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Introduction: Based on previous research on electroconvulsive therapy (ECT) 
we have proposed a model where disruption, potentiation, and rewiring of brain 
networks occur in sequence and serve as the underlying therapeutic mechanism 
of ECT. This model implies that a temporary disturbance of neuronal networks 
(disruption) is followed by a trophic effect (potentiation), which enables the rewiring 
of neuronal circuits to a more euthymic functioning brain. We hypothesized that 
disruption of neuronal networks could trigger biochemical alterations leading 
to a temporary decrease in N-acetylaspartate (tNAA, considered a marker of 
neuronal integrity), while choline (a membrane component), myo-Inositol (mI, 
astroglia marker), and glutamate/glutamine (Glx, excitatory neurotransmitter) 
were postulated to increase. Previous magnetic resonance spectroscopy studies, 
reporting diverse findings, have used two different referencing methods - creatine 
ratios and tissue corrected values referenced to water – for the quantification 
of brain metabolites. Changes in creatine during ECT have also been reported, 
which may confound estimates adopting this as an internal reference.

Methods: Using MR spectroscopy, we  investigated 31 moderately to severely 
depressed patients and 19 healthy controls before, during, and after ECT or at 
similar time points (for controls). We tested whether biochemical alterations in 
tNAA, choline, mI, and Glx lend support to the disrupt, potentiate, and rewire 
hypothesis. We  used both creatine ratios and water-scaled values for the 
quantification of brain metabolites to validate the results across referencing 
methods.

Results: Levels of tNAA in the anterior cingulate cortex decreased after an ECT 
treatment series (average 10.6 sessions) by 6% (p = 0.007, creatine ratio) and 3% 
(p = 0.02, water referenced) but returned to baseline 6 months after ECT. Compared 
to after treatment series tNAA levels at 6-month follow-up had increased in both 
creatine ratio (+6%, p < 0.001) and water referenced data (+7%, p < 0.001). Findings 
for other brain metabolites varied and could not be validated across referencing 
methods.

Discussion: Our findings suggest that prior research must be  interpreted with 
care, as several referencing and processing methods have been used in the past. 
Yet, the results for tNAA were robust across quantification methods and concur 
with relevant parts of the disrupt, potentiate, and rewire model.
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1. Introduction

Electroconvulsive therapy (ECT) is a therapy for depression that 
is mainly used in non-responders to antidepressant pharmacotherapy 
and in patients requiring fast and effective symptom alleviation (1). 
The treatment is performed by placing electrodes on the patient’s 
scalp and applying an electrical current to the brain, inducing a 
seizure. Although it is well established that ECT is an effective 
treatment for major depressive disorder (MDD) (2) the 
neurobiological underpinnings of the clinical response are still 
being investigated.

MR spectroscopy (MRS) is a practical and non-invasive 
MR-technique that allows investigation of the brain’s neurobiology 
in vivo. By exploiting the differences in resonance frequency 
between molecules certain metabolites can be studied. This gives a 
unique opportunity to study the neurobiological underpinnings of 
ECT. Most commonly the hydrogen nucleus (a single proton) is 
used as origin for the MRS signal, giving the 1H-MRS spectrum. 
The total received signal, hence the estimated amplitude and area 
under the curve, will depend on several factors, including field 
strength, relaxation effects, and coil properties and loading; several 
of these are difficult to reliably control for. As such, a stable 
reference signal is commonly adopted to scale the amplitude and 
correct for these unknown factors. Though processing pipelines 
vary, two main referencing methods are used: the metabolite ratio 
relative to total creatine (/tCr), or water referenced values (/H2O). 
Both have been used in previous ECT research (3). Since variation 
in creatine itself has been shown to occur following ECT (4) 
we  have explored both creatine ratios and water referenced 
metabolite levels. When examining neurobiological underpinnings 
of ECT, several molecules are of interest - such as N-acetylaspartate 
(NAA), choline (Cho), myo-Inositol (mI), and glutamate/
glutamine (Glx).

