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Introduction: The comorbidity between major depressive disorder (MDD) and 
coronavirus disease of 2019 (COVID-19) related traits have long been identified 
in clinical settings, but their shared genetic foundation and causal relationships 
are unknown. Here, we investigated the genetic mechanisms behind COVID-19 
related traits and MDD using the cross-trait meta-analysis, and evaluated 
the underlying causal relationships between MDD and 3 different COVID-19 
outcomes (severe COVID-19, hospitalized COVID-19, and COVID-19 infection).

Methods: In this study, we conducted a comprehensive analysis using the most 
up-to-date and publicly available GWAS summary statistics to explore shared 
genetic etiology and the causality between MDD and COVID-19 outcomes. 
We first used genome-wide cross-trait meta-analysis to identify the pleiotropic 
genomic SNPs and the genes shared by MDD and COVID-19 outcomes, and 
then explore the potential bidirectional causal relationships between MDD and 
COVID-19 outcomes by implementing a bidirectional MR study design. We  
further conducted functional annotations analyses to obtain biological insight for 
shared genes from the results of cross-trait meta-analysis.

Results: We have identified 71 SNPs located on 25 different genes are shared 
between MDD and COVID-19 outcomes. We have also found that genetic liability 
to MDD is a causal factor for COVID-19 outcomes. In particular, we found that 
MDD has causal effect on severe COVID-19 (OR = 1.832, 95% CI = 1.037–3.236) 
and hospitalized COVID-19 (OR = 1.412, 95% CI = 1.021–1.953). Functional analysis 
suggested that the shared genes are enriched in Cushing syndrome, neuroactive 
ligand-receptor interaction.

Discussion: Our findings provide convincing evidence on shared genetic etiology 
and causal relationships between MDD and COVID-19 outcomes, which is crucial 
to prevention, and therapeutic treatment of MDD and COVID-19.
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1. Introduction

Major depressive disorder (MDD), the most prevalent mental 
illness in the world, is defined by a persistently depressed mood and 
is linked to severe morbidity and a high risk of suicide (1). The 
comorbidity of depressive disorders and coronavirus disease of 2019 
(COVID-19) related traits, has been widely reported (2). There was 
a public health crisis worldwide caused by COVID-19 pandemic that 
is created by the severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2). Emerging evidence suggests people with MDD have 
higher risk of COVID-19 infection, hospitalization and mortality 
(3). COVID-19 survivors can suffer from pain, discomfort, minor 
mobility in their body and nervousness, and depression for 
12 months (4). These evidences suggest there are possibilities of 
shared etiologies between MDD and COVID-19 outcomes, 
including severe COVID-19, hospitalized COVID-19 and 
COVID-19 infection. The potential comorbidity and the genetic 
relationships between MDD and the consequences of COVID-19 
infection can not only worsen the quality of life, but also increase the 
associated healthcare costs. Therefore, identifying the underlying 
genetic causes that lead to the comorbidity between MDD and 
COVID-19 outcomes is of great importance.

Traditional observational studies usually investigate comorbidity 
by gathering information on disease history and lab tests (e.g., 
routine blood test), but they provide limited insights on the causes 
of the comorbidity (5). It could be the case that the one condition is 
the early sign of the other (e.g., mild cognitive impairment and 
Alzheimer’s disease) and it could also be  the case that both 
conditions shared similar clinical characteristics that are used to 
define disease (e.g., psychological disorders) (6, 7).

The recently developed large-scale genome-wide cross-trait 
meta-analysis has shown their advantages in investigating the 
underlying genetic causes for comorbid conditions (5). Cross-trait 
meta-analysis is used to find the pleiotropic genomic single 
nucleotide polymorphisms (SNPs) and the genes shared by two 
comorbid conditions. For example, the cross-trait meta-analysis has 
found that there are shared genetic mechanisms between polycystic 
ovary syndrome and obesity (8), and it also provided the novel 
insights into the potential shared genetic architectures among five 
ocular diseases (9). Cross-trait meta-analysis utilizes summary 
statistics from multiple large scale genome wide association studies 
(GWAS) to infer shared disease etiology, and it has improved power 
in detecting genetic variants with small to moderate effects as 
compared to single-trait-based analysis (10). In addition, the 
recently developed cross-trait meta-analysis focuses not only on 
genetic variants with effect sizes on the same directions for both 
comorbid conditions, but also those that are either only related to 
one condition or related to both conditions with effect sizes on 
different directions [e.g., ASSET (11)].

