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Background: Though various mechanisms have been proposed for the 
pathophysiology of schizophrenia, the full extent of these mechanisms remains 
unclear, and little is known about the relationships among them. We  carried 
out trans-omics analyses by comparing the results of the previously reported 
lipidomics, transcriptomics, and proteomics analyses; all of these studies used 
common post-mortem brain samples.

Methods: We collected the data from three aforementioned omics studies on 
6 common post-mortem samples (3 schizophrenia patients and 3 controls), 
and analyzed them as a whole group sample. Three correlation analyses were 
performed for each of the two of three omics studies in these samples. In order 
to discuss the strength of the correlations in a limited sample size, the p-values 
of each correlation coefficient were confirmed using the Student’s t-test. In 
addition, partial correlation analysis was also performed for some correlations, to 
verify the strength of the impact of each factor on the correlations.

Results: The following three factors were strongly correlated with each other: 
the lipid level of phosphatidylinositol (PI) (16:0/20:4), the amount of TNC mRNA, 
and the quantitative signal intensity of APOA1 protein. PI (16:0/20:4) and TNC 
showed a positive correlation, while PI (16:0/20:4) and APOA1, and TNC and 
APOA1 showed negative correlations. All of these correlations reached at p < 0.01. 
PI (16:0/20:4) and TNC were decreased in the prefrontal cortex of schizophrenia 
samples, while APOA1 was increased. Partial correlation analyses among them 
suggested that PI (16:0/20:4) and TNC have no direct correlation, but their 
relationships are mediated by APOA1.

Conclusion: The current results suggest that these three factors may provide 
new clues to elucidate the relationships among the candidate mechanisms 
of schizophrenia, and support the potential of trans-omics analyses as a new 
analytical method.
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1. Introduction

Since the invention of omics research, we have been able to 
comprehensively detect and analyze the target molecular species of 
interest, and disease researches including psychiatric region have 
made further progress (1–3). However, there are still many diseases 
whose pathophysiology has not yet been fully elucidated. If the 
comprehensive analysis data obtained from the several omics 
studies can somehow be combined and analyzed more advanced, 
further research development could be  expected, and fully 
understanding of pathophysiology of diseases could be achieved. 
Therefore, we would like to propose the possibility of a trans-omics 
analysis, that combines data from multiple omics studies performed 
on the same samples.

Previous studies using genome-wide association study (GWAS) 
or post-mortem brains of subjects with schizophrenia have reported 
genomics (4–7), transcriptomics (8), proteomics (9), and lipidomics 
(10) findings that characterize schizophrenia. For example, using 
GWAS, Psychiatric Genomics Consortium (PGC) identified 108 
distinct loci associated with schizophrenia (11). Meta-analyses with 
new data have increased the susceptibility loci to 176 (12, 13). 
Development of transcriptome-wide association studies (TWAS) 
enables us to find genes whose expression is genetically correlated 
with schizophrenia (14, 15). In the proteomics study, alterations of 
aldolase C and glial fibrillary acidic protein of astrocytes (16) and 
myelin-associated proteins have been observed (16, 17). Our previous 
lipidomics study using liquid chromatography-electrospray ionization 
mass/mass spectrometry (LC-ESI/MS/MS) and imaging mass 
spectrometry (IMS) revealed that 16:0/20:4-phosphatidylinositol [PI 
(16:0/20:4)] levels specifically decrease in PFC of the brains from the 
patients with schizophrenia (18). Since recent research suggested that 
schizophrenia arise from an interaction between neurodevelopmental 
processes and environmental effects (19), it is essential to approach to 
understand the complex disease as schizophrenia from various aspects.

Previous studies using the post-mortem brain samples have 
suggested various mechanisms of schizophrenia pathogenesis, such as 
dopamine dysfunction (20), glutamate abnormalities (11), interneuron 
dysfunction (21), myelination defects (22), immune system 
disturbance (23), and oxidative stress (24). Though many factors have 
been reported in these different studies, little is known about the 
relationships of these pathways. An analysis in each omics layer 
represents just a slice of the whole complex biological system, which 
cannot indicate the interactions across multiple omics layers (25). 
Moreover, the various results presented by previous studies may 
simply reflect the heterogeneity of schizophrenia (26, 27). Since 
schizophrenia is a spectrum disorder characterized by many 
symptoms (28), and because their pathogenesis may vary from 
symptom to symptom, it is difficult to draw clear conclusions from the 
results of separate studies using different subjects.