The disrupt, potentiate, and rewire (DPR) hypothesis (5) 
suggests that ECT leads to temporary disruption of neuronal 
networks, followed by a trophic effect (potentiation), which enables 
the rewiring of neuronal circuits to a more euthymic functioning 
brain. It is assumed that in the depressed state, before ECT, the brain 
has a low plastic potential [as shown in both animal and post-
mortem studies, summarized by Ousdal (5)], and it is hypothesized 
that the temporary disruption created by ECT clinically is seen as 
post-ictal confusion and, for some, as reduced cognitive 
performance. This is supported by a meta-analysis which found 
reduced cognitive functioning 4 days after ECT, but a return to 
baseline levels or better was seen after 15 days (6). On a 
neuroradiological level, we hypothesize that disruption is seen as 
metabolite alterations (3), altered functional connectivity (7), and 
changed white matter integrity (8). Responding to this disruption, 
temporary upregulation of neuroplasticity is seen (“potentiate”), 
reflected in both metabolite changes and increased gray matter 
volume. During or following this neuroplastic upregulation, 

previously maladaptive depressive networks may rewire to 
non-depressed states. Although MRS cannot test the complete 
DPR-hypothesis, we explored whether metabolite levels measured 
over the ECT treatment course are as expected under the framework 
of the DPR- hypothesis.

NAA is the most abundant metabolite in the 1H-MRS spectrum 
of the healthy brain. Decreased levels of NAA are seen in brain 
injury and disease, and in 1H-MRS, NAA is considered a marker of 
neuronal integrity (9, 10). 1H-MRS total NAA values (tNAA) are 
comprised of NAA and closely resonating NAAG, which only 
amounts to a small part of the signal intensity (10). Maddock and 
Buonocre have summarized findings for depression, where lower 
NAA levels have been seen in bipolar depression compared to 
controls, but not in unipolar depression (11). Several studies have 
also found lower NAA levels after ECT treatment, as summarized 
in a recent review (3). NAA could serve as a potential marker of the 
temporary disruption in the disrupt-potentiate and rewire 
hypothesis. Equivalent to this theory, NAA decrease has been seen 
to reverse after successful treatment in epilepsy (12).

Choline is primarily a building block for cell membranes. The 
choline peak reported in 1H-MRS at 3.2 ppm consists of several 
choline compounds: glycerophosphocholine (GPC), phosphocholine 
(PCh), and free choline, often reported together as total choline 
(tCho). An increase in choline may reflect both choline synthesis 
and membrane damage, hence it must be interpreted with care (13). 
Reviews report increased levels of choline in depression, primarily 
in the basal ganglia (11, 14), and attribute this to increased 
membrane turnover. In both a review of depression (15), and an 
ECT specific review (3), an increase in choline has also been found 
comparing pre-treatment to post-treatment values. In relation to 
the DPR-hypothesis, an increase in choline could reflect both 
disruption (increase due to affection of cell membranes) as well  
as potentiation and rewiring (increase due to increased 
membrane turnover).

Primarily three roles are known for mI: as a lipid component 
for biomembranes, part of an intracellular second messenger 
system (releasing calcium), and as an osmolyte (10). The 
antidepressant and mood stabilizer lithium affects Ins levels by 
blocking its resynthesis. It has therefore been hypothesized that 
high Ins levels are part of the pathogenesis in bipolar disorder (16, 
17), but no consistent Ins alterations have been shown in bipolar 
patients (11). In depressed patients, 1H-MRS investigations have 
not shown higher levels of Ins compared to controls, but rather 
decreased levels (18–20), which increase with pharmacotherapy 
(18). Additionally, orally administered Ins has been studied as a 
potential treatment for depression (21), and a meta-analysis (22) 
suggested that depressed patients might benefit from Ins. In 1H-
MRS, mI is proposed as a marker for glia cell proliferation (23), 
and is widely studied as such (16), though this interpretation is 
disputed - as neural cell lines also have displayed high levels of mI 
(24). In light of the DPR hypothesis, an increase in mI could reflect 
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the rewiring and potentiation, due to glial cell proliferation after 
disruption. In ECT patients, one investigation has shown an 
increase of mI in the anterior cingulate cortex (ACC) after 
treatment (25).

Glutamate (Glu) is the main excitatory neurotransmitter in the 
brain; measured with 1H-MRS at 3T it is difficult to distinguish from 
Glutamine (Gln), hence the two are often reported together as Glx – 
wherein Glu is usually the dominant component due to its 
substantially higher concentration. Its concentration has been 
measured to be  lower in depressed subjects compared to healthy 
controls (11, 14). Both neurostimulation and medication have been 
seen to increase Glu levels in depressed patients (11). However, 
excessive levels of extracellular Glx are neurotoxic (10). Within the 
theoretic framework of the DPR hypothesis, excessive Glu release 
during seizures could be a factor mediating neuronal disruption and 
thus a change in Glx levels would be expected to be the opposite of a 
change in tNAA levels.