While cross-trait meta-analysis facilitates the understanding of 
comorbidity, it cannot be  used to infer the causal relationships 
between the comorbid conditions by itself. The Mendelian 
randomization (MR) is a widely used design in inferring causal 
relationships. MR constructs instrumental variables (IVs) using 
selected genetic variants that satisfy the three core assumptions, 
including (1) genetic variants are robustly associated with the 
exposure, (2) there is no confounders of the genetic variants and the 
outcome, and (3) genetic variants affect the outcome only through 
the exposure. With valid IVs, MR can test the hypotheses about 
whether an exposure is causally related to the outcome. To date, MR 
has greatly facilitated the causal inference. For example, bidirectional 
MR has shown that there are no causal relationships between 
deficiency of vitamin D and nonalcoholic fatty liver disease, although 
a high correlation between the two conditions have been observed 
in many studies (12). MR analysis has demonstrated that SARS-
CoV-2 viral infection is a causal factor for the increased risk of 
hypothyroidism (13). The comorbidity between MDD and 
COVID-19 has been widely observed, and MR analysis can be a 
valid tool to explore their causal relationships.

In this study, we conducted a comprehensive analysis using the 
most up-to-date and publicly available GWAS summary statistics to 
explore shared genetic etiology and the causality between MDD and 
COVID-19 outcomes. We first used genome-wide cross-trait meta-
analysis to identify the pleiotropic genomic SNPs and the genes 
shared by MDD and COVID-19 outcomes, and then explore the 
potential bidirectional causal relationships between MDD and 
COVID-19 outcomes by implementing a bidirectional MR study 
design. We  further conducted functional annotations analyses to 
obtain biological insight for shared genes from the results of cross-
trait meta-analysis.

2. Method

2.1. Summary statistics from GWAS for 
MDD and COVID-19 outcomes

GWAS summary statistics of MDD (65,075 cases and 232,552 
controls) were obtained from publicly accessible web sites (GWAS 
Catalog Available online: https://www.ebi.ac.uk/gwas/
publications/34278373) (14). Three datasets were obtained from the 
COVID-19 HGI GWAS round 6 (Release Date: 7 June 2021) (15), 
including severe COVID-19 (A2, 8,779 very severe respiratory-
confirmed cases and 1,001,875 controls, excluding 23andMe), 
hospitalized COVID-19 (B2, 24,274 hospitalized COVID-19 cases and 
2,061,529 controls, excluding 23andMe) and COVID-19 infections 
(C2, 112,612 COVID-19 cases and 2,474,079 controls, excluding 
23andMe). These three datasets reflect different aspects of the 
COVID-19: susceptibility to disease shown in C2 and severity of the 
disease were contained in datasets A2 and B2. The details of GWAS 
data sets used in this study are summarized in Supplementary Table S1.

SNPs with minor allele frequency > 1% were utilized for meta-
analysis using a fixed-effect model. Ambiguous SNPs (AT, TA, CG and 
GC) were excluded. We  restricted all genetic data to European 
population to reduce potential bias from population stratification. 
Since all data are GWAS summary statistics that are accessible to the 
general public, no additional ethical review is required.

