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Introduction:The early diagnosis and classification of social anxiety disorder (SAD)

are crucial clinical support tasks for medical practitioners in designing patient

treatment programs to better supervise the progression and development of SAD.

This paper proposes an e�ective method to classify the severity of SAD into

di�erent grading (severe, moderate, mild, and control) by using the patterns of

brain information flow with their corresponding graphical networks.

Methods: We quantified the directed information flow using partial directed

coherence (PDC) and the topological networks by graph theory measures at four

frequency bands (delta, theta, alpha, and beta). The PDC assesses the causal

interactions between neuronal units of the brain network. Besides, the graph

theory of the complex network identifies the topological structure of the network.

Resting-state electroencephalogram (EEG) data were recorded for 66 patients

with di�erent severities of SAD (22 severe, 22 moderate, and 22 mild) and 22

demographically matched healthy controls (HC).

Results: PDC results have found significant di�erences between SAD groups and

HCs in theta and alpha frequency bands (p < 0.05). Severe and moderate SAD

groups have shown greater enhanced information flow than mild and HC groups

in all frequency bands. Furthermore, the PDC and graph theory features have been

used to discriminate three classes of SAD fromHCs using several machine learning

classifiers. In comparison to the features obtained by PDC, graph theory network

features combined with PDC have achieved maximum classification performance

with accuracy (92.78%), sensitivity (95.25%), and specificity (94.12%) using Support

Vector Machine (SVM).

Discussion: Based on the results, it can be concluded that the combination of

graph theory features and PDC values may be considered an e�ective tool for SAD

identification.Our outcomesmay provide new insights into developing biomarkers

for SAD diagnosis based on topological brain networks and machine learning

algorithms.

KEYWORDS

EEG, graph theory analysis, social anxiety disorders, machine learning, e�ective

connectivity, partial directed coherence, support vector machine, event related potential
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1. Introduction

Social anxiety disorder (SAD) is one of the most common

mental illnesses recognized by persistent trepidation in different

domains of social life (1, 2). Patients with SAD experience

deterioration in diverse aspects, including educational life,

occupation, and social interactions. They have reported poor

quality of life and experience often comorbid psychiatric disorders,

such as depression, avoidant personality disorder, and substance

abuse (3). The consequences of being affected by SAD are not

limited to the patients and their social environment, but they

impact the entire social structure, specially through economic costs.

A sufficient evaluation of these costs is complicated and, due to the

incomplete data, arduous to undertake. Thus, diagnostic prediction

for SAD in early time by EEG is a low-cost method and important

to prevent complications and rapid worsening.

Recently, shreds of evidence from neuroimaging research

have concentrated on characterizing brain circuits of SAD,

assisting in a thorough perception of its anatomical and

functional substratum (4). These results identified the subcortical

hyperactivity impairments associated with SAD neural circuits

(e.g., amygdala, insula) and abnormal activities in circuits that

control emotional response [e.g., posterior cingulate cortex (PCC),

medial prefrontal cortex (mPFC)] (5). The cortical/ subcortical

aberration in the neural circuit of SAD is representing the

dynamical correlation of emotional pathophysiology and endure

threats-related processing bias (6, 7). The neurobiology of

SAD indicates that resting-state network (RSN) EEG activity

is correlated with many cognitive functions, which allow the

investigation of substantial networks (8, 9). Several RSN studies

have found that SAD patients show aberrant connections between

spatially distant networks indicating baseline disturbances in

scattered neural systems. Consistently, SAD patients were found

to exhibit an altered RSN of functional connectivity in brain areas

including the default mode network (DMN) (10), and the salience

network (11). RSN analysis in fMRI permits the detection of brain

activity and brain connectomes in the absence of external triggers

(12). Nevertheless, findings of brain organization associated with

intrinsic spontaneous fluctuations have been found to be limited in

fMRI due to its poor temporal resolution and high rate of noise.

Therefore, compared to the other existing neuroimaging methods,

EEG still remains the cheapest and most prevalent approach to

detect brain regions. In particular, its high resolution assists in the

monitoring of instant brain activity of cerebral cortex in time and

frequency which allows the reflection of substantial neurocognitive

networks on a scale of milliseconds (13). Up until now, there has

been limited research of EEG to explore brain connectivity patterns

of patients with different level of SAD at RSN. Therefore, EEG is

selected and used for assessing brain connectivity to the effect of

SAD in this study.

Thus Noteworthy, considerable works on traditional EEG

signal analysis were used to examine the brain network

organization, such as time-series domain, frequency domain,

coherence, phase synchronization (14), and mutual information

(15). These approaches defined network measures in the analysis

of undirected functional connectivity. Functional connectivity

has the capability of identifying the connection between brain

regions, such as coherence. However, it falls short in revealing the

direction and amount of information flow between these regions.

The limitations of traditional methods can be overcome by partial

directed coherence (PDC). PDC is a frequency-domain metric

that provides insight into the direct information flow between two

brain areas, insensitive to noise, and unaffected by the influence

of other areas. It uses the Granger causality approach to estimate

the directed information flow between two signals, while ignoring

volume conduction and noise (16). In bivariate cases, PDC and

directed transfer function (DTF) are identical (17) (both are

EC measures); nevertheless, in the multivariate situation, PDC

detects the direct information flows between connected brain

regions independent of the impacts of other regions. PDC allows

estimating the information flow to comprehend the substrate

of cognitive functions by its fundamental use of a multivariate

autoregressive model (MVARM) (18, 19). The PDC approach

has the merits of permitting the simultaneous modeling of all

EEG electrodes with an MVARM, which provides a more precise

estimation of causality than a bivariate approach (only two signals

are considered at a time). The PDC has been successfully used

in many applications including Brain-Computer Interfaces (BCI)

(20) and the recognition of topological properties in semantic

vigilance, epilepsy (21), and enhanced mental states (22).

Thus far, there was no resting state EEG-based effective

connectivity study that is combined with graph theoretical

analysis to study the severity of SAD. EEG mapping analysis has

demonstrated a decrease in absolute and relative power for all

frequency bands and an increment in intermediate beta power

in SAD patients compared to HCs. Weighted Phase Lag Index

findings exhibited enhanced oscillatory midline connectivity in the

theta rhythm in the generalized SAD patients compared to HC

group (23). Aberrant EEG connectivity has been found in different

mental health conditions that share the same neurobiological

features with SAD (24). For Instance, individuals with depression

disorder showed greater coherence at RSN compared to HCs [24].

Results are suggesting hyperarousal as a pathogenetic factor of

SAD, which may cause the SAD symptomatology (e.g., aberrant

cognition, abnormal emotion regulation, functional impairment,

deficient memory) (25).

In our previous study, we applied machine learning techniques

to study the EEG complexity (26) and deep learning models with

PDC features (27) to classify four different subtypes of SAD.

Our study found that the deep learning model outperformed the

machine learning models, achieving a classification accuracy of

92.86% using a combination of CNN and LSTM, and the most

important features for classification were located in the default

mode network (DMN) of the brain. However, despite the promising

results, our previous study had some limitations, such as the lack

of characterization of the stationary behavior of EEG signals that

cannot be explained by complexity and brain connectivity. The

main objective of the present study is to assess the organization

of effective brain networks implicated in different levels of SAD.

We also aimed to present a computerized model for EEG-based

diagnosis of SAD using a machine learning approach. This analysis

concentrates on the application of graph theory measures on

the brain connectivity matrices to study the complex underlying

behaviors of the brain in SAD. Graph theory analysis is a powerful
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mathematical approach applied in brain connectivity to identify

the organization of brain network patterns (28). The quantification

of graph theory metrics permits the characterization of the steady

behavior of EEG signals that cannot be revealed by simple linear

techniques. Therefore, in this study we quantified the patterns of

brain networks over longer time series data by using several graph

theory metrics such as clustering coefficient (CC), nodal strength

(NS), and nodal degree (ND), local efficiency (LE), and modularity

(29). The combination of PDC with graph-theory measures has

various advantages for studying SAD. PDC is a powerful tool for

assessing influential functional connectivity in the brain, which

allows for identifying the direction and strength of information

flow between brain regions. However, PDC alone may not provide

a complete understanding of the complex network properties of

the brain. By combining PDC with graph-theory measures, such

as clustering coefficient and segregation, we can better understand

the global network properties of the brain and identify the key

regions and pathways that contribute to SAD states (30). Graph-

theory measures provide information about the organization of

brain networks and can reveal patterns of connectivity that are

not apparent with PDC alone. Furthermore, integrating PDC with

graph-theory measures can increase the specificity and accuracy of

identifying biomarkers to better distinguish between healthy and

pathological SAD states.

Several studies have applied EEG data to identify and classify

certain levels of social anxiety (e.g., HC and anxiety). There have

been several previous studies that have used effective connectivity

measures such as PDC, Granger causality, Dynamic Causal

Modeling (DCM), and directed transfer function (DTF) for SAD

classification (31). For instance, one study (32) used Granger

causality to investigate effective connectivity between different

brain regions and found altered connectivity patterns in individuals

with SAD compared to healthy controls. Another study (33) used

Dynamic Causal Modeling (DCM) to explore directed functional

connectivity between different brain regions in individuals with

SAD and found significant differences in connectivity patterns

compared to controls. In addition, findings using Weighted Phase

Lag Index (WPLI) and graph theory have reported that individuals

with generalized SAD exhibited increased oscillatory midline

coherence in the theta frequency band during rest in generalized

SAD compared to the HCs (23). Similarly, individuals with high

trait anxiety exhibited a decrease in theta connectivity between

the right medial prefrontal cortex (mPFC) and the right posterior

cingulate/retrosplenial cortex, compared to HCs. Additionally, a

decrease in beta connectivity was observed between the right mPFC

and the right anterior cingulate cortex (34). In comparison to

these studies, our study extends the use of effective connectivity

measures by incorporating graph theory and machine learning

techniques for SAD classification. We used PDC to calculate

directed functional connectivity between brain regions and graph

theory measures to extract network features from the connectivity

matrix. Our machine learning approach allowed us to accurately

classify different levels of SAD severity (4 classes) based on the

extracted network features. However, analyzing EEG signals to

obtain the most discriminative features to segregate different level

of SAD remains a challenging task for SAD recognition systems.