The total Creatine (tCr) signal in 1H-MRS originates from 
Creatine (Cr) and phosphocreatine (PCr). tCr is often assumed to 
be  somewhat stable and is therefore often chosen as an internal 
concentration reference. However, Cr concentration in the brain may 
be  related to neural activity and/or vascularization and has been 
shown to vary with intake (26) and in certain conditions and 
pathologies (27–30), therefore its role as a reference metabolite has 
been criticized (10, 31). One previous 1H-MRS investigation in ECT 
patients has shown an increase in Cr in the ACC related to ECT (4). 
Both creatine ratios and water referenced metabolites have been used 
in previous ECT literature, but these referencing methods have not yet 
been compared in this clinical setting.

1.1. Aim and hypotheses

In this investigation, we aimed to investigate metabolite changes 
during ECT treatment and relate them to the DPR hypothesis. 
Specifically, we hypothesized that tNAA levels decrease after ECT 
treatment, due to temporary disruption of neuronal integrity. At 
6-month follow-up, tNAA levels return to baseline levels or higher. 
There is a negative correlation between tNAA and everyday memory 
impairment. tCho levels increase after ECT due to temporary 
disruption of cell membranes. This increase from baseline is no longer 
seen at 6-month follow-up. There is a positive correlation between 
tCho rise and everyday memory impairment. Baseline mI levels are 
lower in patients compared to controls and increase during treatment. 
After the ECT series, and at follow-up, mI levels remain increased for 
responders indicating potentiation and rewiring. Glx levels at baseline 
are lower in patients compared to controls. Glx levels increase with 
ECT and remain increased at 6-month follow-up but have their peak 
levels after ECT treatment series, possibly as a part of the mechanism 
behind disruption.

2. Materials and methods

This study was approved by the Regional Committee for Medical 
and Health Research Ethics, REC South East, Norway (2013/1032). 
The protocol of this study has been published previously (32); here 
we summarize key points relevant to the analyses in the present work.

2.1. Study participants and assessments

Patients referred to ECT treatment at Haukeland University 
hospital, Norway, between September 2013 to September 2018 were 
asked to participate in the study. A Montgomery and Aasberg 
depression rating scale (33) (MADRS) score of minimum 25 and age 
over 18 years was required to qualify for participation. To control for 
time effects, age and sex-matched healthy controls (HC) were 
recruited from the general population in the same area as patients 
through advertising in public areas. HC could not have a history of 
psychiatric disease, and MADRS score was taken to document that 
HC scored below the clinical range (<7). Written informed consent 
was provided by all participants. The responsible clinician (for 
patients) or research assistant (for HC) evaluated eligibility for 
inclusion and the ability to give written informed consent. Subjects 
who were not able to give informed consent, who were pregnant, or 
who could not undertake the MRI investigation were excluded. 
Patients who had undergone ECT treatment during the last 
12 months were also excluded. Throughout the treatment course, 
depression severity was monitored by MADRS. MADRS scores for 
study purpose were acquired <7 days before participation in the 
study, and at the same timepoint as MR examinations after treatment 
(TP3) and at 6-month follow-up (TP4). Remission was defined as a 
≥50% reduction of baseline MADRS score and MADRS ≤10. The 
everyday memory questionnaire (EMQ-28) (34, 35) is a 
comprehensive, subjective evaluation of everyday memory and was 
used to assess subjective effects on cognition. The EMQ-28 assesses 
everyday memory with 28 statements of forgetfulness and their 
occurrence, ranging from 0 (none) to 8 (more than once a day) 
leading to a score of maximum 224, indicating the most 
severe forgetfulness.

2.2. ECT procedure

Right unilateral (RUL) electrode placement ECT was performed 
using a Thymatron System IV (Somatics LLC, Venice, FL, USA). The 
initial stimulus charge was calculated by an age-based algorithm, 
where the patient’s age in years x5 ≅ stimulus charge in mC. The 
stimulus was increased during the treatment series due to increase in 
seizure threshold. All patients were administered anesthesia 
(thiopental) and neuromuscular blockade (succinylcholine). All 
patients were hyperoxygenated before and during anesthesia.

2.3. MR-acquisition and data analysis

Patients were scanned at four timepoints: 1–2 h before treatment 
(Baseline), 1–2 h after first treatment (TP2), 7–14 days after completion 
of ECT series (TP3), and 6 months after ECT series (TP4). HC were 
scanned at similar time intervals as patients. The study flowchart can 
be seen in Figure 1.

