
Frontiers in Psychiatry 01 frontiersin.org

A biomarker discovery framework 
for childhood anxiety
William J. Bosl 1,2,3†, Michelle Bosquet Enlow 4,5*†, Eric F. Lock 6 and 
Charles A. Nelson 3,7,8

1 Center for AI & Medicine, University of San Francisco, San Francisco, CA, United States, 2 Computational 
Health Informatics Program, Boston Children’s Hospital, Boston, MA, United States, 3 Department of 
Pediatrics, Harvard Medical School, Boston, MA, United States, 4 Department of Psychiatry and 
Behavioral Sciences, Boston Children’s Hospital, Boston, MA, United States, 5 Department of Psychiatry, 
Harvard Medical School, Boston, MA, United States, 6 Division of Biostatistics, School of Public Health, 
University of Minnesota, Minneapolis, MN, United States, 7 Laboratories of Cognitive Neuroscience, 
Division of Developmental Medicine, Boston Children’s Hospital, Boston, MA, United States, 8 Harvard 
Graduate School of Education, Cambridge, MA, United States

Introduction: Anxiety is the most common manifestation of psychopathology 
in youth, negatively affecting academic, social, and adaptive functioning and 
increasing risk for mental health problems into adulthood. Anxiety disorders are 
diagnosed only after clinical symptoms emerge, potentially missing opportunities 
to intervene during critical early prodromal periods. In this study, we used a new 
empirical approach to extracting nonlinear features of the electroencephalogram 
(EEG), with the goal of discovering differences in brain electrodynamics that 
distinguish children with anxiety disorders from healthy children. Additionally, 
we examined whether this approach could distinguish children with externalizing 
disorders from healthy children and children with anxiety.

Methods: We used a novel supervised tensor factorization method to extract latent 
factors from repeated multifrequency nonlinear EEG measures in a longitudinal 
sample of children assessed in infancy and at ages 3, 5, and 7  years of age. We first 
examined the validity of this method by showing that calendar age is highly 
correlated with latent EEG complexity factors (r =  0.77). We then computed latent 
factors separately for distinguishing children with anxiety disorders from healthy 
controls using a 5-fold cross validation scheme and similarly for distinguishing 
children with externalizing disorders from healthy controls.

Results: We found that latent factors derived from EEG recordings at age 7  years 
were required to distinguish children with an anxiety disorder from healthy 
controls; recordings from infancy, 3  years, or 5  years alone were insufficient. 
However, recordings from two (5, 7  years) or three (3, 5, 7  years) recordings gave 
much better results than 7  year recordings alone. Externalizing disorders could 
be detected using 3- and 5  years EEG data, also giving better results with two 
or three recordings than any single snapshot. Further, sex assigned at birth was 
an important covariate that improved accuracy for both disorder groups, and 
birthweight as a covariate modestly improved accuracy for externalizing disorders. 
Recordings from infant EEG did not contribute to the classification accuracy for 
either anxiety or externalizing disorders.

Conclusion: This study suggests that latent factors extracted from EEG recordings 
in childhood are promising candidate biomarkers for anxiety and for externalizing 
disorders if chosen at appropriate ages.
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1. Introduction

Anxiety is the most common manifestation of psychopathology 
in youth, negatively affecting academic, social, and adaptive 
functioning and increasing risk for mental health problems into 
adulthood (1–4). Vulnerability may be established in early life: by 2 
to 5 years of age, 10%–20% of children meet criteria for at least one 
anxiety disorder, including generalized anxiety disorder, social 
anxiety disorder, and separation anxiety disorder (5, 6). In addition, 
middle childhood may be a core risk period for the emergence or 
exacerbation of anxiety, given the transition to formal schooling and 
consequent dramatic changes in contextual, cognitive, and social 
demands (7, 8). Existing methodology can effectively diagnose 
anxiety disorders only after emergence of clinical symptoms, 
resulting in missed opportunities to intervene during critical early 
prodromal periods. Accordingly, there is a need for prospective 
studies beginning in infancy that elucidate the early precursors of 
anxiety to inform the development of risk identification tools, 
allowing for preventative intervention to be  applied prior to the 
emergence of clinical symptoms.

Neurodevelopmental models of anxiety posit that vulnerability 
may arise from aberrant development of neural networks that mediate 
typical anxiety-related behaviors (9–13). These networks are 
hypothesized to be established during brief periods of heightened 
plasticity early in life (14). Molecular signals and neural maturation 
initiate the periods of plasticity when the organism becomes highly 
receptive to the environment and when relevant neurocognitive 
systems acquire their individual phenotypic characteristics (14, 15). 
The developmental timing of these processes in the human are poorly 
understood, however, given a paucity of studies using direct measures 
of brain activity and linking early brain development with later 
behavioral symptoms of anxiety. Moreover, although different anxiety 
phenotypes demonstrate distinctive features, they also share core 
characteristics, and comorbidity among anxiety disorders is common 
(16–19). Thus, there is a need to identify transdiagnostic markers that 
reflect underlying neural processes common across anxiety disorders/
phenotypes (20).

Establishing measurable indicators of anxiety vulnerability in 
early childhood may provide much needed risk biomarkers that 
enable early, preventive intervention. Even if the earliest biomarkers 
for anxiety risk do not yield a high degree of specificity, discovery of 
neurophysiological markers that indicate higher likelihood of later 
psychopathology holds great promise for identifying potentially 
at-risk children. Such identification tools would allow monitoring 
procedures to be implemented and, as indicated, strategies that target 
and re-direct underlying neurodevelopment in more optimal 
trajectories could be applied, thereby reducing the onset of clinical 
symptoms and associated adverse outcomes. Additionally, 
identification of predictive or concurrent neural biomarkers of anxiety 
may lead to discoveries of novel causal pathways, which could inform 
the development of more targeted, effective treatment and prevention 
efforts (21). Repeated assessments across early childhood are 
important to determine the developmental time-course of the neural 
processes involved in the pathophysiology of anxiety; the earliest age 
at which neural biomarkers are reliably predictive of anxiety risk; and 
the relative robustness of trajectories of neural functioning measures 
relative to measures at a given age in predicting child anxiety 
outcomes. Such information will allow for more precise identification 

methods and treatments to correct atypical processes and their 
downstream behavioral manifestations.

To date, neural signatures that are associated with psychopathology 
with high sensitivity and specificity remain elusive. Functional 
magnetic resonance imaging (fMRI) can predict individual differences 
in anxiety during middle childhood (22) and treatment responsivity 
in adults (23). However, fMRI is costly and complex, making it 
unlikely to be scalable for use as a general screening tool. A promising 
alternative approach is analysis of neural activity patterns measured 
via electroencephalogram (EEG) recordings. Efforts thus far to utilize 
EEG data for predicting mental health status and mental health 
trajectories have primarily applied traditional spectral power analysis. 
For example, frontal and parietal alpha resting-state EEG asymmetry 
have been linked to anxiety and related risk markers (e.g., threat 
biases, behavioral inhibition) (24–26). However, the predictive power 
of spectral power is limited.

A review of both event-related potentials (ERPs) and evoked 
Potentials (EPs) has demonstrated that both approaches have some 
ability to differentiate children with high anxiety levels from controls 
(27). Biomarkers for anxiety disorders have been extracted from EEGs 
using ERPs to discover differences between participants (21, 28–30). 
For example, the error-corrected negativity (ERN) ERP has been 
found to be increased in anxious youth and to predict increased risk 
for anxiety across development (31). A systematic review of EEG 
research found that the ERN is a promising biomarker of clinical 
anxiety (19). Additionally, ERP studies based on startle reactivity have 
differentiated different internalizing phenotypes from each other and 
controls, also supporting the potential of this measure as an anxiety 
biomarker (32). EEG measures extracting from both resting state and 
task based recordings, including power spectra, Higuchi fractal 
dimension (a nonlinear measure), and correlation indices (pairwise 
measures), all contributed to a machine learning biomarker for major 
depressive disorder (33), suggesting that linear and nonlinear 
measures, resting state or task-based, may be  useful for 
psychiatric biomarkers.

A theoretical foundation for using nonlinear analysis of brain 
function using EEG is based on a conceptualization of the brain as a 
dynamical system and the growing understanding of the information 
processing capacity of dynamical systems (34). Nonlinear measures 
are an attempt to reverse engineer quantitative measures of brain 
dynamics from time series measurements, using a well-known process 
called time series embedding. See Chapter 9 of (35) for a discussion 
of time series embedding in the context of neuroscience. Nonlinear 
analysis of EEG time series is a promising approach to functional 
brain analysis and biomarker discovery (36–38) and has demonstrated 
potential for very early prediction of emerging autism spectrum 
disorder (36, 39, 40), ADHD (41, 42), detection and monitoring of 
epilepsy (43–45), and measuring sleep disorders (46), among many 
others. However, the large number of nonlinear measures that can 
be computed (47), including different approaches to frequency or 
scale decomposition (48), and multiple scalp sensor arrangements 
create very large multidimensional sets of quantitative values that pose 
analytical challenges.