Accordingly, the fundamental motivation behind this research is to

diagnose the severity of SAD and determine whether a person needs

to engage with the health care system. Furthermore, we explored

whether significant PDC values correlate with self-report measures

in SAD. Hence, our main contributions is to the use of directed

brain EEG data and graph theory to segregate and classify the

severity of SAD into different classes (severe, moderate, mild, and

control).

The rest of this paper is organized as follows. In Section

2, the data preprocessing procedure for raw EEG data is

detailed, including the steps for computing the EC matrices.

The method for extracting features, applying graph theory

measures, and using machine learning classifiers is also

presented in this section. The results of the statistical

analysis and experiments are introduced in Section 3.

Moreover, the limitations of the study and a discussion of

the results are reported in Section 4. The paper concludes in

Section 5.

2. Materials and methods

2.1. Participants and psychiatric assessment

Eighty-eight participants were selected from a group of 502

respondents who completed the Social Interaction Anxiety Scale

(SIAS) self-assessment. These participants were aged between 18

and 25 years, with 36 females (average age 21.97 ± 0.98) and

53 males (average age 22.73 ± 84). None of the participants

had a history of psychotropic medication, neurological or surgical

disabilities that could affect brain function or metabolism. A

sheet containing all study details and a waiver of written

informed consent was provided to the selected participants,

along with an honorarium for their time and cooperation.

This procedure is in accordance with the Helsinki Declaration

(35). The study was reviewed, endorsed, and approved by the

Medical Science Ethics Committee of the Royal College of

Medicine of Perak, Kuala Lumpur University. The Diagnostic and

Statistical Manual of Mental Disorders (DSM) was administered

by a specialized psychiatrist to provide additional support for

the accuracy and reliability of the diagnostic process. The

specialized psychiatrist has a comprehensive description of

the participants, including their demographic characteristics,

clinical status, and relevant comorbidities or medications. The

participants’ diagnosis was based on the Structured Clinical

Interview for DSM-IV (36) and the administered SIAS (37) to

determine the severity of SAD. To validate the participants’

social anxiety levels during the experiment, we administered

the SIAS twice—first during the screening and again after the

experiment. We excluded participants who showed a significant

difference in SIAS scores between the screening and testing

stages. The correlation between the SIAS scores at screening

and during testing was found to be high (= 0.87, p <

0.0001). In addition, participants were then divided into four

categories: control (SIAS score < 20), mild (SIAS score < 35),

moderate (SIAS score < 50), and severe (SIAS score < 50).

Table 1 summarizes the demographic data and characteristics of

the participants.
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TABLE 1 Comparison of demographic characteristics in four SAD groups.

Group Number of participants Total Age (Mean ± Std) SIAS score (Mean ± Std)

Female Male Female Male Female Male

Severe 12 10 22 22.13± 2.78 23.11± 1.02 67.53± 6.21 66.81± 5.32

Moderate 7 15 22 21.98± 3.11 22.21± 1.25 55.7 3± 7.81 54.41± 6.61

Mild 12 10 22 22.61± 2.32 21.71± 2.31 38.32± 512 37.71± 5.81

Control 8 14 22 21.76± 1.73 23.62± 1.65 14.71± 6.74 16.61± 7.34

2.2. Experimental design

The scalp EEG recordings were conducted completely at

the EEG laboratory. Participants were instructed to be seated

comfortably, let their minds wander freely with their eyes closed, in

a quiet, mid-dark room; EEG data were recorded for approximately

4–6 min and the participants reported no drowsiness or fatigue

during the data acquisition. All subjects were not given any

instructions but asked to stay fully relaxed. The same experimental

paradigm has been performed in this work (38). Real-time EEG

data were consistently recorded in RSN using an eegosports

amplifier and referential 32-channel shielded cap (ANT Neuro,

Enschede, Netherlands) (39).

2.3. EEG acquisition and EEG data
processing

The EEG data was recorded at a sampling rate of 2048 Hz

and was later downsampled to 256 Hz in order to reduce the

complexity of data processing and storage. In accordance with the

international 10-20 system, thirty electrodes (FP1, FP2, FPz, F7,

F8, F3, F4, FC5, FC1, FC2, FC6, Fz, Cz, T8, P7, P8, C3, C4, C3,

CP2, CP4, CP1, CP6, CP5, P3, P4, Pz, O1, O2, and Poz) were

located on the cerebral cortex with a consistent spatial arrangement

and referenced to CPz, with AFz serving as the ground. The

raw EEG data were then processed to remove unnecessary and

noisy segments. Artifacts caused by eye movements, breathing,

power interference, and cardiac movements were visually inspected

and removed or corrected using spatial filters. To enhance the

signal quality and eliminate high-frequency electrocortical artifacts,

signal noise, and low-frequency deflections, a band-pass filter was

applied to obtain segments with the best signal between 0.4 and 40

Hz. The electrodes were mounted according to the international

standard 10–20 system with impedance maintained below 10

K�. The artifact selection process was carried out by identifying

block epochs containing artifacts to be used to characterize the

artifact patterns. This was followed by a search for other artifacts

and the average of all detected artifacts, such as eye blinks, was

calculated and labeled as artifact segments. EEG data with a voltage

amplitude exceeding ± 100µV was visually removed. The final

corrected EEG data were then exported for power spectral analysis

PDC analysis using custom scripts and open-source toolboxes in

MATLAB (TheMathWorks, Inc.). The open-source toolboxes used

included EEGLAB (40) for plotting topographical maps and Brain

Connectivity Toolbox (BCT) (41) for graph theoretical analysis. In

our analysis, we have found that the application of independent

component analysis (ICA) is negatively affect the PDC estimation.

To compute the directed causal coherence (i.e., PDC) among

channel pairs, RSN data was segmented into 3-s epochs (a total

of 128 s), which is in the range of other RSN studies (27, 42).

We selected the clean epochs (128 s) only that are free of artifacts

and other sources of noise, such as eye blinks, muscle activity, and

power line noises. By using clean epochs, we made sure that the

EEG data is as free of noise and artifacts as possible, and that the

neural activity beingmeasured accurately represents the underlying

neural processes of interest. The data for each participant was

averaged across all segments to obtain the final average values.

The average PDC was calculated for each channel, considering the

following frequency bands: delta (1–3 Hz), theta (4–8 Hz), alpha

(9–12 Hz), and beta (13–30 Hz). We did not include Gamma waves

because It has been reported that the brain waves at frequencies

(31–256 Hz) are not very sensitive and can provide contradictory

results (43).

2.4. Partial directed coherence (PDC)

The concept of PDC was proposed by Baccala and Sameshima

in 2001 (44), put forward a new frequency-domain method for the

description of Granger Causality (GC). The PDC from channel j

to channel i indicates the directional flow of information from one

activity site to another. The implementation of PDC algorithm is

as follows:

Y(t) = [y1(t), y2(t), . . . , yn(t)]
T , (1)

is represented by an autoregressive model of order p as given in

Equation (2)

Y(t) =

p
∑

l=1

AlY(t − l)+ ε(t), (2)

where,

Al =









a11
(

l
)

· · · a1n
(

l
)

...
. . .

...

an1
(

l
)

· · · ann
(

l
)









, (3)

is the coefficient matrix at the time lag l. Y(t) represents the

weight vector of m ROIs of EEG signals at time t, matrix A(r)

indicates the rth order AR parameters, and ε(t) represents the

measured error that is believed to be an independent Gaussian
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process with zero mean. When the coefficients of the MVARmodel

are adequately calculated, A(F) is determined as follows:

A(F) =

p
∑

r=1

Are
−i2π fr , (4)

Therefore, the PDC value from channel j to channel i can be

expressed as follows:

PDCij =
Aij (f̄ )

√

aj−H(f )āj(f )
, (5)

where, (āi)(f )(i=1, 2, . . .M) represents the it
h
column of the matrix

Ā(f ) and PDCij represents the strength of causal interaction of the

information flow from channel j to channel i at a frequency of f .

H[f ] is the Hermitian matrix which is equal to A−1[f̄ ]. Āij(f ) is

the complement of Aij(f ) and represents the transfer function from

yj[t] to yi[t] being also an element of A[f ] matrix. Finally, aj[f ] is

the jth column of A[f ] and PDCi is the i
th row of PDCij.

The PDC values were computed for each combination and used

as an input feature for the classifiers. Features from these frequency

bands were chosen to provide optimum accuracy with optimal

order. The appropriate order (p) of the model was calculated by the

Akaike Information Criterion (AIC) as described in our previous

studies (20, 26, 45). In this study, the optimum order is 5. Besides,

it has been found that a 5th order model was enough to model

appropriately 95% of 2–3 s segments (46).