In order to solve these problems, trans-omics analysis using the 
several omics data from the same brain samples is effective. Trans-
omics analysis is attracting attention as a means to clarify relationships 
among multiple omics layers and to fill in the gaps between them (25). 
Since the usefulness of trans-omics analysis has been demonstrated in 
the various disease researches (29–31), applying the trans-omics 
approach to schizophrenia is similarly expected to elucidate 
mechanisms of schizophrenia that could not be revealed by each layer 
of omics, and lead to a discovery of the potential new therapeutic 

targets. Here, we conducted the trans-omics analysis using the data of 
our previous lipidomics (18), transcriptomics (32), and proteomics 
(33) studies, performed on the same post-mortem brain samples. 
With the publication of this analysis, we would like to contribute to 
the elucidation of the pathophysiology of schizophrenia, and to 
propose the potential of trans-omics researches.

2. Materials and methods

2.1. Human brain tissue samples

In the previous lipidomics, transcriptomics, and proteomics 
researches (18, 32, 33), BA10 in the prefrontal cortex of the post-
mortem brain was used as a sample. Post-mortem brains of 
schizophrenia patients were from the Post-mortem Brain Bank of 
Fukushima for Psychiatric Research (Fukushima, Japan), and control 
group was from the Choju Medical Institute, Fukushimura Hospital 
(Toyohashi, Japan) (Table 1).

Among those samples, 3 schizophrenia samples and 3 control samples 
were commonly used in these studies. There were no significant variations 
with the backgrounds of individuals between the 3 patients with 
schizophrenia and the 3 control subjects in age and gender. Five of the 6 
samples had a post-mortem interval (PMI) of 17 h or less, and the 
remaining one had a PMI of 48 h. This research, including the use of post-
mortem human brain tissue, was approved by the Ethics Committees of 
Hamamatsu University School of Medicine (the allowance number:14–
179) and complied with the Declaration of Helsinki. All procedures were 
carried out with the informed written consent of the next of kin. All 
patients diagnosed with schizophrenia had fulfilled the diagnostic criteria 
established by the American Psychiatric Association (Diagnostic and 
Statistical Manual of Mental Disorders: DSM-IV).

2.2. Trans-omics analysis

The previous lipidomics (18), transcriptomics (32), and 
proteomics (33) researches identified 2 lipids, 7 differentially expressed 
genes (DEGs), and 14 proteins between schizophrenia and control 
samples, respectively. We  collected the data of these factors in 6 
common post-mortem samples (3 schizophrenia patients and 3 
controls) from each omics research, and performed Dixon’s Q test 
with Q99% to identify outliers in the data of collected factors. As a result 
of Q test, 2 proteins and 4 DEGs (eIF4G2, RUFY3, COL1A2, COL6A2, 
PDGFRB, DDIT4) were determined to contain outliers and these 
outliers were excluded from the analysis.

Then we performed correlation analyses with the 6 samples as a 
whole group sample. In order to perform correlation analyses among 
all factors, three different correlation analyses were performed for 
each of the two of three omics researches in these samples. To calculate 
the correlation coefficients, we used the signal intensities of the lipids, 
the mRNA amounts of the DEGs, and the quantitative signal 
intensities of the proteins obtained from previous omics researches. 
Correlation coefficients were calculated using Excel (Microsoft), and 
scatter plots were made by Kaleidagraph (Hulinks).

In order to discuss the strength of the correlations in a limited sample 
size, the p-values of each correlation coefficient were confirmed using the 
Student’s t-test. We obtained the t-values with the following equation.
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Since the sample size was undeniably small (6 samples, or 4 
degrees of freedom), the α level of the t-test was strictly set at 0.01 with 
two-side, and only correlation coefficients that exceeded this level 
were focused on. In the t-distribution with 4 degrees of freedom, the 
t-value at the α level is t = 4.604. Substituting this into the above 
formula, we obtain r = 0.91719, which means that when the absolute 
value of the correlation coefficient (r) is 0.92 or higher, the value of p 
of the correlation coefficient is below 0.01.

