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Department of Electrical and Computer Engineering & Ingenuity Labs, Queen’s University, Kingston, ON,

Canada

Introduction: To assist mental health care providers with the assessment of

depression, research to develop a standardized, accessible, and non-invasive

technique has garnered considerable attention. Our study focuses on the

application of deep learning models for automatic assessment of depression

severity based on clinical interview transcriptions. Despite the recent success of

deep learning, the lack of large-scale high-quality datasets is a major performance

bottleneck for many mental health applications.

Methods: A novel approach is proposed to address the data scarcity problem for

depression assessment. It leverages both pretrained large language models and

parameter-e�cient tuning techniques. The approach is built upon adapting a small

set of tunable parameters, known as prefix vectors, to guide a pretrained model

towards predicting the Patient Health Questionnaire (PHQ)-8 score of a person.

Experiments were conducted on the Distress Analysis Interview Corpus - Wizard

of Oz (DAIC-WOZ) benchmark dataset with 189 subjects, partitioned into training,

development, and test sets. Model learningwas done on the training set. Prediction

performance mean and standard deviation of each model, with five randomly-

initialized runs, were reported on the development set. Finally, optimized models

were evaluated on the test set.

Results: The proposed model with prefix vectors outperformed all previously

published methods, including models which utilized multiple types of data

modalities, and achieved the best reported performance on the test set of DAIC-

WOZ with a root mean square error of 4.67 and a mean absolute error of 3.80

on the PHQ-8 scale. Compared to conventionally fine-tuned baseline models,

prefix-enhanced models were less prone to overfitting by using far fewer training

parameters (<6% relatively).

Discussion: While transfer learning through pretrained large language models

can provide a good starting point for downstream learning, prefix vectors can

further adapt the pretrained models e�ectively to the depression assessment task

by only adjusting a small number of parameters. The improvement is in part due

to the fine-grain flexibility of prefix vector size in adjusting the model’s learning

capacity. Our results provide evidence that prefix-tuning can be a useful approach

in developing tools for automatic depression assessment.

KEYWORDS

depression assessment, prefix-tuning, transfer learning, deep learning, clinical decision

support, natural language processing (NLP)

1. Introduction

Major depressive disorder is a common psychiatric disorder affecting over 264 million

people worldwide (1). It has profound impact on a patient’s emotional and physical health,

and also the individual’s family’s quality of life. By 2030, depression is expected to be

the second leading cause of disease burden in the world (2). Early recognition of the

illness is imperative to promote remission and reduce the emotional and financial burden
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of the disease (3). The common challenges humans need to face,

such as pandemics, can often worsen the situation. It has been

estimated that the COVID-19 pandemic and its associated public

health and social measures have led to a 27.6% increase in cases of

major depressive disorder (4). In 2021, a survey reported 72% of

psychologists had experienced a rapid rise in demand for treatment

of depressive disorder, alongside with increased workloads, longer

waitlists, and low capacity for new patients (5). To help ease the

burden on the rest of the healthcare system, early in the COVID-19

pandemic the United States Food and Drug Administration relaxed

premarket requirements for mobile health therapeutic apps that

treat psychiatric conditions (6).

Recently, machine learning (ML) methods have become a point

of interest in supporting mental health providers for decision-

making (e.g., diagnosis, prognosis, treatment, etc.) based on a

plethora of clinical data, including vocal and visual expression

data (7). ML-powered technologies could help offload the burden

for psychologists by providing standardized assessment processes.

ML competitions have facilitated the acceleration of research in

developing new tools to support precise depression diagnosis, with

one particular series focusing on the prediction of depression

severity through clinical interviews (8–10).

Deep learning (DL) is one of the sub-fields of ML that

has seen significant advancement over the past decade across

almost all research fields and application-driven tasks, including

healthcare (11). The impressive performance of deep neural

networks can be attributed to the increase in available training

data and the expressiveness of these networks, which is often

marked by large numbers of model parameters. However, one key

challenge in many healthcare applications, including depression

and Alzheimer’s disease recognition, has been the limited amount

of training data (7), typically at the level of a few hundred samples

or sometimes even less (9, 12–14). Cost and privacy concerns

further pose challenges for large-scale collection of medical data.

A general approach to solving the challenge of data scarcity

has been transfer learning through pretrained DL models. This

approach typically involves a neural network first learning to solve

a source task, from which knowledge acquired is stored as model

parameters to be transferred to solve a separate target task. Deep

transfer learning has the advantage of speeding up training by using

far fewer target-task training data to achieve good performance. By

the same token, it allows a model to achieve good performance

when training data of the target task is limited. Intuitively, a

pretrained DLmodel has learned sufficiently general representation

for a data domain (e.g., language, speech, and vision) through

supervised or self-supervised training that utilizes a large amount

of generic data. Then, the pretrained model can be re-purposed

for a target task. The recent advancement in pretrained language

models (e.g., BERT (15), GPT (16) and their more recent variants)

can be seen as a specific but foundational form of transfer learning,

which often improves the performance on target tasks by leveraging

large-scale datasets during pretraining. The two main strategies

for doing transfer learning with a pretrained model are (1) using

it directly without any modifications to the parameters (e.g., in-

context learning) and (2) further adapting it on the target data.

As the most typical approach, fine-tuning, which involves

tuning pretrained parameters on a target dataset, has been the de

facto practice of adapting pretrained models to the target task.