2.5. Graph theory analysis

A graph network (G) was determined as a combination of

nodes (i.e., EEG electrodes) that elucidate the associated brain

regions by a group of statistical measures of weighted links (i.e.,

edges). Network analysis is a valuable tool for understanding

the structure and function of networks. Global measures provide

a single value that summarizes the entire network, while local

measures assign a value to each node in the network, generating

a vector with the same number of elements as the number of nodes

in the network. Prior to network analysis, the weighted directed

network matrix must be normalized and should not contain self-

connections, i.e., the weight of nodes on the main diagonal should

be set to 0. One well-known toolbox for network analysis is the

Brain Connectivity Toolbox (BCT), which uses graph theory to

measure the properties of networks both globally and locally (41).

A number of mathematical measures can be extracted from a graph

to characterize the topological architecture of the network. These

architectures explain how efficacious information is transferred

between the nodes. Graph theoretic analyses used to investigate

the brain at rest have showed an important role in illustrating

the basis of the brain’s genuine and event-related activity. For

that, several advantages for neuroscientists to characterize and

predict aberration using a network perspective. In our analysis,

we derived different metrics from a graph to study the topological

characteristics of the network for SAD. These characteristics

explain how reliably information is transmitting between different

nodes and provide directed and weighted information on the

functional segregation and integration of the networks of SAD.

The effective brain network properties are computed from the

matrices constructed by PDC for each subject. The weight of the

links between two different vertices (electrodes) represents the

connectivity power of the causal information flow, which assists

in distinguishing between vigorous and weak interaction. Weak

information flow can be discarded by thresholding as reported

in Section 2.6. In this study, the graphical matrices are based

on the concepts of Clustering coefficient, Node strength, Node

degree, Local efficiency, and modularity and were calculated using

open Matlab scripts (41, 47). Here is a brief description about

these measures.

2.5.1. Node degree
The degree of a particular node is known as weighted links

connected to that node. A node’s degree is estimated by segregating

it into in-degree (din) to present incoming information flow

intensity; and out-degree (dout) to present outgoing information

flow intensity; which are expressed as: Din=Aji and Dout = Aij,

(where Aij is not incontrovertibly equal Aji and indicates the entry

of the adjacency matrices). Here, Nodal degree is calculated as the

sum of the in-degree and out-degree of the node. In our analysis,

a node with high out-degree measures reflects the cerebral cortex

areas that play an essential part in the information transmission

and processing. Similarly, a node with high in-degree measures

represents the cerebral cortex areas influenced by other cerebral

regions. Thus, the overall degree gives an estimate of nodal hubs

which can be computed by:

Dtot =

∑

Aij +

∑

Aji (6)

2.5.2. Node strength
The node strength refers to the sum of the weights of the

links that are connected to the node. In networks with directed

connectivity, the in-strength is the sum of the incoming link

weights, and the out-strength is the sum of the outgoing link

weights. The node strengths provide insights into the activation and

flow of information in a specific brain region within an efficient

brain network. Node strength can be estimated by the following

equation:

NStot =
∑

Aji +

∑

Aij (7)

where Aji is an element weight of the PDC matrix.

2.5.3. Clustering coe�cient
The clustering coefficient (CC) estimates network segregation;

i.e., the tendency to which a neighboring node’s network is clustered

together into local specialized regions. We averaged all local CC

to produce the graph’s clustering coefficient ranging from 0 to 1.

The CC computes the profusion of linked triangles in a network.

In neuroscience, the CC has been found to be a valuable measure
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for comprehending function-structure associations in the brain.

Mathematically, the graph’s CC can be written as:

Ci =
2ni

ki(ki − 1)
(8)

where ki is the degree of node i, and ni is the number of edges

neighbors of i.

2.5.4. Local e�ciency
Local efficiency (LE) is a segregation estimation of the

fault tolerance of a graph network. It emphasizes whether the

information transfer between brain regions (nodes) is still coherent

when a node is discarded from the network. Higher LE suggests the

effectiveness of the network at the regional scales.

LE =
1

(NGI (NGI−1))

∑

G,K ∈ NGI (9)

where N is the number of nodes in graph Gi. Gi is the subgraph of

graph G that includes all neighboring nodes of i (excluding i).

2.5.5. Modularity
Modularity is one measure of the structure of networks or

graphs. It was developed to estimate the intensity of the partition

of a graph network into communities. Graph networks with high

modularity have robust weights between the brain regions (nodes)

within a network but dispersed weights between nodes in different

networks. Modularity indicates the density of edges within the

network compared with a random distribution of weights between

all nodes regardless of the network. The modularity is calculated as:

T =
1

L

∑

[Aji −
kikj

l
]δij (10)

where L is the number of edges in the graph, Aji is the connectivity

matrix, kikj is the degree of the node i.

A complete mathematical demonstration of the graph-

theoretical measures can be found in previous works (41, 48, 49).

2.6. Creating adjacency matrices

After constructing a network, a conventional implementation is

to convert the original weighted network into adjacency matrices,

with edges indicating the strength of connections. We performed

proportional threshold (PT) on the connectivity matrices of PDC

by preserving a proportion p (0 < p <1) of the strongest

connections (50) and setting these connections to 1, with all other

connections set to 0. The selection of the optimum thresholding

value was based on global cost efficiency. The absolute value that

gives the highest global cost efficiency was selected (51). The steps

of data analysis are depicted in the block diagram (Figure 1).

2.7. Power analysis and EEG frequency
decomposition

The constructed EEG signals and all epoch’s parameters are

coordinated with PDC and Fast-Fourier transforms. All subject’s

data were segmented and averaged across all EEG channels and

the mean absolute power measures were computed for each of the

following frequency bands: Delta (0.5–4Hz), Theta (4–8Hz), Alpha

(8–12 Hz), Beta (13–30 Hz). A 50% overlapping Hanning window

was applied to minimize spectral leakage.

2.8. Feature extraction

Initially, the PDC values were computed individually in each

segment for each subject for every single frequency band, which

resulted in a total of 1 × 30 × 30 × 40 (frequency × channels ×

channels × epochs) weighted and directed connectivity features,

which results in a matrix of 4 × 900 × 40. Following that, a

set of complex network measures (30 clustering coefficients, 30

local efficiency values, 30 node degrees, 30 node strengths, and

1 modularity), were derived from each PDC network for each

frequency band (i.e., 4 frequency bands ×30 clustering coefficients

+ 30 local efficiency values + 30 node degrees + 30 node strengths

+ and 1 modularity×40 epochs), which results in the concatenated

matrix of 4 × 121 × 40. We then concatenated the PDC features

with the complex network measures in each band and used them

as an input to the classifiers with a final matrix of 4 × 1021 × 40.

For readability we explain the previous process of concatenating

features in Figure 2 to make it more clear and understandable.

2.9. Statistical analysis and classification

Classification is believed to be one of the most crucial

approaches of supervised learning in which the classifiers learn

from the given data to predict new observations. In this study,

five machine learning methods are applied; K-Nearest Neighbors

(KNN), Linear Discriminant Analysis (LDA), Naïve Bayes (NB),

Decision Tree (DT), and Support Vector Machine (SVM). These

classifiers were briefly explained previously in (52). All machine

learning parameters, such as grid search approach, kernel function,

regularization parameter, smoothing parameter, the criterion for

splitting, Radial Basis Function (RBF), and the maximum depth

of the tree were selected from this work (47). To achieve

enhanced performance and an understandable method to compute

the prediction quality and constructing an efficient machine

learning model, the following three measures are used to examine

performance quality:

Accuracy =
TP + TN

TP + FP + TN + FN
× 100 (11)

Sensitivity: The sensitivity performance of a test is the

possibility of the classifier to differentiate the SAD individual’s

cases correctly. To compute the sensitivity, we have to quantify the
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FIGURE 1

Block diagram for the EEG data analysis module to identify the parameters of the EC network, graph theory measures, and application of machine

learning models.

FIGURE 2

The framework of the proposed approach. This framework shows how process of combining both PDC and graph theory measures to be given as

the input to the classifiers. All features in the diagram is representing one subject for one trail (Epoch).
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proportion of true positive (TP) in SAD individuals. Sensitivity is

calculated mathematically as:

Sensitivity =
TP

TP + FN
× 100 (12)

Specificity: The specificity of a test is the possibility of the

classifiers to identify the HC subjects correctly. To evaluate the

specificity, we have to compute the proportion of true negative

(TN) in HC subjects. Specificity is mathematically expressed

as follows:

Specificity =
TN

TN + FP
× 100 (13)

The application of various machine learning classifiers assists

in creating the most appropriate classifier for SAD state diagnosis.

In all the applied classification algorithms, we used 10-fold cross-

validation to assess the classification accuracy and to reduce

the variation of a random segmentation of the dataset. In each

classifier, we performed subject-dependent classification with 10-

fold cross-validation to estimate the classification accuracy. The

chosen features in each subject were randomly and evenly split

into 10 equally size subsets. For each of the subsets, we trained

the classifiers using nine subsets while the testing was done using

the remaining subset. To acquire all predicted labels of all samples,

we iterated this procedure 10 times so that each subset is used

for validation. Prior to classification, we used Sequential Feature

Selection (SFS) algorithm (53) to lower the dimensionality of the

EEG features. The SFS generates a set of uncorrelated variables.