For further analysis, we  performed some partial correlation 
analyses to verify the strength of the impact of each factor on the 
correlations. A partial correlation analysis is controlled analysis for the 
intervention of confounding factors, so that we can distinguish a true 
correlation from spurious correlations. To calculate the partial 
correlation coefficient, the following equation was used.

 

r =
r r r

r r
xy,z

xy xz yz

xz yz

−

− −1 12 2

This rxy,z stands for “the partial correlation coefficient between x 
and y, after removing the effect of z.” Each of x, y, z in this equation 
can indicate any factor from each omics analysis: lipidomics, 
transcriptomics, and proteomics. Since it is difficult to verify the 
statistical significance of the partial correlation coefficients in this 
study, we simply compared the size of the coefficients after calculations.

3. Results

3.1. PI (16:0/20:4) strongly correlated with 
TNC gene

First, we evaluated the relationships between the lipidomics and 
transcriptomics factors. To evaluate the relationships, the correlation 

coefficients were analyzed using the 2 lipids and the 7 DEGs, those 
were identified in the previous researches (18, 32). PI (16:0/20:4) and 
phosphatidylserine(PS) (18:0/22:6) were identified from the 
lipidomics research. PI (16:0/20:4) had 6 (3 schizophrenias and 3 
controls) samples in common with the other two omics researches as 
mentioned above, while PS(18:0/22:6) had only 4 (2 schizophrenias 
and 2 controls) samples in common, because the samples with 
PS(18:0/22:6) were partly different in the previous research. With 4 
samples, or 2 degrees of freedom, r > 0.99 is required to exceed the α 
level of 0.01, so we could not identify any such correlation coefficients 
between PS(18:0/22:6) and other factors.

As a result of our analysis, we  identified a strong positive 
correlation (r = 0.96) between the PI (16:0/20:4) and the TNC gene 
(Figure 1), while no other correlation coefficients exceeded the alpha 
level of 0.01. Among the 7 DEGs, the TNC gene was the only gene that 
decreased with schizophrenia and showed a positive correlation with 
PI (16:0/20:4), while the other 6 DEGs (COL1A2, COL6A2, DDIT4, 
FGF17, GNB3, and PDGFRB) increased with schizophrenia and 
showed a negative correlation with PI (16:0 /20:4). The correlation 
coefficients between these 6 up-regulated DEGs and PI (16:0/20:4) 
remained in the range of −0.26 to −0.56.

In supplemental figures, the signal intensities of these lipids were 
plotted against fragments per kilobase of exon per million (FPKM) of 
the DEGs (Supplementary Figures  1A–N), and their correlation 
coefficients were determined and shown as a heatmap 
(Supplementary Figure 1O).

3.2. TNC gene strongly correlated with 
APOA1 protein and PBXIP1 protein

Second, we  evaluated the relationships between the 
transcriptomics and proteomics factors. To evaluate the relationships, 
the correlation coefficients were analyzed using the 7 DEGs and 17 
proteins, those were identified in the previous researches (32, 33).

As a result of our analysis, the TNC gene and the cytosolic APOA1 
protein showed a strong negative correlation (r = −0.97) (Figure 2A), 
while the TNC gene and the plasma membrane PBXIP1 protein 

TABLE 1 Characteristics of subjects from whom postmortem brain samples were obtained.

Sample Diagnosis Age 
(years)

Sex PMI 
(hours)

DOI 
(years)

Cause of 
death

Used in 
the 

lipidomics 
study*1

Used in the 
transcriptomics 

study*2

Used in the 
proteomics 

study*3

S01 SCZ 68 Female 15.0 40 Chronic renal 

failure

● ● ●

S02 SCZ 71 Male 16.5 48 Pneumonia ● ● ●

S03 SCZ 79 Female 17.0 60 Leukocytoclastic ● ● ●

C01 CON 85 Female 8.0 0 Pneumonia ● ● ●

C02 CON 89 Female 4.0 0 Heart failure ● ● ●

C03 CON 66 Male 42.0 0 Sudden death ● ● ●

*1Samples previously analyzed in the lipidomics study (18).
*2Samples previously analyzed in the transcriptomics study (32).
*3Samples previously analyzed in the proteomics study (33).
PMI: postmortem interval, the time that has elapsed since the person has died. DOI: duration of illness. SCZ: patients diagnosed with schizophrenia. CON: control subjects without 
schizophrenia.
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showed a strong positive correlation (r = 0.92) (Figure 2B). In addition, 
the GNB3 gene and the plasma membrane PRDX3 protein showed a 
strong positive correlation (r = 0.95) (Figure 2C), the GNB3 gene and 
the plasma membrane ALDH4A1 protein showed a strong positive 
correlation (r = 0.94) (Figure 2D), the FGF17 gene and the cytosolic 
APP protein showed a strong positive correlation (r = 0.93) 
(Figure 2E).