Abbreviations: MDD, Major depressive disorder; COVID-19, Coronavirus disease 

of 2019; AD, Alzheimer’s disease; SARS-CoV-2, Syndrome coronavirus 2; SNPs, 

Single nucleotide polymorphisms; GWAS, Genome wide association studies; MR, 

Mendelian randomization; IVs, Instrumental variables; ASSET, Association analysis 

based on subsets; FUMA, Functional mapping and annotation of genome-wide 

association studies; IVW, Inverse-variance weighted; GTEx, Genotype-Tissue 

Expression.
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2.2. Cross-trait meta-analysis

To detect pleiotropic SNPs that contribute to the genetic 
correlations between MDD and COVID-19 outcomes, we conducted 
a cross-trait meta-analysis at individual SNP level using association 
analysis based on subsets (ASSET) (11): https://git.bioconductor.
org/packages/ASSET. ASSET first searches subsets separately for 
studies with positive and negative associations, and then combines 
association signals from the two directions using a chi-square test-
statistic. Therefore, it can discover SNPs with effects going in the 
opposite directions. We used the fixed-effect methods implemented 
in ASSET v2.4.0, which allows for an exhaustively exploration of all 
possible subsets of GWAS inputs. SNPs with p-values less than 
5 × 10−8 were considered statistically significant. These SNPs include 
those that are associated with one of the condition, both conditions 
with effect sizes on the same direction and those with effect sizes on 
the opposite directions. Finally, functional mapping and annotation 
of genome-wide association studies (FUMA) were used to map SNPs 
to genes.

2.3. Bidirectional Mendelian randomization 
analysis

To identify the causal relationships between MDD and 
COVID-19 outcomes, we conducted bidirectional MR analyses for 
each pair of exposure and outcome. (https://mrcieu.github.io/
TwoSampleMR/articles/introduction.html). We used the SNPs that 
are associated with MDD and/or COVID-19 related traits as IVs and 
carried out bidirectional MR analysis with the inverse variance 
weighted approach (16). One of the core assumptions of valid IVs for 
MR is that the genetic variants should robustly related to the 
exposure. Therefore, similar to existing work (17–19), suggestive 
genome-wide significance level (i.e., p < 5 × 10−6) was used to select 
SNPs, which not only facilitates the detection of SNPs with robust 
associations but also allows for the acquisition of sufficient SNPs for 
MR analyses. In addition, SNPs with LD > 0.001 were pruned and a 
clumping distance of 250Kb was used. It is generally accepted that 
environmental factors barely affect the genotypes of the selected 
SNPs, and thus it can be considered that there are no confounders for 
the selected SNPs. For the MR analyses, we used the traditional fixed-
effect inverse-variance weighted (IVW) method to evaluate the causal 
effect of exposure on outcomes (13). IVW is the most efficient and 
statistically powerful MR method, but its validity heavily depends on 
whether its model assumptions (e.g., valid IVs) are satisfied. In MR 
analyses, the presence of pleiotropy suggests the violation of the 
assumption of valid IVs (i.e., genetic variants affect the outcome only 
through the exposure). Therefore, sensitivity analysis was used to 
assess the robustness of the causal effect estimates, including 
heterogeneity test (20), MR Egger intercept method testing for bias 
from pleiotropy (21), and the leave-one-out test (22).

2.4. Functional annotation analysis

To better understand the genetic mechanisms underlying shared 
genes between MDD and COVID-19 outcomes, we conducted FUMA 
(23) using the results of cross-trait meta-analysis (https://fuma.ctglab.nl/). 

FUMA is available as an integrative web-based platform and its core 
functions are the SNP2GENE (23) and GENE2FUNC (24). We used 
SNP2GENE with its default settings to first annotate the biological 
functions of SNPs and then map them to genes based on the position, 
eQTL and chromatin interaction information. For the functional 
annotations, we focused on the SNPs with ASSET value of p less than 
5 × 10−8 as well as those that are at high linkage disequilibrium with 
them (i.e., r2 ≥ 0.6). We annotated the selected SNPs based on functional 
Categories, Combined Annotation Dependent Depletion (CADD) 
scores, RegulomeDB scores and chromatin states using FUMA (23). 
The CADD score reflects the deleteriousness of SNPs that are predicted 
by 63 functional annotations. A CADD score of 12.37 or above indicates 
the most deleterious variants (25). The RegulomeDB score shows the 
regulatory functionality of SNPs that are determined based on the 
overlap of existing functional data annotation in GTEx v7 dataset. 
ChromHMM helps annotate the non-coding genome. FUMA uses the 
ChromHMM to predicts 15 categories based on 5 chromatin marks for 
127 epigenomes, and the accessibility of genomic regions can be shown 
by the chromatin state (26). We  further utilized GENE2FUNC to 
annotate the mapped genes within the biological contexts. In particular, 
we used heatmap to visualize their tissue-specific gene expression levels 
(e.g., brain, liver, and artery) using information from Genotype-Tissue 
Expression (GTEx) v7 dataset provided by GENE2FUNC. We further 
used the hypergeometric tests implemented in GENE2FUNC to 
evaluate if these mapped genes are overrepresented in the 
pre-determined differentially expressed gene (DEG) sets in specific 
tissue types, where the pre-determined DEG sets are obtained by 
comparing the normalized expression level of each gene from one tissue 
with all other issues in GTEx v7 dataset.