One of the goals of our project was to develop computational 
methods that would enable latent features to be  extracted from 
multiple EEG-derived measures to enable the relative importance 
of the growing number of EEG features to be explored. Although 
we do not address the full range of quantitative measures that may 
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be derived from EEGs, such as those described above, we use a 
relatively large number of nonlinear measures (plus traditional 
spectral power) as inputs to a tensor factorization algorithm to 
extract a much smaller number of latent factors. We hope that other 
researchers may find supervised tensor factorization useful for 
evaluating the contribution of additional EEG or physiological 
measures to latent biomarker discovery.

We have previously demonstrated that nonlinear EEG analysis 
applied to typically developing infants and infants at high risk for 
autism spectrum disorder based on family history was able to 
reliably predict which infants would later develop autism (36, 49–
51). Anxiety disorders have been described as dynamical disorders 
(52), suggesting that dynamical biomarkers for anxiety may 
be discovered. Here, we used an empirical approach to nonlinear 
EEG analysis with the goal of discovering differences in brain 
electrodynamics that distinguish children with anxiety disorders 
from children who do not have this condition. Importantly, EEG 
is a widely available, low-cost, easy-to-administer, time-efficient 
method that, as technology advances (e.g., advanced ambulatory 
methods), could be  incorporated into routine clinical practice, 
transforming opportunities for wide screening for risk and 
preventative intervention (30, 53).

The overall objective of the current study was to compute a set of 
nonlinear measures across traditional frequency bands from EEG 
data assessed repeatedly in early life, then use a supervised tensor 
factorization approach to extract latent features from the nonlinear 
measures to test whether these features are associated with anxiety 
diagnosis by middle childhood. To our knowledge, this is the first use 
of supervised tensor factorization for extracting latent nonlinear 
features from EEG signals. We  used the algorithm SupCP – 
“Supervised Canonical Polyadic” factorization – in this research (54). 
To demonstrate the utility of SupCP to extract latent features, we first 
applied this method to predict the calendar age of participants from 
nonlinear EEG features. We then compared group differences in the 
latent features from participants diagnosed with either an anxiety 
disorder or an externalizing disorder versus participants with no 
psychiatric history (healthy controls) to identify neural activity 
signatures predictive of anxiety diagnoses. We  included an 
externalizing disorder group to test the specificity of any findings to 
anxiety versus general psychopathology. We conducted these analyses 
in a community-based longitudinal cohort designed to examine how 
neural biomarkers and other risk factors in early life contribute to 
childhood anxiety risk. The dataset includes repeated EEG 
assessments, conducted in infancy (5-, 7-, or 12 months of age), 
3 years, 5 years, and 7 years of age, and detailed clinical assessments 
of child anxiety and other psychopathology diagnostic history at age 
5 years. By considering repeated assessments from infancy through 
middle childhood, we can determine if there are sensitive risk periods 
and clarify if two or more EEG recordings more robustly predict 
anxiety than assessment at a single time point. Importantly, 
we  present for the first time a novel latent feature extraction 
methodology based on supervised tensor factorization that allows 
clinical data to inform the extracted latent EEG features. The latent 
features are interpretable, making this methodology a potentially 
valuable discovery tool. This approach to integrated EEG and patient 
multimodal data analysis may be a useful addition to computational 
psychiatry (55, 56) and mental health informatics (57) 
research toolkits.

2. Methods

2.1. Participants

The current analyses use data from an ongoing longitudinal 
cohort study on the development of emotion processing during the 
first years of life. Participants (hereafter referred to as “children”) were 
recruited from a registry of local births comprising families who had 
indicated willingness to participate in developmental research. 
Exclusion criteria included known prenatal or perinatal complications, 
pre-term or post-term birth (±3 weeks from due date), developmental 
delay, uncorrected vision difficulties, and neurological disorder or 
trauma. After enrollment, families were no longer followed and their 
data were excluded from analyses if the child was diagnosed with an 
autism spectrum disorder or if a genetic or other condition known to 
influence neurodevelopment was discovered (e.g., hydrocephalus; 
absence seizures; brain tumor; maternal use of anticonvulsants, 
antipsychotics, opioids in pregnancy).

Families were enrolled in the study when the children were 
(randomly) 5, 7, or 12 months old (infancy assessment), with a 
subsample followed when the children were 3, 5, and 7 years of age. 
The current analyses began after completion of all 3 year assessments, 
with 5- and 7 years assessments ongoing. By design, approximately 
half of the cohort was randomly assigned to be  administered a 
protocol to collect EEG and ERP data at each assessment, and the 
other half of the sample to be  administered a protocol to collect 
functional near-infrared spectroscopy (fNIRS) data at each 
assessment. At age 5 years, all children’s mothers were invited to 
complete a semi-structured clinical interview to assess child lifetime 
psychiatric diagnoses. There were no differences between children 
who completed the EEG/ERP versus fNIRS protocol on child sex 
assigned at birth, race/ethnicity, or lifetime anxiety diagnoses, 
ps > 0.35. Children were eligible for inclusion in the current analyses 
if they provided EEG data at infancy, 3 years, and/or 5 years and 
clinical diagnostic data at 5 years. This resulted in an analytic sample 
size of 150 children, although the number of children measured at 
each developmental time point (infancy, 3, 5, 7 years) is less than 
this total.

2.2. Procedures

Children in the current analyses were invited in infancy and at 
ages 3, 5, and 7 years to participate in a laboratory visit that included 
measurements of baseline EEG. At age 5 years, the child’s mother was 
administered a semi-structured clinical interview that assessed the 
child’s lifetime clinical psychiatric diagnostic history. 
Sociodemographic data were obtained at study enrollment and at 
subsequent assessments as relevant via online questionnaires 
completed by the child’s parent (primarily the child’s mother). Study 
procedures were approved by the Institutional Review Board of 
Boston Children’s Hospital, and parents provided written informed 
consent prior to the initiation of any study activities; at age 7 years, 
children provided assent.

2.2.1. EEG recording, processing, and analysis
Continuous scalp EEG was recorded from a 128-channel 

HydroCel Geodesic Sensor Net (HCGSN; Electrical Geodesic Inc.), 
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referenced to the vertex electrode (Cz), and sampled at 500 Hz. 
Impedances were kept at or below 100 kiloohms. Thirty-second awake 
resting state EEG segments were selected for analysis from each child. 
This segment length has been appropriate in our previous studies of 
EEG biomarkers for autism (36, 40) and epilepsy (43–45). Another 
study has demonstrated that continuous 20 s segments of EEG 
recording are sufficient for analysis of cognitive function with 
nonlinear measures (51), and other studies have found that EEG 
segments of 60 s or less are stable for nonlinear analysis (58). The steps 
used to process EEG recordings, extract latent features, and predict or 
detect outcomes are shown in Figure 1. Each step shown (1, 2, 3a, and 
3b) is described in detail below.

The EEG signal from each of 19 electrodes corresponding to the 
traditional 10–20 arrangement were selected from the 128-channel 
Sensor Net dataset as shown in Figure 2. Each signal was decomposed 
into power-of-two frequency bands using the Daubechies (DB4) 
wavelet transform, which has been found to be well-suited to EEG 

analysis (59). Wavelet details containing discrete frequency bands 
were reconstructed to yield discrete frequency sub-signals that 
correspond approximately to commonly used frequency bands: delta, 
theta, alpha, beta, gamma, and gamma+. Approximations from a 
wavelet transform have been shown (48) to be equivalent to “scales” 
used in multiscale entropy analysis (60); we choose to use wavelet 
details in order to adhere to traditional frequency bands.