Imaging and MRS were performed on a 3 Tesla GE Discovery 
750 scanner system (Waukesha, WI, USA). A 32-channel head coil 
was used. For voxel localization, a 3D T1 weighted fast spoiled 
gradient echo (FSPGR) sequence was used (echo time = 2.9 ms, 
repetition time = 6.7 ms, inversion time = 600 ms, flip angle 8 
degrees, field of view = 25.6, matrix size 256×256, giving an 
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isotropic voxel size of 1x1x1 mm). The single voxel point resolved 
spectroscopy (SV-PRESS) voxel was placed in the anterior 
cingulate cortex (ACC), angled to follow the foremost slope of the 
corpus callosum (Figure 2). Voxel placement alternated between 
left and right side for every other patient to balance for 
lateralization effects, as right unilateral ECT creates an 
anatomically uneven electrical field and volume change (37). 
Voxel size was 2×2×2 cm (8 mL). Parameters for SV-PRESS were: 
echo time = 35 ms, repetition time = 1,500 ms, 128 scans, spectral 

width = 5,000 Hz, number of spectral points = 4,096 points, water 
suppression method: CHESS. Post-processing, voxel segmentation, 
and tissue correction were performed using the Osprey software 
version 2.4.0 (36). The acquired FSPGR acquisition was segmented 
into CSF, white matter, and gray matter, before adjusting the 
metabolite concentration to the proportion of gray and white 
matter in the voxel (38). Metabolite concentrations are reported 
in institutional units (IU) and presented both as creatine ratios 
and water referenced values. For further details, see the  

FIGURE 1

Study flowchart. Forty patients and 20 HC were enrolled in the study. Due to missing data, the number of analyzed participants at each timepoint 
varied as indicated in the figure.

FIGURE 2

Output from Osprey (36). (A) Voxel placement in the ACC. (B) Voxel segmentation into gray matter, white matter, and CSF. (C) Mean spectrum of all 
patients at all timepoints for visualization of overall quality. Quality metrics: SNR: 48 ± 7, linewidth 5.72 ± 1.08 Hz, mean relative amplitude residual 2.86%.
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table for minimum reporting standards in MRS (39) 
(Supplementary material S1). All spectra were visually inspected 
by one reader [VJE], and aberrant spectra were judged for further 
consensus evaluation by one additional reader [LE or ARC]. If one 
or more of the metabolite concentration estimates for tNAA, 
tCho, Glx, mI and tCr were considered extreme outliers (>the 3rd 
quartile +3 interquartile ranges or < the 1st quartile – 3 
interquartile ranges) spectra were flagged and inspected 
individually. Flagged spectra were excluded if CSF proportion (for 
water referenced data) seemed incorrect based on visual 
inspection of the FSPGR acquisition compared to the proportion 
given in the automatic segmentation. Figure 2 shows the mean 
1H-MRS-spectrum for patients. Metabolite concentrations are 
reported as mean ± SD.

2.4. Statistical analyses

Statistical analyses were performed using the R statistical software, 
version 4.1.3 (40). All analyses were performed both on the creatine 
ratio and the water referenced metabolite concentration estimates. 
Baseline differences between groups were investigated using 
two-sample’s t-tests (for age, voxel composition, metabolite levels) or 
Pearson chi squared tests (for sex).

For longitudinal analyses of patients’ 1H-MRS data the nlme 
package (41) was used to perform linear mixed effects analyses. 
Timepoint, sex, age, number of ECT treatments and remission 
were entered as fixed effects, while participant ID was entered as 
random effect. The contrast package (42) was used for time-
specific comparisons.

Treatment effect and side effect, monitored using MADRS and 
EMQ-28 respectively, were explored with linear models, comparing 
delta change between baseline and after treatment. Sex and age were 
set as fixed effects. Correction for multiple testing was 
not performed.

3. Results

3.1. Study group characteristics and 
participation

Forty patients and 20 HC participated in the study. Due to a 
scanner update and missing MR data the total number of participants 
analyzed in this paper was 31 patients and 19 HC, but not all 
participants had data from all timepoints. This resulted in 25 patients 
(17 HC) at baseline, 24 patients (16 HC) at TP2, 24 patients (16 HC) 
at TP  3 and 21 patients (17 HC) at TP4. Because of incorrect 
segmentation, data from 1 patient was removed after visual inspection. 
For two patients, a new treatment series was required within 6 months 
and the follow-up was rescheduled 6 months after start of the second 
ECT series. For HC, 11 of 19 participants were female, age ranged 
from 21–69 years (mean 42.26, SD = 15.69). Patient characteristics are 
given in Table  1. There were no significant differences between 
patients and HC when comparing age (t(48) = 0.66, p = 0.29, two 
samples t-test) and sex (χ2 (0, N = 52) = 1, p = 1 Pearson chi squared 
test). Healthy controls displayed no consistent changes in metabolite 
concentrations across referencing methods (statistical models and 

results are given in the Supplementary material S1). Results for 
patients are listed below.