3. Results

3.1. Cross-trait meta-analysis results 
between MDD and COVID-19 outcomes

Based on the cross-trait meta-analysis, we identified 46 significant 
SNPs associated with MDD and severe COVID-19 located within 13 
genes (Supplementary Table S2), 39 significant SNPs associated with 
MDD and hospitalized COVID-19 located within 11 genes 
(Supplementary Table S3) and 24 significant SNPs associated with 
MDD and COVID-19 infections located within 8 genes 
(Supplementary Table S4). We have found 14 overlapped significant 
SNPs between MDD/severe COVID-19 and MDD/hospitalized 
COVID-19, and 11 overlapped significant SNPs between the MDD/
COVID-19 infection and MDD/hospitalized COVID-19 (Figure 1).

Notably, among the 46 significant SNPs that were shared between 
MDD and severe COVID-19 (Supplementary Table S2), the most 
significant one was rs2234358 (Pmeta = 2.46 × 10−11) located within 
FYCO1:CXCR6, which is also shared by MDD and hospitalized COVID-19 
(sentinel SNP [the most significant SNP]: rs17689471, Pmeta = 1.48 × 10−12). 
Among the 39 SNPs that were shared between MDD and hospitalized 
COVID-19 (Supplementary Table S3), the most significant (rs17689471 at 
locus 17q21.31, Pmeta = 1.48 × 10−12) and second significant SNPs 
(rs17689824 at locus 17q21.31, Pmeta = 1.64 × 10−12) were both located at 
CRHR1. In addition, among the shared SNPs between MDD and 
COVID-19 infection (Supplementary Table S4), the most significant one 
(rs853676 at locus 6p22.1, Pmeta = 2.74 × 10−10) was located at ZSCAN31.
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3.2. Results from the bidirectional 
Mendelian randomization analysis

For the effect of MDD on COVID-19 outcomes (severe 
COVID-19, hospitalized COVID-19 and COVID-19 infection), 63 
SNPs were used as IVs in the bidirectional MR for each of the 
COVID-19 outcomes. For the effect of COVID-19 outcomes on 
MDD, a total of 4, 9, and 8 SNPs were used as IVs in the 
bidirectional MR for severe COVID-19, hospitalized COVID-19 
and COVID-19 infection, respectively. The details of IVs were 
summarized in Supplementary Table S5. Our bidirectional MR 
analysis suggested that MDD has a genetical causal effect on 
COVID-19 outcomes. Notably, MDD confers a genetical causal 
effect on severe COVID-19 (IVW β = 0.6053, SE = 0.2902, 
p = 0.0370), and hospitalized COVID-19 (IVW β = 0.3451, 
SE = 0.1655, p = 0.0370), but not COVID-19 infection (IVW 
β = 0.0398, SE = 0.0608, p = 0.5125), as shown in Table 1. Conversely, 
no causal links were identified in the other direction from the MR 
analysis. The forest plot of the results of our bidirectional MR 
analysis is shown in Figure  2. The sensitivity analysis of our 
bidirectional MR analysis suggested that there is no significant 
heterogeneity (Supplementary Table S6) and pleiotropy 
(Supplementary Table S7), and the leave-one-out test also shows 
that the results are robust (Supplementary Figures S1–S6).