A number of nonlinear values were computed from the EEG 
sub-bands with the goal of characterizing dynamical aspects of neural 
function as fully as possible. These include sample entropy (SampE), 
correlation dimension (CD), and detrended fluctuation analysis 
(DFA), all computed using the publicly available nolds package1. 
Additional nonlinear values were computed using Recurrence 

1 https://pypi.org/project/nolds/

FIGURE 1

Data processing steps involved in analysis. (1) Multi-frequency decomposition of the signal and computation of nonlinear measures. (2) Latent feature 
extraction using Supervised Canonical Polyadic (SupCP) algorithm, including EEG measures and covariate data. (3a) Predicting age using regression 
with latent features. (3b) Classification of anxiety disorder group versus healthy control group, externalizing disorder group versus healthy control 
group, or anxiety disorder group versus externalizing disorder group.
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Quantitative Analysis (RQA). RQA, in principle, extracts all dynamical 
information about a dynamical system and works well even for short, 
noisy, non-stationary time series (61, 62). RQA measures were 
computed using the Python pyRQA package2 using the fixed RR 
option (RR = 0.05) and embedding dimension of 10. Values computed 
include determinism (DET), trapping time (TT), diagonal line length 
entropy (Lentr), maximum (Lmax), and mean (Lmean) (61–63).

A variation of recurrence plot analysis interprets the recurrence 
plot as a network. Recurrence network (RN) computation exploits an 
analogy between complex network theory and nonlinear time series 
analysis (64). This approach is complementary to RQA, resulting in 
additional nonlinear information that may not be  extracted by 
previously discussed methods (32). In particular, the RN approach 
extracts information regarding the structure of the underlying chaotic 
attractors, which are unavailable using the conventional algorithmic 
methods of nonlinear time-series analysis (64). The public PyUnicorn 
package3 was used to compute two additional RN measures from each 
EEG time series that measures information loss on chaotic attractors, 
which may be directly relevant to pathological neurodevelopment 
(65). These include vertical entropy (VertEnt) and average white noise 
vertical length (AvgVertWhiteLen).

Recent research suggests that the brain is a complex dynamical 
system whose optimal computational performance occurs near the 
edge of chaos, a region midway between purely ordered behavior and 
completely random behavior (66). The relationship between age and 
EEG complexity has begun to be explored, but a complete investigation 
of EEG complexity and childhood neurodevelopment is needed. In 
very young infants, before and soon after birth, Sample entropy 
(SampEnt) has been found to increase prenatally, but near and soon 
after birth SampEnt vacillates (67). Approximate entropy has been 
found to be an accurate biomarker for age-related decline in older 
adults (68). The meaning of the physics context and mathematical 

2 https://pypi.org/project/PyRQA/

3 https://github.com/pik-copan/pyunicorn

descriptions of various complexity measures have made it difficult to 
understand how the complexity of EEG signals relates to behavioral 
constructs. A recent review attempts to provide an overview of this 
topic for neuroscientists and psychologists. In general, complexity 
measures “can be broadly categorized as measures of predictability 
and regularity” (69). It has been noted that “the present concept of 
entropy [in development] resembles the ‘entropy’ of physics and 
mathematical information theory only at the intuitive level” (70). 
Recently, the development of an approach to analyzing time series 
called reservoir computing exploits the information processing 
capability of complex dynamical systems (71–74). The implication is 
that physical and mathematical concepts from nonlinear or chaotic 
dynamics may be appropriate for describing the dynamics of brain 
function as computed from time series analysis. Although promising, 
a better understanding of the relationship among the brain, cognitive 
function, and dynamical systems concepts awaits explication. The 
behavioral symptoms that define psychiatric disorders may 
be characterized as higher levels of neural organization (70). In terms 
of dynamical systems, these higher levels of organization represent 
phase transitions in the system (75). In principle, the phase transitions 
that represent neural correlates of disordered behaviors, such as 
anxiety, should be reflected in measurable differences in nonlinear 
measures. We hypothesized that empirically comparing nonlinear 
measures in different clinical diagnostic groups (e.g., anxiety disorders, 
externalizing disorders, and healthy controls) would reveal 
these differences.

In summary, step 1 in Figure 1 represents decomposition of the 
time series from each EEG sensor into standard frequency bands. 
From each band, 12 nonlinear values were computed: SampE, CD, 
DFA, seven RQA values, and two recurrence network values. In 
principle, these nonlinear values give a relatively complete description 
of the dynamical function of the brain, as much as the imperfect scalp 
recordings will allow. Supplementary Table S1 lists the 12 nonlinear 
measures that were computed and gives a brief description of the 
formal meaning of each used in the time series analysis literature. 
We  have also included a brief description about the possible 
neurophysiological meaning of each measure, although one of the 
goals for the latent feature extraction methods introduced in this 
paper was to begin to discover, empirically, the neuropsychiatric 
correlates of these measures. We  speculate that these nonlinear 
measures may find a place in a matrix as fundamental neural measures 
that cut across multiple different diagnostic categories, much like in 
the Research Domain Criteria (RDoC) conceptualization of 
neuropathology (76, 77).

Nine of the measures used for our analysis were derived from 
recurrence plot analysis. Recurrence plots are two-dimensional 
projections of multidimensional phase portraits that result from an 
analysis of time series called time delay embedding. Recurrence 
plots result in intricate patterns that can be quantitatively analyzed 
to extract information about system dynamics (78). The idea for 
quantifying recurrence plots (RP) was first developed by Zbilut and 
Webber (79, 80) and extended with new measures of complexity 
(81). Measures based on diagonal structures in the RP are related 
to chaos-order transitions in systems dynamics (82), whereas 
measures based on vertical structures are related to chaos-chaos 
transitions or laminar phases (81). Although these concepts are 
well-defined mathematically for formal dynamical systems, their 
meaning in the context of cognitive neuroscience remains to 

FIGURE 2

Scalp view of sensor locations for the standard 10–20 EEG montage.
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FIGURE 3

Tensor organization of multiscale EEG data with additional covariate data shown as a matrix sharing a single axis, participant ID, with the EEG tensor. 
The developmental time axis is not shown. Latent factors can be used as input to traditional machine learning algorithms. Alternatively, a probabilistic 
outcome can be computed using the tensor model.

be explicated. We posit that empirical studies, such as the current 
study, are one way forward to discovering the relations between 
dynamical measurements of the brain and observed behavior or 
clinical symptoms.

The scientific goal of our analysis was to find which of these 
sensors, frequency bands, and nonlinear measures were most strongly 
associated with anxiety diagnosis. To accomplish this, we implemented 
and tested a novel approach to analyzing these complex measures 
based on supervised tensor factorization, which also enables a 
probabilistic output calculation that can be interpreted as a risk factor. 
To test our algorithm, we first applied supervised tensor factorization 
to find latent EEG features associated with calendar age. Given that 
development may be considered a process of brain complexification, 
we hypothesized that latent complexity features would be strongly 
correlated with age and thus provide a readily understood application 
of this approach to EEG analysis.

2.2.2. Supervised tensor analysis for latent feature 
discovery

A significant challenge with multiscale nonlinear signal analysis 
is finding latent features among the large number of computed values 
across all scalp sensors, frequencies, and nonlinear measures. We used 
a novel approach to organizing EEG measures based on a multiarray 
or tensor (83). Tensor factorization extends to higher dimensions 
common matrix factorization methods, such as principal components 
analysis (PCA) and the singular value decomposition (83). Recently, 
supervised tensor decomposition methods have been developed that 
allow labeled data plus covariate data to be used to condition the 
selection of underlying latent patterns. We adopted one such approach, 
based on a supervised version of the Canonical Polyadic (CP) 
approach to tensor decomposition (54).

As described previously, each EEG recording consisted of time 
series derived from each of the 19 scalp sensors. Each of these time 
series was decomposed into several sub-bands corresponding to the 
commonly used bands of delta, theta, alpha, beta, and gamma, and on 
each sub-band the nonlinear measures were computed. These 
computed values were arranged into a 3-dimensional tensor as shown 
in Figure 3. An additional axis for time, which is not shown in the 
figure, was included for recordings taken at successive ages within 
child. A data tensor was derived for each child, comprising the first 
dimension, shown as the succession of boxes in Figure 3.

When using this approach, the number of desired latent factors 
must be  specified as the tensor rank a priori. There is no precise 
formula for tensor rank determination (54); thus, it is often 
determined experimentally (83). We  found that choosing a rank 
greater than 30 did not improve results. Hence, R = 30 is used 
throughout the remainder of our analysis.

Similar to the Singular Value Decomposition (SVD) or principal 
components analysis (PCA) for matrices, the tensor decomposition 
will find a reduced dimensionality, latent feature set (84–86). The 
canonical polyadic decomposition (CPD) of a rank R tensor factorizes 
the tensor as a sum of R rank-1 tensors (83), as illustrated in Figure 3. 
Our approach is based on a supervised CP method, SupCP, that uses 
the specific class labels and covariate data to extract features that are 
specifically suited to the particular classification task at hand (54). The 
result is a set of latent factors that are a linear combination of the most 
significant contributions in each tensor dimension. We emphasize 
here that in the SupCP factorization algorithm, the latent variables are 
informed by both group labels and additional covariates. The labels 
and optional additional covariate data enable computation of latent 
structures that are more relevant to the groups of interest and 
interpretable due to covariate supervision (54). The side matrix in 
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Figure 3 that is aligned with the primary data tensor represents the 
group labels and covariate data.