Thus, it selects a sufficiently reduced subset from the EEG feature

space without affecting the performance of the classifier. Cross-

validation is a powerful technique for evaluating the performance

of EEG classifiers. By repeating this process with different subsets,

10-fold cross-validation can provide an estimate of how well

the classifier is likely to perform on new, unseen data. One

great advantage of using the 10 cross-validations in our EEG

classification is that it helps to avoid overfitting. This provides

a more accurate estimate of how well the classifier will perform

on EEG data. Another merit of 10-fold cross-validation is that

it allows for the optimization of classifier parameters. The mean

classification accuracies and standard deviations corresponding to

the proposed methods of EEG analysis at the four frequency bands

in four classes of SAD are, respectively, computed.

3. Result

3.1. Participants

Sixty-six individuals diagnosed with SAD and 22 healthy

controls participated in the study. The final distribution of the

participants was as follows: 22 severe (mean age 22.52 years, Std

2.48), 22 moderate (mean age 23.01 years, Std 1.25), 22 mild

(mean age 22.94 years, Std 2.74), and 22 healthy controls (mean

age 23.11 years, Std 1.93). Age was not found to significantly

differ among the groups, as indicated by a F-test [F(1,87) =

3.457, p = 0.062, η2 = 0.089]. As expected, SAD patients

reported higher symptom severity, as measured by the Social

Interaction Anxiety Scale (SIAS), compared to healthy controls.

The SIAS scores were 67.75 ± 14.34 for severe cases, 48.12

± 12.51 for moderate cases, 31.82 ± 15.21 for mild cases,

and 11.03 ± 9.22 for healthy controls, with all p-values less

than 0.05.

3.2. Power analysis

The EEG power at resting state for all electrodes was analyzed

for 4 groups of SAD patients (severe, moderate, mild, and HC)

and 4 frequency bands (delta, theta, alpha, and beta) using a one-

way ANOVAwith repeated measures on the frequency band factor.

There was no significant effect for group or frequency band (all

p > 0.05) and no group x frequency relationship was found (p =

0.134). The ANOVA test revealed a significant impact of emotional

state on absolute alpha power, with F(1,119) = 3.523, p= 0.032, η2=

0.176. The average absolute power for delta, theta, alpha, and beta

in the different SAD severity groups and HC groups can be seen in

Figure 3.

3.3. E�ective connectivity

The results in Figure 4 indicate significant differences among

the SAD groups in all frequency bands. There was a significant

difference in theta, alpha bands, F(3,252) = 2.699, p < 0.001, η2=

0.105 and, F(3,119) = 3.438, p < 0.018, η2= 0. 130, respectively.

Contrary to the theta and alpha bands, no significant differences

were observed in the delta F(3,119) = 1.182, p < 0.320, η2= 0.030

and beta F(3,119) = 2.66, p < 0.063, η2= 0.07. The severe SAD group

had the highest averaged PDC connectivity across all participants.

In theta connectivity, the pre-frontal lobe (e.g., Fp1, Fp2, and Fpz),

dorsolateral prefrontal cortex (e.g., F3, F4, and Fz), left frontal

cortex (e.g., FC5), midline cortex (e.g., Fz and CZ), posterior

cingulate cortex (PCC)/ precuneus (Pz) and left temporal (T7)

showed significantly stronger connections to most electrodes in the

SAD groups relative to HC group. In addition, severe group showed

significant connections in occipital cortex (e.g., Pz, O1, O2, and

POz) in alpha band. In particular, these electrodes namely Fp1, Fp2,

P3, Pz, P4, P8, O1, and O2 show the highest information flow in

RSN (based on the layout of the 31 electrodes in the 10–20 system).

Table 2 shows the statistical results for information flow analysis.

Figure 4 also shows the information flow maps of peak activity

of EC and the activated areas associated with the three classes of

SAD (severe, moderate, mild) and HC in four different frequency

bands (delta, theta, alpha, and beta). It can be noted that from

Figure 3, with RSN, the connected regions are relatively enhanced

in left-brain areas. These findings reveal a similar complex

network characterized by numerous connections between frontal,

temporal, central, parietal, and occipital regions. The strength of

the connection, represented by the weight, determines the amount

of information that flows from one node to another.
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FIGURE 3

The mean absolute power of all SAD groups in di�erent frequency bands.

TABLE 2 PDC values compassion for di�erent frequency ranges in HCs and SAD groups.

Frequency Group Mean SD F p-value η2

Delta Severe 0.121 0.055

1.182 0.320 0.030
Moderate 0.105 0.041

Mild 0.104 0.039

Control 0.105 0.016

Theta Severe 0.220 0.102

2.699 0.018* 0.105
Moderate 0.157 0.092

Mild 0.172 0.153

Control 0.133 0.130

Alpha Severe 0.144 0.077

3.488 0.01* 0.130
Moderate 0.120 0.043

Mild 0.109 0.041

Control 0.110 0.014

Beta Severe 0.135 0.066

2.660 0.051 0.063
Moderate 0.106 0.041

Mild 0.110 0.045

Control 0.109 0.0149

Significant differences were found in theta and alpha bands only (ANOVA test, p < 0.05). The asterisk indicates a statistical significance between the means.

3.4. Graph theory network measures

3.4.1. Node degree
The cortical activations displayed on the cortex of averaged

ND (in and out degrees) at each electrode during RSN are shown

in Figure 5. The ND of connectivity increased in higher SAD

severities (severe and moderate groups) in RSN for all frequency

bands. However, the ND of directed connectivity in theta and

alpha bands have shown significant differences between four SAD

groups with (p > 0.025) and (p > 0.05), respectively. The increase

of ND was observed at the medial prefrontal cortex (mPFC),

lateral parietal cortex (LPC), PCC, precuneus, ventrolateral frontal

cortex (VFC), and occipital cortex. Particularly, in theta and alpha

bands, a higher ND of connectivity was observed in the midline

frontal cortex and PCC compared to delta and beta. The beta band

showed increased ND in the left brain hemisphere [e.g., PFC, LPC,

dorsolateral prefrontal cortex (DPC), and PCC]. The moderate

SAD group has shown deactivated activities in the LPC and PCC in

all frequency bands. Furthermore, mild group showed a decreased

ND of connectivity in the mPFC and LPC.

3.4.2. Node strength
Figure 6 gives the average cortical NS values across all

electrodes of the SAD groups and HCs at the RSN in all frequency

bands. SAD groups and HCs have shown significant differences
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FIGURE 4

The averaged resting-state PDC intensity of the brain’s neuronal clusters. Each element in the matrix represents the mean PDC magnitude between

two regions for the SAD groups. The flow of information can be visualized by the direction from the lower rows to the left columns. The red color of

the component indicates a greater flow of information between the nodes. The diagonal values are set to zero. All electrodes are in the order of this

arrangement: FP1, FP2, FPz, F7, F8, F3, F4, FC5, FC1, FC2, FC6, Fz, Cz, T8, P7, P8, C3, C4, C3, CP2, CP4, CP1, CP6, CP5, P3, P4, Pz, O1, O2, and Poz.

in theta, alpha, and beta bands with (p > 0.02, p > 0.01, and

p > 0.05), respectively. Severe and moderate SAD have shown

enhanced NS of connectivity at the PCC cortex compared to mild

and HC groups in theta band. In addition, it has been found

increased NS at the left mPFC for severe and moderate groups

in the alpha band and increased NS in the right mPFC in beta

band. Furthermore, mild and HC groups showed aberrant cortical

activity at the precuneus and LPC in low-frequency bands (delta

and theta) compared with high SAD severities. The increment of

nodal strength of connectivity reflects higher information transfer

between the cortical nodes. The mean and standard deviation along

with statistical findings of nodal strength are reported in Table 3.

3.4.3. Measure of segregation
Figure 7 shows the averaged CC of EC at each node in the graph

between SAD groups in four different frequency bands in RSN. In

theta and alpha bands, the CC values show a significant difference

between SAD groups (p > 0.011 and p > 0.014), and the mean of

CC was found to be greater in severe and moderate. A significant

CC indicates the efficiency of the network at the local scale.

Conceivably, the graph analysis of CC using PDC connectivity

values evidenced more significant nodes. Additionally, Figure 8

shows the averaged local efficiency (LE) values of connectivity for

three SAD groups and HC in different frequency bands. Significant

differences were found between SAD groups and HCs in theta

and alpha (p > 0.011 and p > 0.014), respectively. Similarly, no

statistically significant differences are found for LE in all delta

and beta bands. The averaged LE across all 30 cortical nodes was

decreased in HC and mild groups. The nodes were subjected to

mPFC (Fz), PCC (Pz), right posterior transverse temporal (T8), and

LPC (P4). In high-frequency bands (alpha and beta), local efficiency

is increased for all SAD groups compared to low-frequency bands

(delta and theta).
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TABLE 3 Graph theory measures compassion for di�erent frequency ranges in HC and SAD groups (ANOVA test, p < 0.05).