3.2. Clinical outcome and side effect

Patients’ MADRS scores decreased from baseline [34.1 (5.2)] to 
after ECT-series (TP3) [15.6 (8.9), t(24) = 8.94, p < 0.001, d = 1.79] in 
all but two patients and remained lower compared to baseline at 
6-month follow-up in 20 out of 21 patients (TP4) [14.2 (8.8.), 
t(18) = 8.29, p < 0.001, d = 1.90] computed by paired samples t-tests. 
EMQ-28 scores did not differ from baseline 119 (35) to after 
ECT-series 111 (29) or to 6-month follow-up 115 (37).

3.3. Change in metabolite concentrations

For creatine, linewidth (full width at half maximum, FWHM) was 
in the range of 4.22–10.74 [5.72 ± 1.08 Hz (patients) 5.46 ± 0.67 (HC)] 

TABLE 1  Demographic and clinical characteristics of 31 patients referred 
to ECT.

Variable Patients

Mean age in years, min-max (SD) 45.1, 22–77 (13.8)

Mean number of ECT treatments in 

series, min-max (SD)

10.6, 3–18 (3.9)

Mean duration of current depressive 

episode in weeks, min-max (SD)

42.8, 3–150 (40.2)

Number of remitters* 12

Medication

Antidepressants 12

Antipsychotics 24

Lithium 5

Benzodiazepines 0

Diagnosis for referral to ECT

Unipolar, psychotic (F32.3/33.3) 4

Unipolar non-psychotic (F33.1/33.2) 21

Bipolar, psychotic (F31.2/31.5) 0

Bipolar, non-psychotic (F31.3/13.4) 6

Mean charge of ECT in mC, min-max 

(SD)

First treatment 226.1, 76.4–404.1 (82.1)

Last treatment 252.0, 100.4–612.1 (110.16)

Baseline TP3 TP4

Number of 

participants (female)

25 (14) 24 (11) 21 (10)

Mean MADRS (SD) 34.1 (5.2) 15.6 (8.9) 14.2 (8.8)

Mean EMQ-28 (SD) 119 (35) 111 (29) 115 (37)

Number of 

remitters*

10 10 10

Upper part: patients at all timepoints, lower part: patients stratified by timepoint. 
*Remission: ≥50% reduction of baseline MADRS score + MADRS ≤ 10.
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and the signal to noise ratio (SNR) was 22.84–65.53 [48 ± 7 (patients), 
49 ± 6 (HC)]. The creatine ratio and water referenced metabolite 
concentrations for patients and controls at baseline and the percentage 
change to TP3 for patients are listed in Table 2. For patients, there was 
no significant change in creatine (tCr/H2O) over time, tested with 
linear mixed effects models (all p > 0.6).

3.3.1. tNAA
tNAA/tCr levels at baseline differed between patients 1.41 IU 

(0.12) and HC 1.51 IU (0.11) computed by a two samples t-test 
t(40) = −2.85, p = 0.007, d = −0.90. Likewise, tNAA/H2O levels were 
lower in patients 16.52 IU (0.94) compared to HC 16.70 IU (0.78), but 
this was not significant: t(40) = −0.64, p = 0.52. Longitudinal changes 
in patients were investigated with a mixed effects model, where 
timepoint affected both tNAA/tCr levels [t(60) = −2.79, p = 0.007] and 
tNAA/H2O levels [t(60) = −2.50, p = 0.02] in patients at TP3, resulting 
in a decrease compared to baseline levels. There were no significant 
changes in tNAA/H2O or tNAA/tCr from baseline to any other 
timepoint. When comparing TP3 to TP4 in the same model tNAA/

tCr-levels increased [t(60) = −4.25 p < 0.001], for tNAA/H2O: 
[t(60) = −4.66, p < 0.001]. See Figure  3 for a visualization of 
longitudinal tNAA levels in patients and HC.

Linear models for tNAA/tCr and tNAA/H2O levels predicting 
MADRS or EMQ-28 were not significant for TP1, TP3 or the change 
between the two. tNAA/tCr and tNAA/H2O levels at TP3 did not 
differ between patients who had the voxel on the left versus on the 
right side compared by a two samples t-test.