In supplemental figures, the quantitative signal intensities of the 
proteins were plotted against fragments per kilobase of exon per 
million (FPKM) of the DEGs (Supplementary Figures 2A–G), and 
their correlation coefficients were determined and shown as a heatmap 
(Supplementary Figure 2H).

For analyses including factors with outliers, analyses were 
conducted separately with the outliers excluded 
(Supplementary Figure  3). Their correlation coefficients did not 
exceed the α level of 0.01 when the outliers were excluded from 
the analyses.

3.3. PI (16:0/20:4) strongly correlated with 
APOA1 protein and PON2 protein

Third, we evaluated the relationships between the lipidomics and 
proteomics factors. To evaluate the relationships, the correlation 
coefficients were analyzed using the 2 lipids and 17 proteins, those 
were identified in the previous researches (18, 33).

As a result of our analysis, the PI (16:0/20:4) and the cytosolic 
APOA1 protein showed a strong negative correlation (r = −0.98) 
(Figure 3A), and the PI (16:0/20:4) and the plasma membrane PON2 

protein showed a strong positive correlation (r = 0.93) (Figure 3B). No 
other correlations exceeded the α level of 0.01.

In supplemental figures, the signal intensities of these lipids were 
plotted against the quantitative signal intensities of the proteins 
(Supplementary Figures 4A,B), and their correlation coefficients were 
determined and shown as a heatmap (Supplementary Figure 4C).

3.4. Partial correlation analyses between PI 
(16:0/20:4), TNC gene, and APOA1 protein

Through the above three correlation analyses, we found that the 
PI (16:0/20:4), the TNC gene, and the APOA1 protein are correlated 
with each other. Then, we performed partial correlation analyses on 
these three factors to determine the strength of their influence on 
each correlation.

Excluding the influence of the APOA1 protein, the partial 
correlation between the PI (16:0/20:4) and the TNC gene was 
comparatively poor (r = 0.11). On the other hand, the partial 
correlations between the PI (16:0/20:4) and the APOA1 protein 
excluding the influence of the TNC gene (r = −0.71), and between the 
TNC gene and the APOA1 protein excluding the influence of the PI 
(16:0/20:4) (r = −0.60) were comparatively strong (Figure 4). These 
results showed that the partial correlation between the PI (16:0/20:4) 
and the TNC gene excluding the influence of the APOA1 protein was 
very weak (r = 0.11) compared to the strength of the original 
correlation (r = 0.96), while the partial correlations between the PI 
(16:0/20:4) and the APOA1 protein, and between the TNC gene and 
the APOA1 protein were not that weak (r = −0.71 and r = −0.60) even 
when the influence of the TNC gene and the PI (16:0/20:4) was 
excluded, respectively.

3.5. Further analyses: Comparison with the 
dose of medication and age of death

Next, we  compared each factor to the dose of antipsychotic 
medication and age of death (AoD). The doses of antipsychotic 
medication were standardized to chlorpromazine equivalents (CPeq), 
regardless of their type. Samples in the control group were analyzed 
as 0 mg/day of CPeq.

As a result of our analysis, the PI (16:0/20:4) and CPeq (r = −0.82), 
the PI (16:0/20:4) and AoD (r = 0.65), the TNC gene and CPeq 
(r = −0.82), the TNC gene and AoD (r = 0.76), the APOA1 protein and 
CPeq (r = 0.79), the APOA1 protein and AoD (r = −0.70), showed 
comparatively strong correlations, though the α level of 0.01 were not 
exceeded. Then we performed partial correlation analyses to evaluate 
the relationship between each factor and Cpeq, excluding the effect of 
AoD. The partial correlations between the PI (16:0/20:4) and CPeq 
(r = −0.74), between the TNC gene and CPeq (r = −0.76), and between 
the APOA1 protein and CPeq (r = 0.69), were all relatively strong.

