0.016)

Asian 432 (6.09% [5.55, 6.67]) 282 (7.33% [6.55, 8.2]) 190 (7.32% [6.38, 8.38]) 13 (4.36% [2.57, 7.32])

Black 255 (3.59% [3.18, 4.05]) 125 (3.25% [2.73, 3.86]) 81 (3.12% [2.52, 3.86]) 10 (3.36% [1.83, 6.07])

Mixed 367 (5.17% [4.68, 5.71]) 197 (5.12% [4.47, 5.86]) 150 (5.78% [4.94, 6.74]) 13 (4.36% [2.57, 7.32])

Other 246 (3.47% [3.06, 3.92]) 125 (3.25% [2.73, 3.86]) 65 (2.5% [1.97, 3.18]) 10 (3.36% [1.83, 6.07])

White 5,799 (81.69% [80.77, 82.57]) 3,118 (81.05% [79.78, 82.26]) 2,111 (81.29% [79.74, 82.74]) 252 (84.56% [80.02, 88.22])

Messages received

Message received 5,217 (73.49% [72.45, 74.5]) 3,022 (78.55% [77.23, 79.82]) 2,147 (82.67% [81.17, 84.08]) 273 (91.61% [87.91, 94.25])

Reported values are absolute counts and percentages with 95% confidence intervals. Chi-squared tests across clusters returned p < 0.001 for all variables except otherwise specified.
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service (27.93% from the full pre-COVID cohort and 35.04% from the 
full COVID cohort). Nevertheless, of age, gender and ethnicity, the 
study sample only differed from the whole population on signup age.

The digital mental health service examined moved through 
several product and service improvements, potentially influencing 
usage. This translates to unmeasured impact of changes which prevent 
us from establishing with complete certainty a relationship between 
the changes solely attributable to COVID-19 pandemic. Other 
potential mental health covariates were not available, like 
socioeconomic status or simultaneous engagement with other 
services, which has been shown to change during the pandemic (36, 
37). The time period of data collection is also not consistent across 
cohorts, so there is a possibility that changes could be  due to 
seasonality effects or other confounders.

Engagement with digital mental health services may also 
be  subject to variation based on service availability, making it 
challenging to determine which digital behaviors are genuinely 
influenced by the service user and not by changes in the platform and 
resources to provide support. We made efforts to control for changes 
due to service availability in terms of messages sent to service users by 
practitioners. However, controlling for this factor becomes exceedingly 
difficult in an active, naturalistic environment where resource changes 
can occur at different times and in various regions where the 
service operates.

Our study was limited to a UK-only service, which restricted our 
ability to compare engagement data with similar services in other 
countries. Therefore, the generalizability of our findings is limited to 
the UK context, and caution should be exercised in extrapolating our 
results beyond the digital service examined.

Future research

Future research into CYP engagement would benefit from 
incorporating mental health measures before and after engagements. This 

would allow us to explore if measure responses predict engagement with 
digital services when combined with age, ethnicity and gender. There are 
known barriers in access to mental health services, and therefore 
understanding engagement patterns with digital mental health services 
can provide an early look into engagement preferences or barriers. We had 
data on mental health measures associated with this study, but 
opportunities for completion of these measures within the system were 
based on engagement preferences and were therefore biased. Hence, 
we decided to exclude outcome measures with a view to investigating 
outcomes in a separate study.

This study focuses only on returning users. For Kooth users aged 
14–25, 87.18% of users do not return to the site after initial signup 
which leaves a large portion of the service user population 
uninvestigated. This drop-off could be due to implementation barriers 
such as lack of personalization or human capacity (38), and it is 
similar to that reported by other digital platforms (39). Future research 
is needed to understand the difference between returning and 
non-returning users, and how to maximize the potential of brief 
engagement vs. more continuous and regular engagement.

Our main finding, that usage profiles are affected by major events, 
puts into question the stability of usage profiles using clustering methods 
of data based on engagement. Further analysis over periods without major 
catastrophic events is required to ascertain whether changes in usage 
profiles can also occur naturally (i.e., without the influence of major 
events), but this also highlights the importance of examining and 
accounting for such events when machine learning algorithms are used 
for cluster and designing products and services and optimization.