3.3. Results from the functional annotation 
analysis

The functional annotation analysis of all candidate SNPs selected 
based on the results of cross-trait meta-analysis between MDD and 
COVID-19 outcomes indicates that the SNPs are mostly intronic and 
intergenic. For SNPs selected from the cross-trait meta-analysis of 
MDD and severe COVID-19, 53.2, 10, and 1.5% of the candidate SNPs 
are intronic, intergenic and exonic, respectively (Figure 3A). For MDD 
and hospitalized COVID-19, 47.8, 17.2 and 1.3% of the candidate 
SNPs are intronic, intergenic and exonic (Figure 4A), respectively. 
Similarly, for MDD and COVID-19 infection, 68.0, 17.8 and 1.3% of 
the SNPs are intronic, intergenic and exonic (Figure 5A). For the most 
deleterious variants (i.e., CADD ≥ 12.37), we  found one variant 
(rs199535), four SNPs (rs1679709, rs199439, rs199456 and rs199535) 
and 1 SNP (rs1679709) from the analysis of MDD and severe COVID-
19, hospitalized COVID-19 and COVID-19 infections, respectively. 
The categories 1a-1f of RegulomeDB score indicate that variants are 
likely to affect binding and linked to the expression of a target gene. 
8.3, 7.6, and 0.9% of the SNPs have RegulomeDB scores of 1a-1f for 
MDD and severe COVID-19, hospitalized COVID-19 and COVID-19 
infection, respectively (Figure 3B, Figure 4B and Figure 5B). This 
indicates that SNPs in MDD and severe COVID-19, as well as 
hospitalized COVID-19, are more likely to have regulatory functions 

FIGURE 1

The Venn diagram of overlapping SNPs identified by the cross-trait meta-analysis across different trait pairs.

TABLE 1 Estimates of causal effect size between major depressive disorder and COVID-19 outcomes.

Phenotype 1 Phenotype 2 Direction Causal effect size ± SE p-value No. of Instrumental variables

MDD severe COVID-19 → 0.6053 ± 0.2902 0.0370 63

← −0.0012 ± 0.0075 0.8740 4

hospitalized COVID-19 → 0.3451 ± 0.1655 0.0370 63

← 0.0149 ± 0.01 0.1357 9

COVID-19 infection → 0.0398 ± 0.0608 0.5125 63

← −0.0265 ± 0.0193 0.1708 8

“→” refers to the phenotype 1 → phenotype 2 causal direction; “←” refers to the phenotype 2 → phenotype 1 causal direction.
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than those in MDD and COVID-19 infections. Notably, the most 
significant SNP (rs17689471) detected from the analysis of MDD and 
hospitalized COVID-19 has RegulomeDB score of 1 f. The distribution 
of minimum chromatin state showed that 91.1% of the candidate 
SNPs between MDD and severe COVID-19 (Figure  3C), 93.3% 
between MDD and hospitalized COVID-19 (Figure 4C) and 39.1% 
between MDD and COVID-19 infection (Figure 5C) are located in 
open chromatin states regions. The tissue-specific gene expression 
levels among genes, which are selected from eQTL mapping of the 
shared SNPs detected from our cross-trait meta-analysis, are shown 
in Figure 6. Notably, there are two genes (i.e., NSF and NR1H2) that 
exhibit higher expression levels among all tissue types. As shown in 
Figure 7, genes that are mapped through eQTL using significant SNPs 
shared by MDD and hospitalized COVID-19 are enriched in brain 
tissues, esophagus, kidney, pituitary and skin; genes that are mapped 
from SNPs associated with MDD and COVID-19 infection are 

enriched in colon; and genes that are obtained from SNPs that are 
detected from the analysis of MDD and severe COVID-19 are not 
enriched in any tissues.