To confirm that the correlations between each pair of the PI 
(16:0/20:4), the TNC gene, and the APOA1 protein were not spurious 
correlations that merely reflected the correlations with CPeq and AoD, 
we next performed partial correlation analyses that excluded the effects 
of CPeq and AoD. The partial correlations between the PI (16:0/20:4) 
and the TNC gene excluding the influence of CPeq (r = 0.87), between 
the TNC gene and the APOA1 protein excluding the influence of the 

FIGURE 1

Relationship between the lipidomics and the transcriptomics factors. 
The signal intensity of the PI (16:0/20:4) were plotted against the 
RPKM of the TNC gene. All data including other lipids and DEGs are 
available on Supplementary Figure 1. Diamonds: samples from 
schizophrenia patients. Circles: samples from control subjects.
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CPeq (r = −0.93), between the APOA1 protein and the PI (16:0/20:4) 
excluding the influence of the CPeq (r = −0.94), were all strong. Also, 
the partial correlations between the PI (16:0/20:4) and the TNC gene 
excluding the influence of AoD (r = 0.94), between the TNC gene and 
the APOA1 protein excluding the influence of the AoD (r = −0.95), 
between the APOA1 protein and the PI (16:0/20:4) excluding the 
influence of the AoD (r = −0.97), were all strong too.

4. Discussion

In this study, we  combined and analyzed the data from three 
previous omics studies: lipidomics, transcriptomics, and proteomics 
(18, 32, 33). These three studies had six common samples, which 
allowing each omics factors, and found several strong correlations in 
our analyses.

A B

C D E

FIGURE 2

Relationships between the transcriptomics and the proteomics factors. The amounts of the identified proteins were plotted against RPKM of the DEGs. 
All data including other DEGs and proteins are available on Supplementary Figure 2. Diamonds: samples from schizophrenia patients. Circles: samples 
from control subjects.

A B

FIGURE 3

Relationships between the lipidomics and the proteomics factors. The signal intensity of the PI (16:0/20:4) were plotted against the amounts of the 
identified proteins. All data including other lipids and proteins are available on Supplementary Figure 3. Diamonds: samples from schizophrenia 
patients. Circles: samples from control subjects.
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In this study, correlation coefficients were calculated with the 
factors that had been significantly different in previous omics studies, 
so it would seem that correlations would inevitably appear as well, but 
the results were different from expectations. As shown in the results 
of our study, only several pairs showed correlations exceeding the α 
level of 0.01, and most of the combinations did not show strong 
correlations. We make the following assumption about these results. 
The significant difference found in the previous study leads to the 
result that the SCZ and Ctrl groups are distributed apart in the 
scatterplot when the two factors are set on the X and Y axes, as in our 
study, but this does not necessarily mean that they are aligned in a 
straight line and show a correlation. The SCZ and Ctrl groups, which 
are distributed apart, are more likely to appear on the scatterplot as 
two separate lines or show unconnected distributions than to 
be grouped together as a single line in their entirety.

Samples in the SCZ group were provided by a brain bank in 
Fukushima Prefecture, and samples in the Ctrl group were provided 
by a brain bank in Aichi Prefecture. Therefore, samples from different 
institutions were compared. However, both institutions are in Japan, 
and it is thought that there is no difference in the race or living 
environment of the sample donors, and that the difference in 
institutions has little influence on the samples and the analysis. The 
same samples were also used in the three previous omics studies (18, 
32, 33), but the differences in facilities was not a major issue in these 
previous studies either, and it can be assumed that the influence of 
facility differences on the sample and analysis was determined to 
be small.

In the analysis of the lipidomics data and the transcriptomics data, 
we identified the strong correlation between the PI (16:0/20:4) and the 
TNC gene (r = 0.96). The results of the partial correlation analysis 
suggested that the correlation of these two factors might be mediated 
by the APOA1 protein, and their direct correlation was seemed to 
be poor (r = 0.11).