The extracted latent factors were used in one of two ways for 
classification and regression: (1) the extracted features were used in 
traditional machine learning methods, which we applied to test the 
method for predicting calendar age from nonlinear values. Latent 
features were input to several different regressors available in the 
Python scikit-learn package.4 Classification can also be achieved 
using similar classifiers when the outcome labels are discrete 
variables, such as having an anxiety disorder or not. This approach 
to detecting anxiety disorder diagnosis was used. (2) A probability 
of class membership can also be  computed directly using the 
supervised factorization. Given an EEG tensor for participant Xi, 
the likelihood of Xi belonging to each of the classes is denoted 
P(Xi,|Y*), where Y* could give the specified class and can also 
include the covariate data for the participant of interest. The 
likelihood was computed by taking the exponent of Eq. (4) in (54), 
which gave the log-likelihood, marginalized over U. Given a prior 
probability for each class [e.g., P(Y = k)], Bayes rule was applied to 
compute the posterior probabilities for Xi belonging to each class, 
for example, P(Yi = k|Xi). The class with the highest membership 
probability was then chosen as the predicted label. The probability 
may also be interpreted as a risk probability, although we have not 
explored such an approach in the current analysis. The result of this 
computation was to assign a most likely class membership (healthy 
control or disorder) for each member of the dataset. Group statistics 
were then computed for the model as an initial assessment of the 
latent feature model. Future studies with independent test data will 
be required to test model generalizability.

The raw data included EEG recordings in infancy, and at 3, 5, and 
7 years of age. Sociodemographic data included the exact age when the 
first EEG recording was made in the first year, the child’s sex assigned 
at birth, birthweight, race, ethnicity, and parental education. The 
current implementation of SupCP used in this paper (54) assumes that 
the axis scales have discrete values, such as frequency band and sensor 
location. In our use of the algorithm for anxiety and externalizing 
disorder biomarker discovery, we used integer values for the EEG 
recording age: 1 (infancy), 3 years, 5 years, and 7 years, when the actual 
recording age in months was available and varied slightly around the 
target age.

2.2.3. Child psychiatric diagnoses
Child lifetime psychiatric history was assessed using the 

Diagnostic Interview for the Preschool Age (DIPA). The DIPA is a 
validated semi-structured interview designed specifically for assessing 
DSM diagnoses in young children (87). Version 7/12/14 of the DIPA 
was administered, which reflects all relevant DSM-5 criteria. Trained, 
clinically supervised research staff administered the DIPA to the 
child’s mother in person or over a HIPAA-compliant video 
conferencing platform when the child was approximately 5 years of 
age. The current analyses considered psychiatric disorders assessed via 
the following modules: generalized Anxiety Disorder (GAD), 
Separation Anxiety Disorder (SAD), Social Phobia/Social Anxiety 
Disorder (SP), Attention-Deficit/Hyperactivity Disorder (ADHD), 

4 https://scikit-learn.org/stable/supervised_learning.html

Oppositional Defiant Disorder (ODD), Conduct Disorder (CD), 
Major Depressive Disorder (MDD), Disruptive Mood Dysregulation 
Disorder (DMDD), Obsessive–Compulsive Disorder (OCD), and 
Posttraumatic Stress Disorder (PTSD). Symptom frequency and 
severity and functional impairment were assessed for each module to 
determine if diagnostic criteria were met during the child’s lifetime. 
For the purposes of the current analyses, children were categorized by 
their lifetime diagnostic history: (1) anxiety group = presence of at 
least one anxiety disorder, including GAD, SAD, and/or SP, with no 
history of an externalizing disorder, (2) externalizing group = presence 
of ADHD, ODD, and/or CD, with no history of an anxiety disorder, 
and (3) healthy control group = no history of any psychiatric disorder, 
i.e., none of the diagnoses listed above. Children who were comorbid 
for both an anxiety disorder and an externalizing disorder were not 
included in analyses to allow for comparison of distinct anxiety versus 
externalizing groups.

2.2.4. Covariates
Covariates considered included child’s age, sex assigned at birth, 

race, ethnicity, and maternal and paternal educational attainment. 
Child age was calculated as a continuous variable. The child age at 
initial EEG recording was included as covariate information when 
analyzing the latent EEG features for anxiety or externalizing 
disorders. For age regression analyses, the exact age at each recording 
was used as the predicted outcome value. Child race was categorized 
as American Indian/Alaska Native, Asian, Native Hawaiian/Other 
Pacific Islander, Black/African American, White, or more than one 
race. Child ethnicity was categorized as Hispanic/Latino or not 
Hispanic/Latino. Parental educational attainment was categorized as 
less than high school degree, high school degree/GED, Associate’s 
degree, Bachelor’s degree, Master’s degree, or graduate degree (M.D., 
Ph.D., J.D., or equivalent). Race, ethnicity, and parental education 
were initially evaluated as covariates, but found to not improve 
accuracy of any results. Hence, these variables are not considered 
further in this study.

3. Results

We first review sociodemographic characteristics of our sample, 
then present the results from our test case of predicting calendar age 
from latent EEG features derived using supervised tensor factorization. 
Finally, we  present the main results from our analysis of clinical 
diagnosis detection or prediction.

3.1. Sociodemographic analysis

Table 1 provides the sociodemographic characteristics of the study 
sample. Due to exclusionary criteria, all children were born full term 
(37 weeks to 43 weeks). Children were also primarily of birthweight 
appropriate for gestational age (M = 3,541 g, SD = 701 g, 96% > 2,500 g). 
As noted above, children were excluded from the study if there were 
any known developmental delays, neurological or neurodevelopmental 
disorder or trauma, or maternal use of certain medications during 
pregnancy. At the time of these analyses, EEG data were available for 
150 children in infancy, 109 at age 3 years, 114 at age 5 years, and 34 at 
age 7 years.
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As displayed in Table 2, 74% (n = 111) of the sample did not meet 
criteria for any of the assessed clinical disorders [healthy control (HC) 
group], 19% (n = 29) met criteria for one or more anxiety disorders 
and no externalizing disorder [anxiety disorder (AD) group], and 7% 
(n = 10) met criteria for one or more externalizing disorders and no 
anxiety disorder [externalizing disorder (ED) group]. One child in the 
externalizing group had a comorbid MDD diagnosis. No child met 
criteria for OCD. Two children had a history of both anxiety 
disorder(s) and externalizing disorder(s), and one child met criteria 
for PTSD and no other diagnoses and thus did not fit into any of the 
a priori diagnostic groups. These three children were not included in 
the final sample size of 150. Among the 29 children in the anxiety 
disorder group, 25 (86%) had met criteria for one anxiety disorder and 
4 (14%) for two anxiety disorders. As shown in Table 2, the most 
frequently represented diagnosis was SP, followed by SAD, and then 
GAD. Among the 10 children in the externalizing disorder group, 7 

(70%) met criteria for one externalizing disorder and 3 (30%) for two 
externalizing disorders. ADHD was the most commonly represented 
diagnosis, followed by ODD, and one instance of CD. No differences 
were found among the three diagnostic groups on any of the 
covariates, including sex assigned at birth, birthweight, or maternal or 
paternal education level. Multiple comparison among the diagnostic 
groups for each covariate was computed using the anova function and 
TukeyHSD function in R to show p-values for each pairwise 
comparison: p > 0.2 in all cases.