3.3.2. tCho
tCho/H2O was significantly lower in controls [2.84 IU (0.27)] 

compared to patients [3.17 IU (0.47)], t(40) = 2.56, p = 0.01, but this was 
not seen for tCho/Cre. There were no significant changes in tCho/tCr 
or tCho/H2O at any timepoint when compared to baseline, investigated 
with linear mixed effects models. There were no significant changes in 
tCho/H2O or tCho/tCr from baseline to any other timepoint, tested 
with a linear mixed effects model. Tested with a linear model there was 
no association between tCho/tCr or tCho/H2O and EMQ-28 at 
baseline or when comparing the change from before to after treatment.

TABLE 2  Overview of metabolite concentrations.

Group differences at baseline

Creatine ratio (IU) Water scaled (IU)

Patients HC p % t(df) n Patients HC p % t(df) n

tNAA 1.41 (0.12) 1.51 

(0.13)

0.007 6.8 t(40) = −2.85 50 tNAA 16.52 (0.94) 16.70 

(0.77)

0.52 1.2 t(40) = −0.64 50

tCho 0.29 (0.04) 0.28 

(0.03)

0.26 3.5 t(40) = 1.14 50 tCho 3.17 (0.47) 2.84 

(0.27)

0.01 11.0 t(40) = 2.56 50

mI 0.69 (0.08) 0.66 

(0.09)

0.36 4.4 t(40) = 0.93 50 mI 7.57 (1.09) 6.85 

(0.91)

0.03 10.0 t(40) = 2.25 50

Glx 1.29 (0.16) 1.24 

(0.18)

0.35 4.0 t(40) = 0.94 50 Glx 16.18 (1.60) 14.66 

(1.79)

0.006 9.7 t(40) = 2.88 50

Longitudinal changes in patients

Creatine ratio (IU) Water scaled (IU)

Baseline TP3 p % t(df) n Baseline TP3 p % t(df) n

tNAA 1.41 (0.12) 1.33 

(0.11)

0.007 −5.8 t(60) = −2.79 31 tNAA 16.52 (0.94) 16.06 

(1.10)

0.02 −2.7 t(60) = −2.5 31

tCho 0.29 (0.04) 0.29 

(0.03)

0.36 0 t(40) = −0.93 31 tCho 3.17 (0.47) 3.17 

(0.36)

0.54 −0.1 t(60) = 0.62 31

mI 0.69 (0.08) 0.68 

(0.08)

0.71 1.5 t(60) = −0.38 31 mI 7.57 (1.09) 7.71 

(1.25)

0.97 1.9 t(60) = 0.04 31

Glx 1.29 (0.16) 1.22 

(0.19)

0.19 −5.6 t(60) = −1.32 31 Glx 16.18 (1.60) 15.75 

(2.65)

0.42 −2.5 t(60) = −0.82 31

TP 3 to 4 in patients

Creatine ratio (IU) Water scaled (IU)

TP3 TP4 p % t(df) n TP3 TP4 p % t(df) n

tNAA 1.33 

(0.11)

1.41 

(0.13)

<0.001 5.8 t(60) = −4.25 31 tNAA 16.06 

(1.60)

17.16 

(1.07)

<0.001 6.9 t(60) = −4.66 31

P, patients; HC, healthy controls; p, value of p; %, percentage change or difference between groups; tNAA, total N-acetylaspartate; tCho, total choline; mI, myo-Inositol; Glx, 
glutamate + glutamine.
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3.3.3. mI
Both mI/tCr and mI/H2O levels were higher in patients [7.57 IU 

(1.09), water referenced] compared to controls [6.85 IU (0.91), water 
referenced] at baseline, but findings were only significant for mI/H2O 
[t(40) = 2.25, p = 0.03]. There were no significant changes in mI/H2O 
or mI/tCr from baseline to any other timepoint, tested with a linear 
mixed effects model. Linear models for mI/tCr and mI/H2O levels 
predicting MADRS were not significant for TP1, TP3 or the change 
between the two.

3.3.4. Glx
Patients had higher baseline Glx/H2O levels [16.18 IU (1.60)] than 

controls [14.66 IU (11.79)], t(40) = 2.88, p = 0.006. The same trend was 
found for Glx/tCr levels: patients [1.29 IU (0.16)], controls [1.24 IU 
(0.18)], however this was not significant using a two samples t-test 
[t(40) = 0.94, p = 0.35]. A linear mixed effects model showed no impact 
of timepoint on Glx/tCr or Glx/H2O.