Graph theory
measure

Group/statistical
analysis

Delta Theta Alpha Beta

Nodal degree Severe 0.434± 0.047 0.299± 0.088 0.39± 0.06 0.334± 0.047

Moderate 0.283± 0.063 0.54± 1.95 0.303± 0.07 0.1893± 0.063

Mild 0.248± 0.062 0.345± 1.95 0.179± 0.06 0.143± 0.072

Control 0.162± 0.053 0.03± 0.036 0.071± 0.05 0.261± 0.062

F 1.762 1.378 1.013 1.491

P-value 0.227 0.0253* 0.0501* 0.298

Nodal strength Severe 6.105± 0.885 4.627± 1.678 6.132± 1.133 6.338± 0.933

Moderate 4.873± 1.152 6.273± 1.721 5.30± 1.325 5.491± 1.210

Mild 4.461± 1.182 5.073± 1.721 3.65± 1.416 3.994± 1.335

Control 3.264± 1.128 4.901± 3.965 1.695± 1.086 2.557± 1.144

F 1.461 3.904 4.07 1.173

P-value 0.17 0.02* 0.01* 0.05*

Clustering coefficient Severe 0.102± 0.008 0.315± 0.010 0.188± 0.009 0.009± 0.001

Moderate 0.091± 0.007 0.231± 0.049 0.100± 0.007 0.007± 0.001

Mild 0.086± 0.008 0.181± 0.049 0.084± 0.015 0.0107± 0.001

Control 0 .070± 0.011 0.116± 0.012 0.054± 0.029 0.0158± 0.002

F 0.08 2.025 1.802 0.2339

P-value 0.862 0.0114* 0.014* 0.751

Local efficiency Severe 0.105± 0.008 0.144± 0.033 0.113± 0.001 0.108± 0.009

Moderate 0.107± 0.008 0.132± 0.011 0.113± 0.001 0.112± 0.008

Mild 0.104± 0.010 0.132± 0.011 0.102± 0.01 0.102± 0.014

Control 0.088± 0.018 0.126± 0.011 0.064± 0.03 0.071± 0.021

F 1.213 4.535 5.923 1.100

P-value 0.219 0.05* 0.04* 0.387

Modularity Severe 2.100± 0.711 2.667± 0.958 1.466± 0.507 1.53± 0.51

Moderate 2.301± 1.235 2.233± 0.935 2.066± 0.739 1.53± 0.51

Mild 1.831± 0.833 2.233± 0.935 1.766± 0.085 2.07± 01.08

Control 2.667± 1.124 1.500± 0.509 2.33± 1.093 1.93± 0.86

F 3.234 9.606 6.151 3.721

P-value 0.013* 0.001* 0.01* 0.013*

The asterisk indicates a statistical significance between the means.

3.4.4. Modularity
Regarding optimal community structure Modularity (Ci) of

theta connectivity, a significant difference was found between all

SAD groups with (p > 0.013), (p > 0.013), (p > 0.001, 0.01),

and (p > 0.013) in delta, theta, alpha, and beta, respectively.

Table 3 exhibits the mean values and standard deviations for

modularity measures in SAD and HC groups. Furthermore,

another measure of modularity (Q) has been found to be increased

HC group in the alpha band. Together, severe and moderate

groups have shown the highest Q values in theta band as shown

in Figure 9.

3.5. Correlations between connectivity and
symptom severity

To explore whether abnormal effective connectivity in SAD

correlated with SAD symptom severity, a Pearson correlation test

was computed between PDC values and SIAS scores. Relationship

between self-assessment and PDC values analysis here is restricted

to the alpha-band due to its observed effects and sensitivity in

human brain dysfunctions.Within the SAD groups, the PDC values

were positively correlated with SAD symptom severity measures

with (r = 0.85, p < 0.02), (r = 0.82, p < 0.009), and (r = 0.61,
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FIGURE 5

A mean nodal degree in resting-state for all SAD groups (severe, moderate, mild, and HCs) and frequencies (delta, theta, alpha, and beta). Red color

indicate higher nodal degree; White color indicate lower nodal degree. The topographic maps were created with EEGLAB function (the venerable

topoplot). This includes a 2D grid representation of the scalp and nodal degree values as color-coded dots or contours at the corresponding scalp

locations (10-20 system).

p < 0.03) in mild, moderate, and severe groups, respectively. HC

group exhibited negative correlation between the PDC values and

self-report assessment of SAD (r = −0.481, p <0.04). PDC values

did not correlate with SIAS anxiety level in the other frequency

bands. Figure 10 exhibited the correlation between PDC values and

symptom severity in alpha band.

3.6. Classification

In this study, inputs constructed by the two main features

(PDC and graph theory features) are both examined, by

feeding them to different machine learning algorithms. In

particular, we first classified the severity of SAD using PDC

values with five different machine learning algorithms. The

features extracted by PDC algorithm revealed maximum

accuracy in classifying three classes of SAD from HC class

with SVM classifier in theta frequency band (accuracy

83.66%, sensitivity 94.27%, and specificity 93.23%), and

(accuracy 82.79%, sensitivity 93.25%, and specificity 92.12%)

in alpha band.

Furthermore, we have applied a graphical theory network

measure to construct feature vectors for machine learning

classification. The features extracted from the combination

of PDC and graph theories are found to outperform the

PDC features alone in classification performance. Graphical

theory classification using SVM classifier exhibited maximum

accuracy in alpha band (accuracy 92.78%, sensitivity 93.25%,
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FIGURE 6

A mean nodal strength in resting-state for all four SAD groups (severe, moderate, mild, and HCs) and frequencies (delta, theta, alpha, and beta). Red

color indicate higher nodal strength; White color indicate lower nodal strength. The topographic maps were created with EEGLAB function (the

venerable topoplot). This includes a 2D grid representation of the scalp and nodal strength values as color-coded dots or contours at the

corresponding scalp locations (10-20 system).

and specificity 92.12%) and (accuracy 91.66%, sensitivity 99.27%,

and specificity 97.23%) in theta band. The training accuracy

and validation accuracy are found to show robust and similar

performance in the applied models, which indicates model’s

flexibility (fit model).

The overall classification findings in terms of the average

accuracies, sensitivities, specificities, and standard deviations of

the proposed algorithms are presented in Table 4 for the PDC

algorithm and Table 5 for PDC + graphical networks. The

results suggest that PDC and graph measures are competent

to obtain intrinsic and distinctive features from EEG data

to better diagnose SAD severity and significantly improve

classification performance.

4. Discussion

To the best of our knowledge, this is the first study that used

EEG-based whole-brain effective connectivity and graph theory

analysis along with machine learning models to segregate the

severity of SAD. The main objective of the present study was to

verify whether the intrinsic connectivity EEG and graphical theory

network measures of RSNs can be used to categorize the severity

level of SAD (severe, moderate, mild, and HC) and evaluate the

presence of a relation between the neural alterations in brain and

disease severity. We hypothesized that PDC and graph theory

analysis could also elucidate the neurobiological mechanisms

underlying pathophysiology in SAD. Noticeably, the EEG data
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FIGURE 7

A graph’s clustering coe�cient values for all SAD groups for 4 frequency.

analysis and the demonstrated qualitative and quantitative results

are generalized to young participants only who aged between 18

and 25 years old.

In alpha, the predominant oscillation at rest (54), there was a

significantly enhanced directed connection in the averaged PDC

values in individuals with SAD (severe and moderate groups)

more than HCs. The increased information flow was found mainly

in occipital and left partial cortices. In addition to alpha, theta

frequency bands exhibited significant differences among the three

groups of SAD and HC. An enhanced information flow and

increased connections were found in the mPFC, medial-frontal

cortex, left lateral parietal cortex, and PCC compared with HC

group. However, no group effects were revealed in beta or delta

frequencies. Group differences in alpha and theta bands were

observed in the absolute power, PDC and graph theory measures.

Severe SAD group has shown the highest values of PDC compared

to HCs subjects who exhibited reduced cortical information flow

in different cortical regions. Evidence of alterations in RSN

alpha regional power has been reported in SAD studies (55,

56), and abnormal alpha power or functional connectivity has

been found in other mental disorders like depression, Alzheimer’s

disease, and suicidal behaviors (57–59). Consequently, our findings

are in line with the above-mentioned studies of alpha rhythm

involvement in internalizing conditions. Consequently, functional

theta connectivity was found to be deviant in SAD compared

to HC individuals (23). Conceivably, compared to HC and mild

groups, high severe SAD groups have shown enhanced effective

theta connectivity in mPFC, midline, LPC, and occipital cortices.

Commonly, theta rhythm in RSN, produced by cortical brain

neurons located in the mPFC cortex (consists of Brodmann areas

24, 32, and 33) is related to mental task performance and cognitive

attentiveness reflecting concentrated referential processing in HC

individuals (60). Genuinely, the higher connectivity at higher

levels of SAD is believed to reflect greater monitoring of

physiological reactions to threats. Higher connectivity in HCs can

be associated with lower levels of severity symptoms andmay reflect

more efficient information processing and better communication

between brain regions involved in emotion regulation, cognitive

control, and social cognition. In individuals with SAD, certain brain

regions may be overactive or underactive, leading to disruptions

in communication and coordination between these regions.

Improvements in brain connectivity may indicate a normalization

of these patterns, which can in turn lead to reduced symptoms of

SAD (61).

We suggest that SAD patients are involved in excessive memory

processing. Theta oscillation and functional connectivity changes

in temporal lobe disorder with comorbid depression has been

previously reported (62). We found a rise in information flow from

the dorsolateral prefrontal cortex to the posterior cortex. In the

context of mental brain disorders, theta functional connectivity

in the dorsal frontoparietal connection is thought to indicate

goal-directed attention (63). It is noteworthy that most of the

neural changes we found in our analysis were located within

the default mode network (DMN). Our research identified a set

of eight operationally active cortical regions, which included the

precuneus/posterior cingulate cortex (PCC), anterior cingulate

cortex (ACC), medial prefrontal cortex (mPFC), and lateral parietal

inferior gyri (LPC) (64). The DMN shows heightened brain

connectivity during rest or when engaging in referential processing,

compared to goal-directed tasks.