PI (16:0/20:4) is a PI containing palmitic and arachidonic acids as 
fatty acid chains and is found on the cytosolic side of the cell 
membrane. TNC gene encodes the Tenascin C protein, which is a 
member of the tenascin family, comprised of glycoproteins, and highly 
expressed in the extracellular matrix. Tenascin C has interactions with 
certain cell surface receptors such as epidermal growth factor receptor, 
integrins, Toll-like receptor 4, and Wnt pathway. These interactions 
lead to changes in gene transcription, resulting in changes of 

expression of proteins involved in proliferation, migration, adhesion, 
cell survival and apoptosis, differentiation, synaptic activity and 
immune response. Because of its diverse action sites and functions, it 
is difficult to understand all aspects of the functions of Tenascin C. For 
example, studies in animal models of various diseases have reported 
both pro-inflammatory and anti-inflammatory effects of Tenascin C 
(34, 35). In addition, almost no studies have discussed the relationship 
between Tenascin C and psychiatric disorders, making it difficult to 
discuss the significance of reduced Tenascin C in the prefrontal cortex 
(BA10) of schizophrenia patients. If Tenascin C is reduced in the 
dentate gyrus of the hippocampus and the subventricular zone around 
lateral ventricles, as well as in BA10, it may be possible that reduced 
Tenascin C is associated with reduced neurogenesis.

In the analysis of the transcriptomics data and the proteomics 
data, we identified the strong correlations between the TNC gene and 
the APOA1 protein (r = −0.97), and between the TNC gene and the 
PBXIP1 protein (r = 0.92). The results of the partial correlation analysis 
suggested that the correlation of the TNC gene and the APOA1 
protein was comparatively strong (r = −0.60) under excluding the 
influence of the PI (16:0/20:4). This result suggests that the TNC gene 
and the APOA1 protein may have some direct relationship.

APOA1 protein is one of the major components of high-density 
lipoprotein (HDL) and is involved in lipid metabolism. The 
relationship between HDL and schizophrenia has already been 
reported several times. For example, serum low HDL level has been 
reported to be associated with aggression in female patients with 
schizophrenia (36), and elevated serum HDL during the first year 
of drug treatment for schizophrenia has been reported to 
be  associated with less negative symptoms (37). In addition, 
APOA1 in HDL has a variety of functions, including binding to the 
cell surface scavenger receptor class B type I (SR-BI) to activate Src 
and mediate the PI3K, Akt, and MAPK/ERK pathways. 
Consequently, APOA1 activates NO production in vascular 
endothelial cells, activates HIF-1α and VEGF under hypoxia, and 
suppresses HIF-1α and VEGF under inflammation (38, 39). APOA1 
has diverse functions beyond multiple pathways like Tenascin C, 
however, there are no many researches written on the relationship 
between Tenascin C and either APOA1 or HDL, especially in 
psychiatric region. The negative correlation between TNC gene and 
APOA1 protein must have some implications, but at this point it 
is unclear.

FIGURE 4

Partial correlation analyses between the PI (16:0/20:4), the TNC gene, and the APOA1 protein. The partial correlation between the PI (16:0/20:4) and 
the TNC gene, excluding the influence of the APOA1 protein, was comparatively poor (r = 0.11). The partial correlations between the PI (16:0/20:4) and 
the APOA1 protein excluding the influence of the TNC gene (r = −0.71), and between the TNC gene and the APOA1 protein excluding the influence of 
the PI (16:0/20:4) (r = −0.60) were comparatively strong. Diamonds: samples from schizophrenia patients. Circles: samples from control subjects.

https://doi.org/10.3389/fpsyt.2023.1145437
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Sano et al. 10.3389/fpsyt.2023.1145437

Frontiers in Psychiatry 07 frontiersin.org

PBXIP1 protein is a suppressive regulator of pre-B-cell 
leukemia transcription factors, and it also interacts with estrogen 
receptor α and β (ERα, ERβ). Estradiol is used as adjunctive 
treatment in female schizophrenia patients, and has been reported 
to improve their positive and negative symptoms (40, 41). It is also 
suspected to be  the cause of the gender differences of 
schizophrenia and has attracted attention for its involvement in 
the pathophysiology of schizophrenia. Besides, another research 
showed that the Estradiol receptors ERα and ERβ improve 
hippocampal memory function by activating the ERK pathway, 
while GPER, a G protein-coupled estrogen receptor, improves 
hippocampal memory function by activating the JNK pathway 
(42). TNC gene PBXIP1 protein were both decreased in 
schizophrenia in this analysis, and it might be possible that both 
were decreased in association with reduced hippocampal function 
and neurogenesis.