4. Discussion

In this 1H-MRS study, we investigated creatine ratios and water 
referenced estimates of tNAA, tCho, mI, and Glx in 31 patients 
receiving ECT and 19 healthy controls. Patients were scanned at 
baseline, after the first ECT, after the ECT treatment series, and at 
six-month follow-up. HC, not receiving ECT, were scanned at similar 
time points. Our findings showed that ECT causes a reversible 

decrease in tNAA. Though the direction of the change in metabolite 
concentration mainly was the same across referencing methods (either 
increase, decrease, or no change) neither tCho, mI, or Glx displayed a 
significant change across referencing methods. No changes were 
found in any of the metabolites at the timepoint 2 h after the first ECT 
treatment. Possible explanations for this could be that: one single ECT 
treatment is not sufficient to induce metabolite changes on a level 
detectable with MRS or delay in detectable metabolite turnover. In the 
following paragraphs, we  interpret our findings according to the 
DPR-hypothesis.

4.1. Disruption

We hypothesized that MRS correlates of disruption could be seen 
as a decrease in tNAA (a marker of neuronal integrity), an increase in 
tCho (membrane component), and an increase in Glx (mainly 
glutamate, excitatory neurotransmitter). We  found a significant 
decrease in the patients’ tNAA levels from baseline to after the ECT 
series, in both creatine ratio and water referenced data. This finding is 
concordant with findings from several previous studies (4, 43–47).

Choline is present in cell membranes and has previously been 
reported to increase after ECT (47–49). An increase in choline during 
and after ECT treatment, especially if NAA decrease is also seen, is 
often understood as disruption of cell membranes. In our sample, the 
longitudinal change in choline was not consistent across quantification 
methods, and neither method yielded statistically significant change. 

FIGURE 3

Boxplot of change in tNAA levels for patients (red) and HC (blue). Top panel: creatine ratio of tNAA. Lower panel: Water referenced tNAA values.

https://doi.org/10.3389/fpsyt.2023.1155689
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Erchinger et al.� 10.3389/fpsyt.2023.1155689

Frontiers in Psychiatry 08 frontiersin.org

We  did not find a change in Glx concentration during the ECT 
treatment series. Contrary to the findings summarized in two reviews 
(11, 14) and our hypothesis, but in accordance with another study 
(50), we  could not find any group differences when comparing 
patients and healthy controls at baseline. However, Glx is a pooled 
measure of glutamate and glutamine, two metabolites that are 
challenging to distinguish with a scanner strength of 3T. Hence, a 
subtle change in glutamate may not necessarily be  reflected in 
our results.

4.2. Potentiation and rewiring

An increase in mI (glial proliferation marker) was hypothesized 
to coincide with the alleviation of depressive symptoms and would 
support potentiation (increased plasticity) and rewiring. Similarly, 
an increase in NAA or a return to baseline after the first decrease 
(disruption), could also be interpreted as either end of the disruptive 
effect or rewiring through axonal recovery after neuronal 
disturbances, as reviewed by Burtscher and Holtås where such a 
mechanism was suggested for epilepsy (51). Previously, an increase 
in mI has been reported in the ACC in patients treated with ECT 
(25). The increase was seen within one week after ECT and was 
interpreted as an increase in glial functioning. In our sample, 
we found no change in mI for any timepoint, hence the hypothesized 
change suggestive of potentiation or rewiring was not found. For 
tNAA and using either referencing method, we found an increase 
from after-treatment series to six-month follow-up, when the 
metabolite concentration was no longer different from baseline 
values. Though this finding might not directly imply potentiation 
and rewiring, our finding suggests that ECT-induced neuronal 
disruption is reversible over time.

4.3. Metabolite concentrations in relation 
to effect and side effects of ECT

Linear models for tNAA levels predicting MADRS were not 
significant, suggesting that the disruptive effects of the treatment 
could not alone explain the effect of the ECT on depressive symptoms. 
Linear models for mI levels predicting MADRS were not significant 
for TP1, TP3, or the change between the two. Other hypotheses, 
though not ECT-specific, have argued that both increased and reduced 
levels of mI might play a role in the alleviation of depressive symptoms. 
However, a sample studied by Njau et al. (25) could not associate the 
change in depression score with mI levels, and we could not find a 
correlation between mI levels and MADRS. Contrary to our 
hypothesis, mI levels were higher in patients than controls at baseline, 
but this was not seen for both referencing methods, and should 
therefore be interpreted with care.