Graph theory network measures mainly comprise predominate

local large-scale connectivity reflected by directed weighted

measures of highND, NS, CC, LE, andmodularity. All themeasures

of these features represent information processing efficacy at a

low cost. Here, we found a significant result in theta and alpha

frequency bands, but not in delta and beta bands. SAD patients

have shown greater graph theory measures in the mPFC, LPC,

ACC, and occipital cortex than HCs. The greater values in SAD

patients of graph theory measures suggest stronger interactions

between the executive networks (active brain regions) and higher-

order association areas. These results confirm that the higher level

of anxiety strongly influences the causal information flow between

brain regions. Therefore, we believe that graph theory measures in

the whole-brain network can be considered as effective biomarkers

for SAD recognition. Table 6 presents a comparison and superiority

of our proposedmodel over the other recent SADworks. It presents

the type of applied classifiers, number of classes, type graph theory

measures, and the accuracy performance.

Frontiers in Psychiatry 14 frontiersin.org

https://doi.org/10.3389/fpsyt.2023.1155812
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Al-Ezzi et al. 10.3389/fpsyt.2023.1155812

FIGURE 8

A graph’s local e�ciency for all SAD groups for four frequency ranges [delta (A), theta (B), alpha (C), and beta (D)].

The higher severe SAD groups (severe and moderate),

compared with the HC group demonstrated greater CC,

modularity, and LE than HC and mild groups. Furthermore,

ND and NS were found to be higher in severe and moderate

groups relative to HC and mild groups in all frequency bands.

Accordingly, PDC and graph theory network measures in theta
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FIGURE 9

Graph theory measures; mean modularity values for all SAD groups for four frequency ranges (delta, theta, alpha, and beta).

FIGURE 10

Correlation between the PDC and severity symptoms SIAS scores for the SAD groups in alpha band, control (A), mild (B), moderate (C), and severe (D).

band (4–7 Hz) and alpha band (8–12 Hz) are suggested to be

potential biomarkers for SAD (23). Moreover, in three groups of

SAD groups, but not the HC group, there was a significant positive

correlation between alpha PDC values and symptom severity (SIAS

reports). HC group exhibited a significant negative correlation

between PDC in the alpha band and symptom severity. In addition,

no significant correlation was found in the other frequency bands

(delta, theta, and beta). Previously, multiple studies that used PDC

in RSN have reported abnormal neural changes in internalizing

psychopathologies (69).

In addition, the features extracted from the information flow

between brain regions alone and features from PDC with their

corresponding graph theory measures successfully classified three

SAD classes and HC class with high accuracy. PDC features alone

showed classification accuracy with 79.29, 83.66, 82.79, and 80.08%

in delta, theta, alpha, and beta bands, respectively, between severe,

moderate, mild, and HC classes using SVM classifier. However, the

combined features (PDC + graph theory measures) achieved higher

accuracy performance with 83.29, 91.66, 92.78, and 86.08% in delta,

theta, alpha, and beta bands, respectively, using SVM classifier. The
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TABLE 4 Comparisons of the average accuracies and standard deviations (%) of EEG-based SAD severity classification by using PDC values.

Features Classifiers Evaluation
metrics

Delta Theta Alpha Beta

PDC

features

KNN Sensitivity 93.52± 0.61 98.31± 0.52 98.85± 0.83 91.32± 2.23

Specificity 92.82± 1.77 95.91± 4.01 94.32± 0.79 87.82± 0.79

Accuracy 75.00± 4.40 70.83± 2.67 76.54± 2.76 74.37± 3.58

LDA Sensitivity 94.83± 1.75 95.66± 1.044 99.32± 1.38 96.83± 0.75

Specificity 93.00± 4.44 93.62± 3.56 97.87± 3.46 94.61± 2.49

Accuracy 67.00± 7.71 62.83± 7.26 68.08± 6.59 66.58± 7.39

NB Sensitivity 97.18± 1.87 97.12± 1.0 85.71± 16.07 92.15± 2.32

Specificity 96.28± 2.17 96.33± 3.01 85.18± 1.51 94.23± 0.77

Accuracy 79.70± 2.52 71.47± 2.07 79.75± 1.91 87.10± 2.11

DT Sensitivity 92.71± 7.10 89.30± 9.23 93.91± 11.12 91.80± 0.86

Specificity 91.28± 6.20 81.84± 8.09 91.14± 4.51 92.82± 5.31

Accuracy 75.95± 4.15 72.12± 3.68 75.62± 2.24 75.00± 2.74

SVM Sensitivity 91.27± 6.20 94.27± 6.13 93.25± 4.27 91.53± 6.47

Specificity 90.13± 6.81 93.23± 6.81 92.12± 5.91 90.19± 9.28

Accuracy 79.29± 5.93 83.66± 6.72 82.79± 7.86 80.08± 10.94

TABLE 5 Comparisons of the average accuracies and standard deviations (%) of EEG-based SAD severity classification by using PDC and graph theory

values.

Features Classifiers Evaluation
metrics

Delta Theta Alpha Beta

GT+PDC

features

KNN Sensitivity 99.52± 0.61 98.31± 0.52 92.85± 0.83 95.30± 2.13

Specificity 97.82± 1.77 95.91± 4.01 94.32± 0.79 99.82± 0.79

Accuracy 82.00± 4.40 87.83± 2.67 88.54± 2.76 84.37± 3.58

LDA Sensitivity 94.83± 1.75 99.66± 1.044 99.32± 1.38 99.83± 0.75

Specificity 93.00± 4.44 95.62± 3.56 97.87± 3.46 98.61± 2.49

Accuracy 77.00± 7.71 77.83± 7.26 78.08± 6.59 66.58± 7.39

NB Sensitivity 97.18± 1.87 97.12± 1.0 85.71± 16.07 96.98± 2.10

Specificity 96.28± 2.17 96.33± 3.01 85.18± 1.51 99.23± 0.77

Accuracy 82.70± 2.52 82.47± 2.07 83.75± 1.91 83.10± 2.11

DT Sensitivity 92.71± 7.10 89.30± 9.23 93.91± 11.12 99.80± 0.86

Specificity 91.28± 6.20 81.84± 8.09 91.14± 4.51 96.34± 2.03

Accuracy 85.95± 4.15 89.12± 3.68 89.62± 2.24 86.00± 2.74

SVM Sensitivity 91.27± 6.20 99.27± 0.13 95.25± 4.27 91.53± 6.47

Specificity 90.13± 6.81 97.23± 1.81 94.12± 5.91 90.19± 9.28

Accuracy 83.29± 5.93 91.66± 6.72 92.78± 7.86 86.08± 10.94

results showed that the SVM outperformed other classifiers in all

frequency bands, as seen in Table 5. The improvement in accuracy

by combining PDC and graph theory matrices is consistent with

previous research that utilized directional information flow with

functional connectivity in neurodevelopmental analysis, resulting

in remarkable accuracy prediction (47, 70).

There are some important limitations of this study that must

be mentioned. First, several patients with comorbid conditions

were involved in this analysis. Whilst SAD was their central

identification, comorbid mental disorders such as major depressive

disorder and generalized SAD may have impacted the results.

Therefore, new analyses of SAD individuals with and without

comorbid mental disorders are needed. Second, our analysis is

restricted to the young population with different sample size

between females and males,thus future studies may be specified

to the analysis of different populations in different settings with

balanced sample size. Third, our analysis was based on whole-brain

connectivity, thus, alternate network analysis may be considered
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TABLE 6 Comparison of the proposed method in terms of accuracy (ACC) with recent machine learning and graph theory measures.

References Year Feature Subjects Classes Channels Graph theory Classifier ACC

Xing et al. (23) 2017
Weighted

Lag Index

64 2 34 CC, CPL SVM –

Zhu et al. (65) 2017
Functional

connectivity

84 2 fMRI CC, PL SVM 71.4

Zhang et al. (66) 2015
Functional

connectivity

80 2 fMRI
Cortical

hubs

SVM 76.25

Chen et al. (67) 2021
Spectral

Power

34 3 8 – SVM 87.18

Alaei et al. (68) 2023
Directed

Transfer Function

24 2 19
centrality

Strength

SVM 91.66

Our proposed

method

2021
Effective

connectivity

88 4 32

ND,NS

LE, CC

T and M

SVM 92.78

The accuracy is reported in %.

for future work (e.g., DMN network, dorsal attention network

(DAN), and salience network) to draw the specific functions

of specific regions in the brain to assess the severity of SAD.

Fourth, our study was restricted to resting-state only, future

studies can be dedicated to estimating the severity of SAD in

different states.

5. Conclusion

In the present work, an essential contribution is the

integrated use of the PDC and graph theoretical measures to

estimate the severity of SAD and compare them with HCs.

The whole-brain results exhibited altered RSN information

flow between brain regions in SAD groups. These alterations

in causal information flow in the RSN connectivity may be

associated with the detected severity symptoms in SAD patients.

Moreover, impairments in neural circuits involving mPFC and,

PCC, and LPC may have a role in SAD psychopathology.

As mentioned above, the combination of PDC and graph

theory techniques enhances the possibility of detecting relevant

features of the effective brain networks. To this end, we have

achieved a high classification accuracy in distinguishing three

classes of SAD and HC by using machine learning based

on a combination of information flow features and graph

theory measures. Taken together, our results suggest RSN brain

connectivity may serve as a neurophysiological biomarker for

SAD diagnosis.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding authors.