This study focuses on user engagement changes between 
pre-COVID and COVID cohorts. Future work should investigate the 
long-term impact of the pandemic on mental health. It would 
be  beneficial to explore whether mental health issues during the 
pandemic have regressed back to their mean or if they have persisted, 
as well as the role of community support in mental health during the 
pandemic. This may involve longitudinal studies to track changes in 
service engagement and mental health outcomes over time.

TABLE 6 Usage variables across Birch engagement clusters for the COVID cohort.

Variable C0 C1 C2 C3

COVID Birch clusters

Signups 7,099 3,847 2,597 298

Dependent variables used for clustering

Journal entry 6,147 (86.59% [85.78, 87.36]) 3,141 (81.65% [80.39, 82.84]) 2,237 (86.14% [84.76, 87.41]) 150 (50.34% [44.69, 55.97])

Personal goal created 1,170 (16.48% [15.64, 17.36]) 642 (16.69% [15.54, 17.9]) 585 (22.53% [20.96, 24.17]) 21 (7.05% [4.66, 10.53])

Article created 184 (2.59% [2.25, 2.99]) 177 (4.6% [3.98, 5.31]) 100 (3.85% [3.18, 4.66]) 5 (1.68% [0.72, 3.87])

Discussion created 1,186 (16.71% [15.86, 17.59]) 916 (23.81% [22.49, 25.18]) 623 (23.99% [22.39, 25.67]) 16 (5.37% [3.33, 8.54])

Comment created 2091 (29.45% [28.41, 30.53]) 1,626 (42.27% [40.71, 43.83]) 991 (38.16% [36.31, 40.04]) 64 (21.48% [17.19, 26.49])

Message sent 831 (11.71% [10.98, 12.47]) 692 (17.99% [16.81, 19.23]) 647 (24.91% [23.29, 26.61]) 67 (22.48% [18.11, 27.56])

Ad-hoc chat 3,529 (49.71% [48.55, 50.87]) 2,331 (60.59% [59.04, 62.13]) 1,697 (65.34% [63.49, 67.15]) 259 (86.91% [82.61, 90.28])

Booked chat (no value of p) 1 (0.01% [0.0, 0.08]) 3 (0.08% [0.03, 0.23]) 101 (3.89% [3.21, 4.7]) 298 (100.0% [98.73, 100.0])

Observational variables not used for clustering

Successful chat 794 (11.18% [10.47, 11.94]) 831 (21.6% [20.33, 22.93]) 717 (27.61% [25.92, 29.36]) 269 (90.27% [86.37, 93.14])

Failed chat 1,066 (15.02% [14.2, 15.87]) 769 (19.99% [18.76, 21.28]) 610 (23.49% [21.9, 25.16]) 230 (77.18% [72.09, 81.58])

Reported values are absolute counts and percentages with 95% confidence intervals. Logistic regression models adjusted for demographic variables returned p < 0.001 for all variables unless 
otherwise specified. Cases where ‘no value of p’ is stated indicate where the algorithm did not converge.
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Kooth is a standalone digital mental health platform that provides 
online support for children and young people – it is not specifically 
designed to be integrated into face-to-face mental health care or other 
health care systems. While Kooth can be accessed independently by 
users, it may also be used as part of a blended care approach, where 
digital interventions are combined with traditional face-to-face 
services. However, the extent to which Kooth is adaptable to a blended 
care approach is beyond the scope of this study and warrants 
further investigation.

Conclusion

The study of the effect of the COVID-19 pandemic on digital mental 
health services is particularly relevant, as these remained uninterrupted, 
while face-to-face services paused or changed provision. We explored the 
user activity and engagement behavior within a digital mental healthcare 
service and identified changes in these digital profiles during the 
COVID-19 pandemic. This indicates that usage profiles are not suitable 
to inform service design or provide personalized interventions yet, as they 
are susceptible to change due to events like a pandemic. However, usage 
profiles can provide important insight into the analysis of such changes in 
digital behavior and can help us better understand digital mental health 
service user populations and contribute to future disaster management 
procedures (13).

While digital mental health interventions can be powerful support 
tools, particularly in periods when traditional face-to-face services 
lack capacity or space, a better understanding of user engagement with 
these systems and how it changes over time is needed to fully unlock 
their potential, alongside other important considerations such as 
effectiveness, usability, and equity of access.
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