In the analysis of the lipidomics data and the proteomics data, 
we identified the strong correlations between the PI (16:0/20:4) 
and the APOA1 protein (r = −0.98), and between the PI (16:0/20:4) 
and the PON2 protein (r = 0.93). The results of the partial 
correlation analysis suggested that the correlation of the PI 
(16:0/20:4) and the APOA1 protein was comparatively strong 
(r = −0.71) under excluding the influence of the TNC gene. This 
result suggests that the PI (16:0/20:4) and the APOA1 protein may 
have some direct relationship.

PON2 protein is expressed throughout the body, including the 
brain, and has antioxidant properties. In the brain, PON2 is 
particularly strongly expressed in the dopaminergic nervous 
system, such as the striatum, the nucleus accumbens, and the 
substantia nigra (43, 44). PON2 prevents neurodegeneration by 
providing a protection against oxidative stress-mediated 
neurotoxicity. At the plasma membrane, PON2 is a transmembrane 
protein with its enzymatic domain facing the extracellular 
compartment, while it is localized at the perinuclear region, the 
endoplasmic reticulum, and the mitochondria, in the cytoplasm. 
Plasma membrane PON2 protein serves to prevent peroxidation 
of membrane components, primarily lipids. Based on this, it 
appears that the correlation between PI (16:0/20:4) and PON2 
protein is due to the accelerated peroxidation of plasma membrane 
lipids caused by the decrease of PON2, which leads to a decrease 
of PI (16:0/20:4) in the plasma membrane. In addition, 
“antioxidant properties” and “localization to the dopaminergic 
nervous system” of PON2 protein mean that it may be related to 
both the oxidative stress hypothesis and the dopamine hypothesis, 
which are the major pathophysiological hypotheses of 
schizophrenia, and may attract attention to PON2 protein as a 
new research/therapeutic target.

In the partial correlation analyses, we  identified that the 
partial correlation coefficients between each pair of the PI 
(16:0/20:4), the TNC gene, and the APOA1 protein, were still 
strong under excluding the influence of AoD and CPeq 
(0.87 ≤ |r| ≤ 0.97). These partial correlation coefficients 
indicated that AoD and CPeq had only little influence on the 
correlations between each pair of the PI (16:0/20:4), the TNC 
gene, and the APOA1 protein. In addition, the partial correlation 
coefficient between the PI (16:0/20:4) and the TNC gene 
excluding the influence of the APOA1 protein, was poorer than 

those excluding the influence of AoD and CPeq. The results for 
the other combinations were same, of course. These analyses 
indicated that the correlations between each pair of the PI 
(16:0/20:4), the TNC gene, and the APOA1 protein, were more 
strongly influenced by the rest one of these factors than by AoD 
and CPeq.

To summarize so far, we  identified the certain correlations 
between the factors which extracted from different omics studies, 
using same samples of Schizophrenia post-mortem brains. 
Particularly, the correlations between the PI (16:0/20:4) and the 
APOA1 protein, and between the TNC gene and the APOA1 
protein were strong and robust. However, while we  have 
demonstrated these correlations, we  have not been able to 
determine what these correlations mean and how they relate to the 
pathophysiology of schizophrenia. But that is not important this 
time. It is a great achievement that we were able to identify the 
aforementioned interesting correlations and propose new targets 
for future research, from a small sample of only six cases. This 
kind of approach to trans-omics analysis has the potential to 
produce certain results even with a small number of samples as in 
this case. It is of course useful in regions where researches have 
already progressed, but it can also be  useful in regions where 
researches are difficult to progress due to a small number of cases 
or reports. We would like to propose the possibility of trans-omics 
analysis as a new method to overcome the problem of “sample 
size,” which always stands as a practical limitation against the 
verification of scientific significance.

5. Conclusion

We performed the trans-omics analyses, using the data extracted 
from our previous omics researches: lipidomics, transcriptomics, and 
proteomics. These previous researches commonly used 6 same post-
mortem brain samples of Schizophrenia patients and controls. 
We identified the certain strong correlations, and particularly the 
correlations between each pair of the PI (16:0/20:4), the TNC gene, 
and the APOA1 protein seemed to be  strong. We  would like to 
propose the possibility of trans-omics analysis as a new method to 
overcome the problem of sample size and explore new research and 
therapeutic targets.
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