3.2. Developmental age biomarker from 
nonlinear EEG analysis

Typical brain development may be  considered a process of 
complexification and refinement (88). If so, measures of 

TABLE 1 Sample characteristics (N  =  150).

n % M SD

Child age, infant assessment (months) 7.92 2.75

Child age, 3 years assessment (months) 37.52 1.46

Child age, 5 years assessment (months) 62.43 1.80

Child age, 7 years assessment (months) 88.84 3.16

Child sex assigned at birth (male) 76 50.7

Child race

White 122 81.3

Asian 4 2.7

Black/African American 3 2.0

More than one race 20 13.3

Child ethnicity (Hispanic) 20 13.3

Maternal age at enrollment (years) 33.85 3.67

Paternal age at enrollment (years) 35.82 4.58

Maternal education

Associate’s degree 8 5.3

College degree 40 26.7

Master’s degree 68 45.3

Graduate degree 33 22.0

Paternal education

Associate’s degree or less 23 15.3

College degree 45 30.0

Master’s degree 50 33.3

Graduate degree 30 20.0

Annual household income

<$35,000 3 2.4

$35,000–$49,999 5 3.9

$50,000–$74,999 14 10.9

$75,000–$99,999 23 17.8

$100,000+ 84 65.1

EEG data were available for 150 participants in infancy, 109 at age 3 years, 114 at age 5 years, and 34 at age 7 years. Missing data for remaining sociodemographic variables as follows: child sex 
assigned at birth = 0, child race = 1, child ethnicity = 2, maternal age at enrollment = 3, paternal age at enrollment = 7, maternal education = 1, paternal education = 2, annual household 
income = 21.
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electrodynamical complexity would be expected to change with age. 
A search of hundreds of computed values is not an efficient way to 
identify biomarkers, nor is it correct to assume that these values are 
independent. Some nonlinear values may measure similar 
properties, such as sample entropy and the entropy derived from 
recurrence plots. Treating all measures as independent variables 
may miss interactions between variables when correlating with age 
and is a time-consuming process. As described in the Methods 
section, EEG features were organized into a tensor structure for 
analysis. We sought to discover latent variables, which combine 
nonlinear measures, scalp locations, and frequency ranges, that 
were most robustly associated with age using supervised tensor 
factorization to extract latent factors. Age was the only covariate 
used for the supervised factorization calculation. The latent factors 
were then used to compute correlations with age. Thirty latent 
features were computed. Each latent variable can be written as a 
linear set of weights for the features in each axis, represented by 

each column in Figure 4. Thus, each factor is represented by a vector 
of weights. A correlation coefficient and value of p were computed 
for each latent factor, and the individual factors were ranked from 
largest correlation coefficient to smallest. All latent factors with a 
correlation coefficient |r| > 0.2, selected from the 30 latent features 
that were computed, are plotted in Figure 4. A complete table of all 
nonlinear values computed is presented in Supplementary Table S1.

Several results are found from examining the latent features in 
Figure  4. Determinism (DET) was consistently the most highly 
weighted measure in all latent factors. Laminarity (LAM) and the 
three entropy measures Lentr, SampE, and VertEnt were also 
represented in the latent factors. We have not done further research to 
determine if these entropy measures are independent or themselves 
highly correlated. They may be  different algorithms for a similar 
measure of signal complexity. Lmean, TT, and AvgWhiteVertLen had 
very low weight across all frequency bands and all scalp locations, 
indicating that these did not contribute to age predictions. Frontal and 

FIGURE 4

The latent factors that had an individual correlation with age of |r|  >  0.2 are displayed here as the most informative factors for age. The right-most 
column illustrates age correlation with the single latent feature for that row. Age correlation results in Table 3 were computed using all latent features 
shown here.

TABLE 2 Child lifetime psychiatric diagnostic group by age 5  years.

Diagnostic group n
% within sample 
with diagnosis

% within group with 
diagnosis

Healthy control (no disorder) 111 74% –

Anxiety disorder(s) only 29 19%

Social Phobia/Social Anxiety Disorder 19 13% 66%

Separation Anxiety Disorder 10 7% 34%

Generalized Anxiety Disorder 4 3% 14%

Externalizing disorder(s) only 10 7%

Attention-Deficit/Hyperactivity Disorder 8 5% 80%

Oppositional Defiant Disorder 4 3% 40%

Conduct Disorder 1 1% 10%

Diagnoses within diagnostic group (anxiety; externalizing) are not mutually exclusive. Children comorbid for one or more anxiety disorders and one or more externalizing disorders (n = 2) 
were not included in analyses.
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central-parietal scalp electrodes and lower frequencies were found to 
be the most important factors associated with age.

We then used the three latent factors shown in Figure  4 as 
predictors for several different machine learning regression methods 
and evaluated the models using 5-fold cross-validation. Similar 
regression coefficients were found for all methods. Results are shown 
in Table 3. We chose to use latent factors that individually had at least 
weak correlation (|r| > 0.2) with age. Using more latent factors did not 
greatly improve correlation, suggesting that the highest ranked latent 
features contain most of the predictive information. The relatively 
similar correlation coefficients for all methods suggest that the latent 
variables are highly correlated with age, independent of the regression 
method. The best results were found with the random forest regressor, 
r = 0.76, p = 7.6e-72, and the mean age error was 16.7 months.

3.3. Biomarkers for anxiety and 
externalizing disorders

Potential biomarker profiles for anxiety disorders and for 
externalizing disorders were found by extracting latent features from 
nonlinear EEG measures, using the probabilistic classification denoted 
in step 3b in Figure 1. A 5-fold cross-validation scheme was used to 
test the generalizability of the latent features (or, n-fold cross-
validation when the number of participants in the least populated 
group, n, is less than 5). The following comparisons were conducted 
independently: anxiety disorders versus healthy controls; externalizing 
disorders versus healthy controls; and anxiety disorders versus 
externalizing disorders. For each comparison, a stratified training/test 
set split was computed using the StratifiedKFold function in the 
Python scikit-learn package. The training set for each fold was used to 
compute latent features via the supervised tensor factorization 
algorithm SupCP (54). Using the latent features derived from the 
training set, the probability of class membership was computed for the 
test set. In this way, a predicted class membership was computed for 
every child using latent features that were derived from independent 
training data. The outcome probabilities were used to compute a Brier 
score and, by varying the threshold for class membership, the area 
under the receiver operator characteristic (AU-ROC) curve. The 
resulting scores are presented in Table 4.

The supCP algorithm allows for covariates to be included as 
training data along with the class labels. We evaluated available 
covariate data to determine if any improved predictive results, 
including child sex assigned at birth, birthweight, race, ethnicity, 
and maternal and paternal education. We found that sex assigned 
at birth had the largest influence on results. Both anxiety and 
externalizing disorder prediction accuracy were better when sex 
assigned at birth was included a covariate. Including birthweight as 
a covariate degraded accuracy for anxiety but resulted in modest 
improvement to prediction of externalizing disorders. As noted 
above, none of the other covariates appeared to improve results and 
were thus not examined further. The following results are inferred 
from Table 4.

TABLE 3 Coefficients of determination and correlation coefficients 
computed from latent factors extracted by SupCP using calendar age as 
the predicted outcome.

Regression 
model

Coefficient of 
determination

Correlation 
coefficient

KNN 0.58 0.76

Linear regression 0.52 0.72

Random Forest 0.58 0.76

Gradient Boost 0.54 0.74

SVM rbf 0.59 0.77

SVM linear 0.46 0.67

The three highest ranked latent features shown in Figure 4 were used as input to machine 
learning regression algorithms in a 5-fold cross validation scheme. Coefficients of 
determination and correlation coefficients were computed for each participant, with results 
as shown. Increasing the number of latent features did not improve the correlation 
coefficient.

TABLE 4 Five-fold cross-validation was used to compute 30 latent 
features using the SupCP tensor factorization algorithm.

Age (N con, 
N disorder)