Ethics statement

The studies involving human participants were reviewed

and approved by Universiti Kuala Lumpur Royal College

of Medicine Perak (UniKL RCMP). The patients/participants

provided their written informed consent to participate in

this study.

Author contributions

NK and AA-E: study conception and design. AA-E: data

collection. AA-E and AAA-S: analysis and interpretation of

results. AA-E and AA-S: draft manuscript preparation. NY, FA-

S, and MA-H: experimental design and psychological revisions.

All authors reviewed the results and approved the final version of

the manuscript.

Funding

This research was supported by the Ministry of

Education, Malaysia under the Higher Institute Center of

Excellence (HiCOE) scheme awarded to the Centre for

Intelligent Signal and Imaging Research (CISIR), Universiti

Teknologi PETRONAS.

Acknowledgments

Researchers would like to thank the Deanship of Scientific

Research, Qassim University for funding the publication

of this project. Researchers also would like to thank the

Centre for Intelligent Signal and Imaging Research (CISIR),

Frontiers in Psychiatry 18 frontiersin.org

https://doi.org/10.3389/fpsyt.2023.1155812
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Al-Ezzi et al. 10.3389/fpsyt.2023.1155812

Universiti Teknologi PETRONAS for their support by providing

EEG data.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

1. Kessler RC, Chiu WT, Demler O, Walters EE. Prevalence, severity, and
comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey
Replication. Arch Gen Psychiatry. (2005) 62:617–27. doi: 10.1001/archpsyc.62.6.617

2. Stein MB, Stein DJ. Social anxiety disorder. Lancet. (2008) 371:1115–25.
doi: 10.1016/S0140-6736(08)60488-2

3. Knyazev GG, Savostyanov AN, Bocharov AV, Rimareva JM. Anxiety, depression,
and oscillatory dynamics in a social interaction model. Brain Res. (2016) 1644:62–9.
doi: 10.1016/j.brainres.2016.04.075

4. Engel K, Bandelow B, Gruber O,Wedekind D. Neuroimaging in anxiety disorders.
J Neural Trans. (2009) 116:703–16. doi: 10.1007/s00702-008-0077-9

5. Bruehl AB, Delsignore A, Komossa K, Weidt S. Neuroimaging in social anxiety
disorder–a meta-analytic review resulting in a new neurofunctional model. Neurosci
Biobehav Rev. (2014) 47:260–80. doi: 10.1016/j.neubiorev.2014.08.003

6. Sachs G, Anderer P, Dantendorfer K, Saletu B. EEG mapping in
patients with social phobia. Psychiatry Res Neuroimaging. (2004) 131:237–47.
doi: 10.1016/j.pscychresns.2003.08.007

7. Givon-Benjio N, Okon-Singer H. Biased estimations of interpersonal
distance in non-clinical social anxiety. J Anxiety Disord. (2020) 69:102171.
doi: 10.1016/j.janxdis.2019.102171

8. Ding J, Chen H, Qiu C, Liao W, Warwick JM, Duan X, et al. Disrupted functional
connectivity in social anxiety disorder: a resting-state fMRI study.Magn Reson Imaging.
(2011) 29:701–11. doi: 10.1016/j.mri.2011.02.013

9. Al-Ezzi A, Kamel N, Faye I, Gunaseli E. Review of EEG, ERP, and brain
connectivity estimators as predictive biomarkers of social anxiety disorder. Front
Psychol. (2020) 11:730. doi: 10.3389/fpsyg.2020.00730

10. Al-Ezzi A, Kamel N, Faye I, Gunaseli E. Analysis of default mode network in
social anxiety disorder: EEG resting-state effective connectivity study. Sensors. (2021)
21:4098. doi: 10.3390/s21124098

11. Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, et al.
Dissociable intrinsic connectivity networks for salience processing and executive
control. J Neurosci. (2007) 27:2349–56. doi: 10.1523/JNEUROSCI.5587-06.2007

12. Kim YK, Yoon HK. Common and distinct brain networks underlying panic and
social anxiety disorders. Prog Neuropsychopharmacol Biol Psychiatry. (2018) 80:115–22.
doi: 10.1016/j.pnpbp.2017.06.017

13. Koenig T, Studer D, Hubl D, Melie L, Strik W. Brain connectivity at different
time-scales measured with EEG. Philos Trans R Soc B Biol Sci. (2005) 360:1015–24.
doi: 10.1098/rstb.2005.1649

14. Putman P. Resting state EEG delta–beta coherence in relation to anxiety,
behavioral inhibition, and selective attentional processing of threatening stimuli. Int
J Psychophysiol. (2011) 80:63–8. doi: 10.1016/j.ijpsycho.2011.01.011

15. Al-Ezzi A, Yahya N, Kamel N, Faye I, Alsaih K, Gunaseli E. “Social anxiety
disorder evaluation using effective connectivity measures: EEG phase slope index
study,” in: 2020 IEEE-EMBS Conference on Biomedical Engineering and Sciences
(IECBES). Langkawi Island: IEEE (2021). p. 120–5.

16. Granger CW. Investigating causal relations by econometric models and cross-
spectral methods. Econometr J Econometr Soc. (1969) 37:424–38. doi: 10.2307/1912791

17. Kaminski M, Blinowska KJ. Directed transfer function is not influenced by
volume conduction–inexpedient pre-processing should be avoided. Front Comput
Neurosci. (2014) 8:61. doi: 10.3389/fncom.2014.00061

18. Biazoli CE Jr., Sturzbecher M, White TP, dos Santos Onias HH, Andrade KC,
de Araujo DB, et al. Application of partial directed coherence to the analysis of resting-
state EEG-fMRI data. Brain Connect. (2013) 3:563–8. doi: 10.1089/brain.2012.0135

19. Schelter B, Winterhalder M, Eichler M, Peifer M, Hellwig B, Guschlbauer B, et al.
Testing for directed influences among neural signals using partial directed coherence.
J Neurosci Methods. (2006) 152:210–9. doi: 10.1016/j.jneumeth.2005.09.001

20. Al-Shargie F, Tariq U, Hassanin O, Mir H, Babiloni F, Al-Nashash H. Brain
connectivity analysis under semantic vigilance and enhanced mental states. Brain Sci.
(2019) 9:363. doi: 10.3390/brainsci9120363

21. Varotto G, Visani E, Canafoglia L, Franceschetti S, Avanzini G, Panzica
F. Enhanced frontocentral EEG connectivity in photosensitive generalized
epilepsies: a partial directed coherence study. Epilepsia. (2012) 53:359–67.
doi: 10.1111/j.1528-1167.2011.03352.x

22. Al-Hiyali MI, Yahya N, Faye I, Al-Quraishi MS, Al-Ezzi A. Principal subspace of
dynamic functional connectivity for diagnosis of autism spectrum disorder. Appl Sci.
(2022) 12:9339. doi: 10.3390/app12189339

23. Xing M, Tadayonnejad R, MacNamara A, Ajilore O, DiGangi J, Phan KL, et al.
Resting-state theta band connectivity and graph analysis in generalized social anxiety
disorder. Neuroimage Clin. (2017) 13:24–32. doi: 10.1016/j.nicl.2016.11.009

24. Hamilton JP, Farmer M, Fogelman P, Gotlib IH. Depressive rumination, the
default-mode network, and the dark matter of clinical neuroscience. Biol Psychiatry.
(2015) 78:224–30. doi: 10.1016/j.biopsych.2015.02.020

25. Leuchter AF, Cook IA, Hunter AM, Cai C, Horvath S. Resting-state quantitative
electroencephalography reveals increased neurophysiologic connectivity in depression.
PLoS ONE. (2012) 7:e32508. doi: 10.1371/journal.pone.0032508

26. Al-Ezzi A, Al-Shargabi AA, Al-Shargie F, Zahary AT. Complexity analysis of
EEG in patients with social anxiety disorder using fuzzy entropy and machine learning
techniques. IEEE Access. (2022) 10:39926–38. doi: 10.1109/ACCESS.2022.3165199

27. Al-Ezzi A, Yahya N, Kamel N, Faye I, Alsaih K, Gunaseli E. Severity assessment
of social anxiety disorder using deep learning models on brain effective connectivity.
IEEE Access. (2021) 9, 86899–913. doi: 10.1109/ACCESS.2021.3089358

28. Ismail LE, Karwowski W. A graph theory-based modeling of functional brain
connectivity based on EEG: a systematic review in the context of neuroergonomics.
IEEE Access. (2020) 8:155103–35. doi: 10.1109/ACCESS.2020.3018995

29. Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis
of structural and functional systems. Nat Rev Neurosci. (2009) 10:186–98.
doi: 10.1038/nrn2575

30. Farahani FV, Karwowski W, Lighthall NR. Application of graph theory for
identifying connectivity patterns in human brain networks: a systematic review. Front
Neurosci. (2019) 13:585. doi: 10.3389/fnins.2019.00585

31. Akbarian B, Erfanian A. A framework for seizure detection using effective
connectivity, graph theory, and multi-level modular network. Biomed Signal Process
Control. (2020) 59:101878. doi: 10.1016/j.bspc.2020.101878

32. Liao W, Qiu C, Gentili C, Walter M, Pan Z, Ding J, et al. Altered effective
connectivity network of the amygdala in social anxiety disorder: a resting-state FMRI
study. PLoS ONE. (2010) 5:e15238. doi: 10.1371/journal.pone.0015238

33. Sladky R, Höflich A, KüblböckM, Kraus C, Baldinger P, Moser E, et al. Disrupted
effective connectivity between the amygdala and orbitofrontal cortex in social anxiety
disorder during emotion discrimination revealed by dynamic causal modeling for
fMRI. Cereb Cortex. (2015) 25:895–903. doi: 10.1093/cercor/bht279

34. Imperatori C, Farina B, Quintiliani MI, Onofri A, Gattinara PC, Lepore M,
et al. Aberrant EEG functional connectivity and EEG power spectra in resting state
post-traumatic stress disorder: a sLORETA study. Biol Psychol. (2014) 102:10–7.