4. Discussion

Investigations on the underlying genetic architecture that links 
MDD and COVID-19 outcomes and the causality that underlies 
them can advance our understanding of the comorbidity between 
MDD and COVID-19, which can aid in drug development, early 
prediction, and personalized treatment (27–29). In this study, 
we have identified genetic variants in 25 genes that are associated 
with MDD and/or COVID-19, and we  also found that genetic 
predisposition to MDD is a causal factor to the severity of 
COVID-19 outcomes. Our findings suggest that MDD patients 

FIGURE 2

Bidirectional Mendelian randomization analysis of MDD and COVID-19 related traits using IVW method. Causal effect estimates are presented as odds 
ratios (OR) with 95% confidence intervals (CI).

FIGURE 3

Distribution of the annotation for all SNPs jointly associated with the results of cross-trait meta-analysis of MDD and severe COVID-19. (A) Distribution 
of functional categories of SNPs in the shared genomic risk loci. (B) Distribution of RegulomeDB score for SNPs in shared genomic loci. (C) The 
minimum chromatin state across 127 tissue and cell types for SNPs in shared genomic loci, with lower states indicating higher accessibility and states 
1–7 referring to open chromatin states.
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form a vulnerable group of severe COVID-19, and they should 
be encouraged to get the vaccine. In addition, screening for MDD 
could be  included in the COVID-19 treatment regimen, as 

improved management may be achieved with add-on psychological 
or psychiatric interventions for subgroups with severer 
depression (30).

FIGURE 4

Distribution of the annotation for all SNPs jointly associated with the results of cross-trait meta-analysis of MDD and hospitalized COVID-19. 
(A) Distribution of functional categories of SNPs in the shared genomic risk loci. (B) Distribution of RegulomeDB score for SNPs in shared genomic loci. 
(C) The minimum chromatin state across 127 tissue and cell types for SNPs in shared genomic loci, with lower states indicating higher accessibility and 
states 1–7 referring to open chromatin states.

FIGURE 5

Distribution of the annotation for all SNPs jointly associated with the results of cross-trait meta-analysis of MDD and COVID-19 infection. 
(A) Distribution of functional categories of SNPs in the shared genomic risk loci. (B) Distribution of RegulomeDB score for SNPs in shared genomic loci. 
(C) The minimum chromatin state across 127 tissue and cell types for SNPs in shared genomic loci, with lower states indicating higher accessibility and 
states 1–7 referring to open chromatin states.
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From the large scale cross-trait meta-analysis, we have found that 
25 genes are directly implicated by the three cross-trait groups (MDD 
and severe COVID-19, MDD and hospitalized COVID-19, MDD and 
COVID-19 infection). These genes include FYCO1, CXCR6, SLC6A20, 
CRHR1, RP11-105 N13.4, DCC, RP1-71H24.1, OAS3, NR1H2, NAPSA, 
IFNAR2, AP000295.9, CTB-191 K22.6, FLT1P1, NSF, ZSCAN31, RP5-
874C20.6, RP5-874C20.3, ZKSCAN4, LINC00649, NKAPL, PGBD1, 
Wnt3, ACTR3P3, GRM5. Most of them have already been 
demonstrated to be novel risk factors for COVID-19 and/or MDD. For 
example, it has been established that Corticotropin-releasing-
hormone receptor 1 (CRHR1), a key modulator of the stress response, 
plays a significant role in the pathophysiology of MDD. Several studies 
have confirmed the link between depression and polymorphisms in 
the Corticotropin-releasing hormone 1 receptor gene (CRHR1:RP11-
105 N13.4) (31, 32). The incidence of severe COVID-19 and 
respiratory diseases were both decreased by an intronic variation in 
CRHR1 (30). ZSCAN31 also plays a positive role in human embryonic 
development. It is relevant to both epilepsy and depression (33), and 
involved in the development of multiple embryonic organs, including 
brain (34). ZSCAN31 is related to PDZ-binding motif (TAZ) 
expression in hepatocellular carcinoma cells, and the targeting of 
ZSCAN31 and TAZ could express a novel therapeutic approach in 
hepatocellular carcinoma cells (35). The selective reduction of Wnt3 
expression in the ventral hippocampus following chronic restraint 
stress (CRS) suggested that Wnt3 plays some roles in CRS-induced 
depression-like behaviors (36). In addition, both NSF and Wnt3 are 
confirmed as putative causal genes for COVID-19 severity (37). Our 
research provides fresh insight into the genetic susceptibility of MDD 
and COVID-19 outcomes. In addition to those novel genes, we also 
found genes (e.g., ACTR3P3) that are not reported previously, and 
they are worth further investigation. Some of these common genes can 
have consequences for treatment regimens for people who have 
both disorders.