AU ROC, Brier score

EEG 
only

EEG  +  sex EEG  +  bw  +  sex

Anxiety disorders versus healthy controls

1 (103, 27) 0.30, 0.73 0.42, 0.51 0.47, 0.30

3 (63, 17) 0.44, 0.21 0.44, 0.21 0.53, 0.21

5 (72, 22) 0.48, 0.60 0.45, 0.47 0.54, 0.28

7 (20, 7) 0.63, 0.25 0.76, 0.26 0.72, 0.29

1,3 (63, 16) 0.37, 0.72 0.41, 0.45 0.51, 0.29

3, 5 (49, 14) 0.58, 0.31 0.55, 0.23 0.55, 0.26

5, 7 (17, 6) 0.60, 0.34 0.70, 0.28 0.68, 0.24

1, 3, 5 (49, 14) 0.44, 0.69 0.38, 0.51 0.53, 0.26

3, 5, 7 (14, 4) 0.86, 0.21 0.82, 0.08 0.57, 0.22

1, 3, 5, 7 (14, 4) 0.64, 0.19 0.46, 0.23 0.50, 0.28

Externalizing disorders versus healthy controls

1 (103, 9) 0.33, 0.67 0.52, 0.43 0.24, 0.22

3 (68, 6) 0.68, 0.36 0.69, 0.24 0.58, 0.13

5 (72, 8) 0.61, 0.33 0.60, 0.25 0.59, 0.11

1,3 (63, 5) 0.78, 0.60 0.65, 0.14 0.71, 0.36

3, 5 (51,5) 0.57, 0.26 0.82, 0.16 0.84, 0.09

1, 3, and 5 (51, 5) 0.63, 0.44 0.79, 0.24 0.70, 0.07

Anxiety disorders versus externalizing disorders

1 (103, 36) 0.29, 0.71 0.41, 0.52 0.51, 0.30

3 (63,21) 0.44, 0.31 0.64, 0.26 0.71, 0.19

5 (22,8) 0.51, 0.29 0.63, 0.25 0.50, 0.31

1, 3 (63, 21) 0.48, 0.69 0.48, 0.51 0.59, 0.27

3, 5 (14,4) 0.45, 0.27 0.75, 0.30 0.86, 0.19

1, 3, and 5 (14, 4) 0.68, 0.29 0.79, 0.23 0.68, 0.22

Using latent features from each training set, the probability of belonging to either of two 
comparison groups (anxiety disorder, externalizing disorder, or healthy controls) was 
computed. The Brier scores were then computed from these probabilities. The area under the 
receiver operator characteristic (AU-ROC) curve was computed by varying the probability 
threshold for group membership. The yellow shaded boxes are the best scores for each 
classification. Gray shaded boxes are also considered to demonstrate some predictive value, 
based on the guide that AU-ROC >0.70 is acceptable and >0.80 is considered good (89). 
We also note that the Brier score generally follows the AU-ROC curve in this table. Brier 
score <0.20 indicates modest predictive ability and <0.10 is considered good (90).
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 1) None of the three comparison groups (anxiety, externalizing, 
and healthy controls) could be distinguished using EEG data 
alone from a single recording; multiple years or sex as a 
covariate were required. Infancy data were not useful for 
improving any results.

 2) Anxiety disorders were detected using 3-, 5-, and 7 years data 
with only EEG features or, with better results, when sex 
assigned at birth was included as a covariate. Although 7 year 
data alone produced better results than any combination of 
earlier (1-, 3-, and 5 years) data, it appears that a trajectory (3-, 
5-, 7 years) gave better results than a single snapshot.

 3) Externalizing disorders were detected with 3- and 5 years EEG 
data if sex assigned at birth was included as a covariate. When 
birthweight was included as an additional covariate, results 
improved slightly. As noted above, there were no group 
differences among diagnostic groups in birthweight; thus, 
birthweight alone could not differentiate among the groups. 
Inclusion of infancy EEG data with 3- and 5 years EEG data 
appeared to degrade results slightly, suggesting that most of the 
information came from 3- and 5 years data and that including 
infancy data changed the (linear) trajectory.

 4) Anxiety and externalizing disorders were distinguished from 
each other by 3- and 5 years data if sex assigned at birth and 
birthweight were also considered. No 7 years EEG recordings 
were available at the time of this study for children with 
externalizing disorders to be able to consider the contribution 
of 7 years EEG data.

 5) If anxiety and externalizing disorders were combined together 
into a single “atypical” group, classification was poor (AU 
ROC = 0.53, Brier = 0.42 when 3- and 5 years EEG data and sex 
at birth were included). This finding suggests that different 
latent factors are needed to distinguish anxiety vs. externalizing 
disorders from healthy controls. These results are not shown in 
Table 4.

For both anxiety and externalizing disorders groups, changes over 
two or more measurements appear to be more informative than any 
single snapshot of brain activity. This suggests that the trajectory of 
nonlinear values is essential to detecting both anxiety and 
externalizing disorders. Compared to anxiety disorders, which 
required 7 years data to distinguish from healthy controls, 
externalizing disorders were detected earlier, at 3 to 5 years. Overall, 
inclusion of infancy EEG data does not appear to contribute to 
detecting externalizing disorders when comparing to either controls 
or children with anxiety disorders.

The latent features that were extracted from the EEG tensor for 
each of the three group comparisons were also computed from the full 
dataset (not using cross validation) in order to examine which 
nonlinear measures, sensors, and frequencies were contributing the 
most to the latent features. This information is shown in Figures 5, 6 
for anxiety disorders and externalizing disorders, respectively. For 
Figure 5 (anxiety), we used the data that gave the best classification 
results: 3-, 5-, and 7 years EEG data plus sex at birth as a covariate. For 
Figure 6 (externalizing disorders), we used 3- and 5 years EEG data 
plus sex at birth as a covariate because these data also gave good 
classification results and used the same variables as for anxiety 
disorders (except for 7 years EEG data, which were not available for 
children with externalizing disorders). This approach allows the 

respective latent factors to be  compared most easily. Inclusion of 
birthweight had minor effect on the results and, upon visual 
inspection, did not change the latent factor results for externalizing 
disorders; thus, showing additional figures would not convey more 
information about the latent factors.

Each row in the figures represents a single latent factor. The latent 
factors were ranked by extracting the weight of that latent factor for 
each participant [weights are computed in the factorization algorithm 
and reported in the U matrix, as described in (54)]. Although 30 latent 
features were computed, we reasoned that features that individually 
showed the greatest differences between healthy controls and either of 
the diagnostic groups would contribute most toward differentiating 
the groups. This reasoning is consistent with our findings for age 
correlation that used only the highest ranked features for correlation 
analysis. Our primary goal was to identify the set of latent variables 
that contribute the most to classification accuracy. Each row of each 
figure shows the relative weight or contribution from elements of each 
axis of the data tensor: nonlinear measure, sensor location, frequency 
band, and developmental age at which the EEG recording was done.

For anxiety disorders, the nonlinear features most highly weighted 
were laminarity (LAM), determinism (DET), and the entropy 
measures (SampE, Lentr, and VertEnt). These measures were 
consistently the dominant contributors, in this order. A brief 
discussion of these variables was given in the Methods section. 
Laminarity is related to the amount of laminar or smooth phases in 
the system and intermittency or alternation between periodic and 
chaotic regimes, whereas determinism is related to dynamical system 
predictability. The entropy values are all measures of signal complexity, 
reflecting complexity of the neural circuits that created the signal. A 
lower value of sample entropy indicates more self-similarity in a signal 
and lower complexity. We did not test how highly correlated these 
different entropy measures are.

Figure 5 also reveals that, for anxiety disorders, frontal sensors, 
followed by parietal sensors, are more heavily weighted, although all 
sensors contributed to the latent factors. Latent factors appeared to 
be  composed primarily of either lowest (delta, theta) or highest 
frequencies (gamma, gamma+), but not both. Middle frequencies are 
weighted less. Data from 3, 5, and 7 years appear to contribute to 
anxiety latent factors, with the two most significant latent factors 
composed of only 7 years and only 5 years data, respectively.

The composition of latent factors for externalizing disorders 
reveals some differences from those for anxiety disorders. Although 
laminarity, determinism, and the three entropy measures are again 
most prominent, their ratios appear to vary considerable in each of the 
latent factors. The most prominent sensor locations are three frontal 
locations, Fp1, Fp2, and Fz, and two parietal locations, Pz and P8. All 
other sensors are less prominent than they were for anxiety disorders. 
As for anxiety disorders, latent factors for externalizing disorders 
tended to be composed of either low or high frequency bands, not 
both, although one latent factor was composed of all frequencies 
equally. Data from 3 years and from 5 years appeared 
equally represented.

4. Discussion

The overall objective of the current study was to compute a set of 
nonlinear measures across traditional frequency bands from EEG data 
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assessed repeatedly from infancy to middle childhood and then use a 
supervised tensor factorization approach to extract latent features 
from the nonlinear measures that were associated with childhood 
anxiety diagnosis, the most common psychiatric diagnosis in children 
as well as adults. To test for specificity of any findings in relation to 
anxiety disorder diagnosis (versus being an indicator of general 
psychopathology risk), we  extracted latent features that were 
associated with externalizing diagnosis and compared them to those 
associated with anxiety diagnosis. We  also combined the two 
diagnostic classes into a single ‘atypical’ class and compared to a 
healthy control group. To demonstrate the use of tensor factorization 
to extract latent features, we first applied this method to predict child 
calendar age.