35. Helsinki W. World Medical Association Declaration of Helsinki: ethical
principles for medical research involving human subjects. JAMA. (2013) 310:2191–4.
doi: 10.1001/jama.2013.281053

36. Ventura J, Liberman RP, Green MF, Shaner A, Mintz J. Training and quality
assurance with the structured clinical interview for DSM-IV (SCID-I/P). Psychiatry Res.
(1998) 79:163–73. doi: 10.1016/S0165-1781(98)00038-9

37. Liebowitz MR, Gorman JM, Fyer AJ, Klein DF. Social phobia: review of a
neglected anxiety disorder. Arch Gen Psychiatry. (1985) 42:729–36.

Frontiers in Psychiatry 19 frontiersin.org

https://doi.org/10.3389/fpsyt.2023.1155812
https://doi.org/10.1001/archpsyc.62.6.617
https://doi.org/10.1016/S0140-6736(08)60488-2
https://doi.org/10.1016/j.brainres.2016.04.075
https://doi.org/10.1007/s00702-008-0077-9
https://doi.org/10.1016/j.neubiorev.2014.08.003
https://doi.org/10.1016/j.pscychresns.2003.08.007
https://doi.org/10.1016/j.janxdis.2019.102171
https://doi.org/10.1016/j.mri.2011.02.013
https://doi.org/10.3389/fpsyg.2020.00730
https://doi.org/10.3390/s21124098
https://doi.org/10.1523/JNEUROSCI.5587-06.2007
https://doi.org/10.1016/j.pnpbp.2017.06.017
https://doi.org/10.1098/rstb.2005.1649
https://doi.org/10.1016/j.ijpsycho.2011.01.011
https://doi.org/10.2307/1912791
https://doi.org/10.3389/fncom.2014.00061
https://doi.org/10.1089/brain.2012.0135
https://doi.org/10.1016/j.jneumeth.2005.09.001
https://doi.org/10.3390/brainsci9120363
https://doi.org/10.1111/j.1528-1167.2011.03352.x
https://doi.org/10.3390/app12189339
https://doi.org/10.1016/j.nicl.2016.11.009
https://doi.org/10.1016/j.biopsych.2015.02.020
https://doi.org/10.1371/journal.pone.0032508
https://doi.org/10.1109/ACCESS.2022.3165199
https://doi.org/10.1109/ACCESS.2021.3089358
https://doi.org/10.1109/ACCESS.2020.3018995
https://doi.org/10.1038/nrn2575
https://doi.org/10.3389/fnins.2019.00585
https://doi.org/10.1016/j.bspc.2020.101878
https://doi.org/10.1371/journal.pone.0015238
https://doi.org/10.1093/cercor/bht279
https://doi.org/10.1001/jama.2013.281053
https://doi.org/10.1016/S0165-1781(98)00038-9
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Al-Ezzi et al. 10.3389/fpsyt.2023.1155812

38. Chen AC, Feng W, Zhao H, Yin Y, Wang P. EEG default mode network
in the human brain: spectral regional field powers. Neuroimage. (2008) 41:561–74.
doi: 10.1016/j.neuroimage.2007.12.064

39. Chai MT, Amin HU, Izhar LI, Saad MNM, Abdul Rahman M, Malik AS,
et al. Exploring EEG effective connectivity network in estimating influence of color
on emotion and memory. Front Neuroinform. (2019) 13:66. doi: 10.3389/fninf.201
9.00066

40. Delorme A, Makeig S. EEGLAB: an open source toolbox for
analysis of single-trial EEG dynamics including independent component
analysis. J Neurosci Methods. (2004) 134:9–21. doi: 10.1016/j.jneumeth.2003.
10.009

41. Rubinov M, Sporns O. Complex network measures of brain
connectivity: uses and interpretations. Neuroimage. (2010) 52:1059–69.
doi: 10.1016/j.neuroimage.2009.10.003

42. Duan RN, Zhu JY, Lu BL. “Differential entropy feature for EEG-based emotion
classification,” In: 2013 6th International IEEE/EMBS Conference on Neural Engineering
(NER). San Diego, CA: IEEE (2013). p. 81–4.

43. Katmah R, Al-Shargie F, Tariq U, Babiloni F, Al-Mughairbi F, Al-Nashash H.
A review on mental stress assessment methods using EEG signals. Sensors. (2021)
21:5043. doi: 10.3390/s21155043

44. Baccalá LA, Sameshima K. Partial directed coherence: a new concept in neural
structure determination. Biol Cybernet. (2001) 84:463–74. doi: 10.1007/PL00007990

45. Al-Shargie FM, Hassanin O, Tariq U, Al-Nashash H. EEG-based semantic
vigilance level classification using directed connectivity patterns and graph
theory analysis. IEEE Access. (2020) 8:115941–56. doi: 10.1109/ACCESS.2020.30
04504

46. Vaz F, de Oliveira PG, Principe J. A study on the best order for
autoregressive EEG modelling. Int J Biomed Comput. (1987) 20:41–50.
doi: 10.1016/0020-7101(87)90013-4

47. Al-Ezzi A, Kamel N, Faye I, Ebenezer EGM. “EEG frontal theta-beta ratio and
frontal midline theta for the assessment of social anxiety disorder,” in 2020 10th IEEE
International Conference on Control System, Computing and Engineering (ICCSCE).
IEEE (2020). p. 107–12.

48. Sporns O. Structure and function of complex brain networks. Dialog Clin
Neurosci. (2013) 15:247. doi: 10.31887/DCNS.2013.15.3/osporns

49. Newman ME, Girvan M. Finding and evaluating community structure in
networks. Phys Rev E. (2004) 69:026113. doi: 10.1103/PhysRevE.69.026113

50. van den Heuvel MP, de Lange SC, Zalesky A, Seguin C, Yeo BT, Schmidt R.
Proportional thresholding in resting-state fMRI functional connectivity networks and
consequences for patient-control connectome studies: issues and recommendations.
Neuroimage. (2017) 152:437–49. doi: 10.1016/j.neuroimage.2017.02.005

51. Chan YL, Ung WC, Lim LG, Lu CK, Kiguchi M, Tang TB. Automated
thresholding method for fNIRS-based functional connectivity analysis: validation with
a case study on Alzheimer’s disease. IEEE Trans Neural Syst Rehabil Eng. (2020)
28:1691–701. doi: 10.1109/TNSRE.2020.3007589

52. Kotsiantis SB, Zaharakis ID, Pintelas PE. Machine learning: a review
of classification and combining techniques. Artif Intell Rev. (2006) 26:159–90.
doi: 10.1007/s10462-007-9052-3

53. Jain AK, Duin RPW, Mao J. Statistical pattern recognition: a review. IEEE Trans
Pattern Anal Mach Intell. (2000) 22:4–37. doi: 10.1109/34.824819

54. Zhang J, Hua Y, Xiu L, Oei TP, Hu P. Resting state frontal alpha asymmetry
predicts emotion regulation difficulties in impulse control. Pers Individ Diff. (2020)
159:109870. doi: 10.1016/j.paid.2020.109870

55. Harrewijn A, Van der Molen M, Westenberg P. Putative EEG measures
of social anxiety: comparing frontal alpha asymmetry and delta–beta cross-
frequency correlation. Cogn Affect Behav Neurosci. (2016) 16:1086–98.
doi: 10.3758/s13415-016-0455-y

56. Davidson RJ, Marshall JR, Tomarken AJ, Henriques JB. While a phobic waits:
regional brain electrical and autonomic activity in social phobics during anticipation of
public speaking. Biol Psychiatry. (2000) 47:85–95. doi: 10.1016/S0006-3223(99)00222-X

57. Park Y, JungW, Kim S, Jeon H, Lee SH. Frontal alpha asymmetry correlates with
suicidal behavior in major depressive disorder. Clin Psychopharmacol Neurosci. (2019)
17:377. doi: 10.9758/cpn.2019.17.3.377

58. Bhattacharya BS, Coyle D, Maguire LP. Alpha and theta rhythm abnormality in
Alzheimer’s disease: a study using a computational model. In: From Brains to Systems.
Advances in Experimental Medicine and Biology, Vol. 718. New York, NY: Springer
(2011). p. 57–73.

59. Fingelkurts AA, Fingelkurts AA, Rytsälä H, Suominen K, Isometsä E, Kähkönen
S. Impaired functional connectivity at EEG alpha and theta frequency bands in major
depression. Hum Brain Map. (2007) 28:247–61. doi: 10.1002/hbm.20275

60. Babiloni C, Del Percio C, Lopez S, Di Gennaro G, Quarato PP, Pavone L, et al.
Frontal functional connectivity of electrocorticographic delta and theta rhythms during
action execution versus action observation in humans. Front Behav Neurosci. (2017)
11:20. doi: 10.3389/fnbeh.2017.00020
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