Our bidirectional Mendelian randomization study 
demonstrated the causal effects of MDD on COVID-19 related 

traits. We showed for the first time that genetically predicted MDD 
is associated with an increased risk of severe COVID-19 
(OR = 1.832, 95% CI = 1.037–3.236) and hospitalization COVID-19 
(OR = 1.412, 95% CI = 1.021–1.953). This is consistent with the 
findings of large cohort studies that show patients with MDD have 
a higher risk of COVID-19 hospitalization and mortality. Given the 
increased risk of severe COVID-19 and hospitalization COVID-19, 
our findings suggest that patients with MDD should be encouraged 
to get vaccines (3). There are no causal relationships between MDD 
and COVID-19 infection, although shared genetic genes 
were detected.

The results from the genetic and functional annotations indicate 
that the genes mapped from the SNPs detected from cross-trait 
analysis play varied roles in COVID-19 related traits. A low 
RegulomeDB score indicates a higher likelihood of having a regulatory 
function. Notably, the rs199456 has a RegulomeDB score of 1b and its 
CADD score is 15.73. It is shows that the rs199456 may affect 
transcription factor binding and be  deleterious. Through the 
functional annotation analysis, we found that NSF and NR1H2 have 
shown high expression levels in all GTEx dataset tissues, such as 
artery, brain, and colon. Besides, the shared genes between MDD and 
hospitalized COVID-19 were enriched in a variety of tissues, including 
various brain tissues, pituitary, and kidney, all of which are known to 
play significant roles in regulating hormone and enzyme function. 
However, the shared genes between MDD and COVID-19 infection 
were enriched only in colon tissue, and there is no significant 
independent tissue expression for MDD and severe COVID-19.

There are some limitations in this study. Firstly, the majority of the 
data included in the analysis came from individuals of European 
ancestry, and thus reduces the generalizability of our findings to other 
ethnic groups. Secondly, we  only included SNPs that reach the 
genome-wide significance level (p < 5 × 10−8) for the cross-trait meta-
analysis, which can lead to the overlook of some of genetic variants 
with small-to-moderate effect sizes. Finally, we mainly focused on 
genetic mechanisms underlying the comorbidity between MDD and 

FIGURE 6

Shared genes expression heatmaps constructed with GTEx v7 (53 tissues). Genes and tissues are ordered by clusters for the GTEx heatmap. The 
abscissa represents the GTEx v7 tissues and the ordinate represents the genes selected by cross-trait meta-analyses.
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COVID-19, and environment and their interactions with genetic 
variants are not considered.

5. Conclusion

In conclusion, we have detected shared genes between MDD 
and COVID-19 outcomes, and found that MDD is a risk factor of 
severe COVID-19 and hospitalized COVID-19. To the best of our 
knowledge, our study is the first study that has shed light on the 
understanding of the mechanisms leading to the comorbidity 

between MDD and COVID-19. It can open up new pathways for 
future functional validations, disease prevention, and therapeutic 
 treatment.
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FIGURE 7

GTEx tissue enrichment analysis. Red bar represents significant tissue enrichment after Benjamin-Hochberg correction. The abscissa represents the 
GTEx v7 tissues and the ordinate represents the genes selected by cross-trait meta-analyses. (A) GTEx tissue enrichment analysis of MDD and severe 
COVID-19 (both side). (B) GTEx tissue enrichment analysis of MDD and hospitalized COVID-19 (both side). (C) GTEx tissue enrichment analysis of MDD 
and COVID-19 infection (both side).
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