4.1. Neurodevelopmental age

We found that the correlation between calendar age and EEG 
signal complexity is strong, supporting the validity of our approach. 
As described in our Introduction, the primary reason for correlating 
nonlinear measures with calendar age at this time was to demonstrate 
the validity of supervised tensor factorization, not primarily to predict 
age or cognitive development. Nevertheless, this methodology might 

be useful for more extensive analysis of EEG features for gauging 
development. For future analyses, there may be more appropriate 
developmental targets than calendar age to consider in relation to EEG 
signal complexity. Children’s brains develop at different rates and have 
different capacities at different times. Future studies may focus on 
finding relations between EEG features, ideally with clinical covariates 
such as sex assigned at birth, family history, and/or genetics, and 
specific developmental cognitive assessments. Digital biomarkers that 
provide insight into a child’s developmental trajectory based on 
nonlinear EEG features and relevant clinical data could be valuable 
both for monitoring typical development and for detecting the first 
signs of deviation, allowing a risk profile to be computed for each of 
several different disorders. Such approaches may provide critical 
information for the early identification of vulnerable children, 
allowing application of prevention efforts that optimize ultimate 
development and functioning.

4.2. Anxiety disorders and externalizing 
disorders

For anxiety disorders, five nonlinear measures appeared to 
be prominent in the same ratios for all of the highest ranked factors. 

FIGURE 5

Latent factors extracted for distinguishing anxiety disorder group from healthy control group. Covariates were age of initial EEG measurement and sex 
assigned at birth. The right-most column shows the distribution of weights for the single latent factor in that row. That is, it is a visual illustration of the 
contribution of that factor. p-values for the factor are also given for each factor alone. The contribution of each nonlinear measure, sensor location, 
and age to the latent factors can be seen in the bar charts in each column. The dots in the right-most column show separation of diagnostic groups 
using the single latent variable represented by that row.
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Laminarity was consistently highest, followed by determinism, and 
then the three entropy measures. We  found that frontal electrode 
locations (Fp1, Fp2, F3, F4, and Fz) were most prominent, while 
parietal and occipital (P3, P7, T8, O1, and O2) were slightly more 
prominent than the remaining electrode locations. Lower or higher, 
but not middle, frequency bands were associated with anxiety. This is 
consistent with previous findings that frontal and parietal EEG 
asymmetry are linked to anxiety disorders (24–26).

For externalizing disorders, the same nonlinear measures were 
most common in the latent factors, but their relative contributions 
were much more variable than was found for the anxiety group. 
Electrode locations revealed differences as well. Frontal electrodes 
(Fp1, Fp2) were clearly most prominent, with parietal electrodes Pz 
and P8 appearing dominant in two of the latent factors. The frequency 
contributions for externalizing disorders appeared more variable than 
for anxiety disorders, with all frequencies appearing across the five 
latent factors.

Also notable were the different patterns of age distributions for 
anxiety versus externalizing disorders. When compared to healthy 
controls, externalizing disorders could be detected using 3- and 5 years 
EEG data, whereas anxiety disorders required 7 years recordings, with 
findings most robust when 7 years data were considered along with 
3- and 5 years data. Further, although birthweight alone was not 

significantly different among clinical groups, it may provide additional 
information to the algorithm that, combined with EEG measures, 
indicates a vulnerability specifically for externalizing disorders. In 
contrast, we  found that detectable neural signals emerge later for 
anxiety disorders using our methods. The current study used EEG 
data collected during a neutral resting state. EEG data collected while 
the child is exposed to certain emotional stimuli particularly relevant 
to anxiety (e.g., threatening stimuli, such as angry or fearful faces) may 
prove more informative for earlier prediction of anxiety risk and 
should be tested in future studies.

For both anxiety and externalizing disorders, including infant 
EEG data did not improve group prediction accuracy. This may 
suggest for both disorders that EEG-derived biomarkers may 
be  measuring actual brain changes associated with the emerging 
disorder rather than early prodromal changes that lead to later 
symptoms emerging. This finding contrasts with our previous research 
on EEG biomarkers for autism spectrum disorder, which found that 
very early (3 to 9 month) EEG data predicted a later outcome that was 
diagnosed at 3 years of age (36). Alternatively, as suggested above, 
infant EEG data may contribute to the prediction of psychopathology 
risk if collected under certain conditions (e.g., during exposure to 
emotional stimuli). Our results also may indicate that resting state 
EEG analysis, which is predicated on measuring stable states of the 

FIGURE 6

Latent factors extracted for distinguishing externalizing disorder group from healthy control group. Covariates were age of initial EEG measurement 
and sex assigned at birth. The right-most column shows the distribution of weights for the single latent factor in that row. That is, it is a visual 
illustration of the contribution of that factor. p-values for the factor are also given for each factor alone. The contribution of each nonlinear measure, 
sensor location, and age to the latent factors can be seen in the bar charts in each column. The dots in the right-most column show separation of 
diagnostic groups using the single latent variable represented by that row.
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brain as a dynamical system, does not detect the earliest changes 
occurring in infancy that precede establishment of anxiety-exhibiting 
neural circuits. Finally, our EEG measures in infancy may prove to 
be  useful in predicting later anxiety when combined with other 
variables not included in the current analysis (e.g., caregiving 
environment, temperament). We plan to explore this line of research 
in future work to elucidate the specific combination of data needed to 
optimize prediction of anxiety risk as early in development as possible.

Future studies that collect repeated measures of EEG might create 
developmental trajectory models, using diagnostic status to 
distinguish trajectories for different disorders from healthy controls. 
This could allow a more definitive examination of when EEG signal 
trajectories diverge in relation to clinical symptoms and the relative 
value of timing of EEG assessment and trajectory information to the 
prediction of particular diagnoses. Further, assessing relevant 
environmental factors, such as stress exposures and qualities of the 
caregiving environment, and including these as covariates in the 
model would help elucidate the role of the environment in shaping 
neural trajectories toward different clinical diagnoses.

Latent variables derived from nonlinear EEG measures alone (i.e., 
with no consideration of covariates) were able to differentiate children 
with one or more anxiety disorders from healthy controls. Inclusion 
of sex assigned at birth as a covariate improved accuracy as measured 
via AU ROC and the Brier score (0.21 to 0.08). Inclusion of birthweight 
as a covariate degraded detection of anxiety disorders markedly, 
suggesting it is irrelevant to anxiety development, at least when 
birthweight is within normal range as in this sample, and interferes 
with the risk probability calculation. Algorithm improvement should 
enable extraneous information like this to be given little weight and 
thus largely excluded in probability calculations. That is, although 
covariates were included in the feature selection algorithm, the 
covariates themselves were not included as weighted latent factors. 
We speculate that if fully coupled tensor + covariate factorization was 
used (planned future work), then birthweight would receive little 
weight and thus not affect prediction results. As used now, the 
covariates are included in the final probability predictions, 
demonstrating that birthweight negatively affected anxiety detection.

Our findings suggest that covariate participant data may 
be essential context for interpreting functional measurements using 
nonlinear EEG analysis. Although birthweight did not differ among 
our three clinical groups (anxiety disorder, externalizing disorder, 
healthy controls), this variable made a modest difference in the ability 
of nonlinear EEG measures to distinguish externalizing disorders 
from healthy controls and from anxiety disorders. Additionally, sex 
assigned at birth improved classification results for both anxiety and 
externalizing disorders when used with specific ages (3, 5, 7 years for 
anxiety disorders, 3 and 5 years for externalizing disorders). More 
detailed and extensive study of covariate influences on 
electrophysiological biomarkers is needed with larger cohorts. More 
advanced computational tools that allow joint tensor + matrix 
factorization may benefit such efforts.

4.3. General interpretation of nonlinear 
measures from EEG signals

Interpretation of nonlinear measures derived from EEG signals in 
terms of implications for cognitive development and developmental 

and psychiatric disorders remains challenging. We  attempt some 
general interpretations here. First, it is clear from our results that 
laminarity, determinism, and entropy vary significantly for age, 
anxiety disorders, and externalizing disorders. Sample entropy, line 
length entropy derived from recurrence plots (Lentr), and the vertical 
entropy (VertEnt) derived from recurrence network analysis each 
quantify the complexity of the system (i.e., the brain) that produces 
the EEG time series from which they are computed. Lentr reportedly 
detects chaos-chaos transitions in the time series, whereas VertEnt 
detects chaos-periodic transitions. Implications for anxiety disorders 
are unknown. Although different algorithms are used to compute 
each, we must presume that they are quantifying a similar dynamical 
system property, generically called ‘complexity.’ For this reason, it 
might be  expected that all three entropy measures (or none) will 
be related to phenotypic measures of interest. As mentioned in the 
brief discussion in Supplemental Table S1, laminarity and determinism 
are related to fluctuations in the signal between chaotic and laminar 
or predictable regimes. Theoretical and computational research 
indicates that the healthy brain operates optimally as a nonlinear 
dynamical system, poised between totally periodic (as exemplified by 
a generalized seizure, where all neurons are highly synchronized) and 
totally random, as exemplified by coma or persistent vegetative states 
(66). This intermediate region on the dynamical complexity spectrum 
has been called the edge of chaos critical point (91, 92). Our finding 
that complexity increases with age, as measured by these measures, is 
entirely consistent with the edge of chaos theory of optimal 
brain function.