We also hypothesized a correlation between subjective memory 
complaints and both tNAA-levels (increase in memory complaints 
due to reduced neuronal integrity: lower levels of tNAA) and tCho-
levels (increased memory complaints due to disruption of cell 
membranes: higher levels of tCho). Linear models for tNAA levels 
predicting EMQ-28 were not significant, and we found no association 
between tCho and EMQ-28 at baseline or when comparing the change 
from before to after treatment. EMQ-28 is a measure of subjective 

everyday memory, and the correlation to depression severity seems 
uncertain, as both correlation and no correlation have been found (52, 
53). Although the ecological validity for measuring the subjective 
experience may be  higher for EMQ-28, it may be  regarded as a 
measure of metamemory, i.e., what the patient reports that they forget, 
rather than actual forgetfulness.

4.4. Limitations

Our study is based on results from 31 patients and 19 healthy 
controls. A larger sample size would increase statistical power and 
possibly allow the quantification of more subtle changes in metabolite 
concentrations. A larger sample size would also allow for subgroup 
analysis based on patient heterogeneity (i.e., diagnoses, medication, 
comorbidity, duration of current episode etc.). Such analyses may 
explain results that are now interpreted as conflicting. Previous 
investigations have mainly been of smaller samples. Consortia like the 
global ECT-MRI research collaboration [GEMRIC, (54)] may give an 
opportunity for pooled data analysis with a larger sample size in 
the future.

It can be reasoned that psychotic or elderly patients who have the 
largest effect of ECT (55, 56) also may display the largest 
neurobiological changes during and after ECT. However, these groups 
only constitute a smaller fraction of the studied sample, as they are 
challenging to include in studies. Reasons for this may be that these 
patients carry a greater burden of disease and might therefore also not 
be motivated and able to give informed consent, and hence also have 
a greater rate of attrition.

During the statistical analysis, correction for multiple testing was 
not performed. The significance of the results must therefore 
be interpreted accordingly. Correction for multiple testing has some 
weaknesses as it can reduce statistical power and introduce type II 
errors. Hence, true differences may remain undiscovered. Additionally, 
the number of tests performed may be difficult to establish, as complex 
models yield several p-value, but are only one model. Our investigation 
was hypothesis-driven, and two referencing methods were used, 
strengthening results that are significant across referencing methods.

Due to the large voxel localized in the ACC region, a heterogeneous 
tissue composition including both gray and white matter are measured. 
Although Osprey (36) was used to derive tissue- and relaxation-
corrected concentration estimates according to the Gasparovic method 
(38), reliable measurements of either gray or white matter only are not 
feasible. While depression has been suggested to be a disorder of brain 
networks (57), our study only investigated the ACC. Findings in ACC 
regions have been suggested as biomarkers of treatment response; larger 
baseline subgenual cingulate volume was found to predict response in 
ECT (58), and pretreatment ACC functional activity predicted response 
to antidepressant medication (59). However, the hippocampus and 
amygdala are structures known to display the largest volumetric changes 
following ECT (5). Both the amygdala and hippocampus are connected 
with the ACC, either directly or indirectly (60), and these structures also 
have larger gray matter fractions than the ACC. Accordingly, areas such 
as the amygdala and hippocampus may also display larger metabolite 
changes. Future MRS studies of these areas could therefore lead to better 
insight into ECT response in depression.

In previous MRS investigations of ECT, findings have been 
inhomogeneous. This could in part be due to differences in the choice 
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of referencing method. Hence, we have used both water referenced 
results as well as the creatine ratio for the quantification of brain 
metabolites in our sample. Still, this approach does not reflect the 
whole variety of different MRS post processing pipelines that have 
been used in previous research. A more methodological comparison 
between methods is out of the scope of this article.

5. Conclusion

Using both creatine ratio and water reference for MRS-data 
quantification, our study indicates a decrease in tNAA levels after 
ECT. This was reversed to pre-ECT levels 6 months after ECT. This 
finding lends support to temporary disruption as suggested in the 
“disrupt, potentiate, and rewire” hypothesis. Longitudinal changes in 
mI, tCho, or Glx levels were not consistent across quantification 
method, and we did not find any correlation between tNAA or tCho 
and effect or side effects of ECT. For future research, MR-spectroscopy 
investigations with voxel placement in areas that have an even stronger 
implication in the setting of depression, and which are more affected 
by ECT, such as the hippocampus and amygdala, may further shed 
light on the disrupt, potentiate, and rewire hypothesis. Other methods, 
such as Diffusion Tensor Imaging and resting state functional MRI 
may be  better to assess neuronal potentiation and rewiring. 
Furthermore, larger sample sizes and multi-site investigations are 
important to improve our understanding of brain metabolites and 
their role in the neurobiological underpinnings of ECT.
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