The relationship between complexity measures and macroscopic 
conditions such as anxiety or externalizing disorders is more subtle 
and challenging to explain. It appears that differences in fronto-orbital 
and central regions may be more important for these disorders than 
other regions. Laminarity and determinism quantify different aspects 
of a dynamical system than entropy. Laminarity quantifies the 
frequency of laminar or non-chaotic states in the time series. The term 
derives from the early roots of chaotic system theory in 
characterizations of fluid flow that range from purely stable or laminar 
to purely random or turbulent. It is related to complexity but 
characterizes the macroscopic behavior of the system. Similarly, 
determinism is a quantification of the predictability of the system over 
short or longer time scales. Our computation of determinism on 
different frequency scales is also related to predictability of neural 
electrodynamics over varying time scales. How this relates to anxiety, 
which might be interpreted as over-sensitivity to internal or external 
stimuli or a persistent heightened state of arousal, remains to 
be explored further. Our results suggest that differences in laminarity 
and determinism are indicative of risk for psychiatric disorders, 
including anxiety and externalizing disorders. Our finding that 
different developmental periods were associated with these two 
disorders suggests that atypical function at different critical 
developmental windows may be involved.

The entropy measures, which are an indication of the complexity 
of the EEG signal from which they were derived, reflect the complexity 
of the neural circuits that directly contribute to the scalp potential 
measured by the sensor. In general, complexity seems to be associated 
with neural development. Determinism is related to the predictability 
of the dynamical system, and laminarity is related to the amount of 
laminar phases in the system (61). These measure different quantitative 
characteristics of a dynamical system, but the neural interpretation of 
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these measures is not yet well understood. We speculate that a deeper 
understanding of the brain as a dynamical system, which is now being 
explored more fully with reservoir computing (93, 94), may enable 
better understanding of the meaning of nonlinear analysis of the 
brain. Accumulation of empirical evidence for neural correlates of 
specific disorders may help point the way to theoretical explorations.

Future studies are required to validate the precise features 
and weights needed for a validated digital biomarker for anxiety 
disorder risk assessment. This will require independent test data 
to validate the model learned from training data. The probabilistic 
predictions that are enabled by the supervised tensor factorization 
algorithm presented here will make such rigorous evaluation 
possible. It will also be  important to continue seeking to 
understand the behavioral meaning of the nonlinear measures 
used here. Our approach is based on using EEG time series to 
reconstruct the essential parameters that describe brain function 
as a dynamical system that processes information. That is, we are 
attempting to measure an aspect of neural circuit function at the 
time of the recording. Whether this is the right set of 
measurements to predict future neural function, or to detect the 
neurodevelopmental trajectory, needs further study. Although 
nonlinear EEG analysis has shown considerable promise for 
extracting latent neuropsychiatric biomarkers, this does not 
preclude the (likely) possibility that additional data, such as 
genetics, other physiological measures, child history of trauma, 
or task-based analysis of EEG might improve latent biomarkers. 
Our hope is that the analysis methods presented here will 
contribute one more tool to the important task of integrating 
additional data sources into the latent biomarker computation 
process (56).

4.4. Computational methods

In this analysis, we introduced supervised tensor factorization as 
a digital biomarker scientific discovery tool to examine the utility of 
EEG data in early life in predicting psychopathology by middle 
childhood. One of the main advantages of this approach is that 
multidimensional data, such as the multifrequency nonlinear analysis 
of EEG signals that was used in this study, is analyzed in a form 
suitable for the data structure. A great deal more research is needed to 
extend this method. Necessary extensions include joint factorization 
of the primary data tensor and the covariate data matrix. Currently, 
the covariates inform the tensor factorization but are not decomposed 
and included in the latent variables that are produced. Adding this 
capability will enable all covariates to be analyzed simultaneously, 
along with the nonlinear EEG features, to determine the relative 
contribution of each to the classification or regression task. 
Unsupervised, coupled tensor-matrix factorization has been 
accomplished (95), but a supervised version has not. Our results 
suggest that clinical variables, such as sex assigned at birth and 
birthweight, may be essential for setting the context for interpretation 
of functional snapshots of brain activity with EEG. Thus, 
computational methods that integrate multimodal data may 
be  especially valuable for neurodevelopmental and psychiatric 
biomarker discovery.

Future research with supervised tensor factorization as a 
systematic approach to analyzing multiscale nonlinear EEG measures 

will be needed to determine optimal ways to determine tensor rank 
and to interpret all of the extracted latent features. It is not yet clear 
how to select the optimal number of latent factors to extract (i.e., the 
rank of the tensor), nor is it clear whether only the highest ranked 
factors are sufficient as biomarkers.

Incorporation of developmental time as an axis when irregular 
time measurements are to be  included is another area of tensor 
factorization research that will be  required for monitoring 
developmental trajectories by this method. In our analysis, the 
irregular first year measurement times had to be included as covariates 
in cases where the infancy data were used. This may explain why 
inclusion of infancy EEG did not greatly improve the classification 
results for either disorder. Another weakness in our trajectory 
modeling is that age is a discrete variable without order in the tensor 
data structure. A more sophisticated approach that models the time 
axis as a continuous variable, perhaps even using piecewise linear or 
polynomial trajectories, might be  more appropriate for human 
neurodevelopmental modeling. However, the current implementation 
of supervised tensor factorization does not allow this.

Another study limitation is the lower number of EEG 
measurements available at later ages, particularly at 7 years. Data 
collection is ongoing, and we thus anticipate having more cases 
at 7 years (and later) for both anxiety and externalizing disorders, 
which will enable continued evaluation of classification 
capabilities using our approach with a larger sample. Importantly, 
because adolescence is a critical risk period for the development 
or exacerbation of anxiety, some of the children currently 
categorized as healthy controls may move to the anxiety disorder 
group in later development. Longitudinal data collection through 
adolescence in this sample will allow us to examine the utility of 
these early neural measures for prediction of anxiety throughout 
childhood and adolescence. Additionally, because the clinical 
diagnostic measure inquired about lifetime diagnoses by age 
5 years, it is possible that clinical symptoms had emerged prior to 
or at a similar time as the EEG data collection. Studies that 
include repeated clinical and contemporaneous EEG measures 
starting in infancy are needed to determine if the presented 
approach has value as a predictive indicator of vulnerability to 
later development of psychopathology and/or as a biomarker 
reflecting current challenges. Further, applying this method in a 
sample enriched for risk (e.g., children of parents with a history 
of a diagnosed anxiety or externalizing disorder) may enhance 
our ability to identify child risk profiles earlier in development. 
We  hope that this method will move the field forward in 
identifying specific neural disruptions that may underlie 
psychopathology in early childhood, enabling the development 
of more targeted preventative and treatment interventions.

Finally, a deeper probe into correlations among the nonlinear 
factors used in our calculations may give greater insight into the 
value and meaning of these factors. As noted previously, the three 
entropy measures (SE, Lentr and VertEnt) all appeared to 
be prominent in the latent factors extracted for both disorders. 
Additionally, DET and LAM appeared to be prominent together. 
Again, more detailed computational investigation into correlations 
among these measures may provide additional insights. We note 
also that many additional nonlinear measures have been utilized 
by researchers in other domains. For example, at least 20 ‘entropy’ 
measures can be computed (47).
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5. Conclusion

The results of this study demonstrate that development may 
be  characterized as a process of increasing complexity that can 
be measured by nonlinear analysis of EEG signals, which aligns with 
recent findings that the information processing capacity of dynamical 
systems increases with system complexity (34, 96). Additional studies to 
find correlations between complexity measures and cognitive 
assessments, rather than calendar age, will be an important extension of 
this study. Although the number of children with anxiety disorders in 
our study was relatively small, our results indicate that significant 
information can be extracted from EEG signals to detect or predict risk 
for anxiety disorders. Externalizing disorders appear to be detectable 
earlier than anxiety disorders using our approach, although EEG data 
collected as early as age 3 years helped to distinguish both disorders from 
healthy controls. Developmental trajectories may be more useful for 
detecting anxiety and externalizing disorders than any single snapshot 
in time. We believe this study is the first application of supervised tensor 
factorization to EEG analysis to find potential biomarkers for anxiety 
disorders in children. Integration of additional clinical data is possible 
and required for further development of potential diagnostic, predictive, 
and monitoring biomarkers for this important childhood disorder.
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