It aims to improve the performance of pretrained models by

learning information specific to the target domain. To reduce the

effect of overfitting when training data is limited, the number

of fine-tuning parameters is reduced by restricting tuning to

a subset of layers, often the layers closest to the output with

higher-order representations (17). Consequently, deep transfer

learning is aptly suitable for training ML models on depression

data. The work presented in Zhao et al. (18) applied transfer

learning by using hierarchical attention models. It pretrained

parameters of their attention mechanism on a speech recognition

dataset before transferring them to their final model for fine-

tuning on depression speech data. Another work pretrained an

emotion recognition model on two emotion datasets before further

adapting it to depression data (19). Instead of pretraining from

scratch, prior work have also leveraged pretrained large language

models and fine-tuned them on their respective target depression

datasets (20, 21).

Despite prior success in adapting pretrained language models

to depression data by fine-tuning, it has a major drawback. The

number of parameters to be fine-tuned is determined by the

pretrained model architecture. For instance, BERT is typically fine-

tuned by at least a layer with over seven million parameters (22),

which is excessive for less than a few hundred training samples. This

problem is further exacerbated by the rapid growth in the size of

pretrained language models. Fine-tuning large models with a small

amount of data is a recipe for overfitting (23), as with the case of

depression data. In this paper, we explore an alternative means of

model adaptation by leveraging the most recent advancements on

parameter-efficient tuning.We propose applying prefix-tuning (24)

for the adaptation of pretrained large language models on

depression data. As an ultra-lightweight alternative to fine-tuning,

the prefix-tuning adaptation method works by prepending a small

number of trainable continuous vectors to a deep network, i.e.,

every layer of a pretrained language model. During training, model

parameter updates are only performed on the prepended vectors

while the pretrained model parameters remain frozen. This has

an advantage of decoupling the number of tuning parameters

from the model architecture itself and therefore allows flexible

adjustment to the model’s learning capacity. Motivated by recent

work suggesting that the lightweight parameter footprint of prefix-

tuning is less likely to overfit than fine-tuning (24, 25), we adapted

pretrained language encoders to the task of depression analysis

using prefix vectors. To the best of our knowledge, this work is the

first instance of leveraging prefix-tuning for the task of depression

diagnosis prediction.

Our experimental results on the publicly available Distress

Analysis Interview Corpus—Wizard of Oz (DAIC-WOZ)

benchmark dataset showed that prefix-tuned models outperformed

conventional fine-tuning approaches, as well as models utilizing

multiple modalities reported in the current literature. Furthermore,

when embeddings extracted from a depression-adapted encoder

and a general-purpose encoder were combined, we achieved the

best performance for depression severity prediction reported so

far on DAIC-WOZ. Additional experiments revealed the ability

of prefix-based models to perform better than fine-tuning based

models. Moreover, we studied the effects of training set size and
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the results suggested that the prefix-tuning method was more

capable for low-data settings than fine-tuning methods. Our

proposed method achieved a new state-of-the-art performance

on the DAIC-WOZ. Results from this study show promise in

applying machine learning to automatically assist care providers

with depression assessment.

2. Materials and methods

2.1. DAIC-WOZ dataset

DAIC-WOZ (26) is a commonly-used benchmark dataset

for experimenting and validating ML models for automatizing

depression assessment. The dataset consists of clinical interviews

with 189 subjects, partitioned into a training set (57%, 107 subjects),

a development set (19%, 35 subjects), and a test set (25%, 47

subjects). The interviews were conducted by an animated virtual

interviewer named Ellie, which was remotely controlled by two

clinicians in a separate room to select appropriate questions,

responses, and gestures in real-time. During an interview, questions

asked were selected from a predefined set of questions, while

the selections were determined in real-time based on the context

of the conversation. Thus, each interview had a unique set of

questions asked. Nevertheless, the interviews were semi-structured.

They began with rapport-building questions, such as inquiring the

subject’s background, hobbies, and interests. Thereafter, questions

related to symptoms of depression such as their recent sleep pattern

and mood were posed. When a significant personal event was

brought up, the subject was asked to introspect and describe their

emotional state at that instance. They were also asked to state

any previous history with depression and PTSD and Ellie would

invite them to detail their recovery progress when stated. All

interviews concluded with a set of cool-down questions to allow

the subjects to come to ease before they leave their sessions. Each

subject was assigned to complete an eight-item Patient Health

Questionnaire (PHQ-8) prior to his/her interview. Each item on

the questionnaire is scored from 0 points if the condition is absent,

to three points, if severe (27). The eight scores are summed to

form the PHQ-8 score which ranges from 0 to 24 and serves as

an estimate of the individual’s depression severity. The resulting

PHQ-8 score was used as the ground-truth label for depression

severity. The total score can be further categorized into five severity

ranges. Scores of 5, 10, 15, and 20 represent cutpoints for mild,

moderate, moderately severe, and severe depression, respectively.

The objective of our study is to predict the total PHQ-8 score

as a proxy for the participant’s depression severity. Moreover,

transcriptions of the spoken dialogues between the interviewer

and subject were provided, which include verbal and non-verbal

annotations such as acronyms, sighs, coughs, and laughter. Raw

audio recordings and visual-based features were also provided

but were not utilized in this study. Figure 1 shows the kernel

density estimates of the PHQ-8 distributions between the three data

partitions. We observe that the PHQ distributions of the partitions

are right-skewed, which resembles the real-world distribution of

PHQ scores (28). The skewness is maintained as it is desirable for

the data distributions of the validation and test sets to be reflective

of the real-world data.

FIGURE 1

Data distribution of DAIC-WOZ with respect to the PHQ-8 scores of

the training, development, and test sets.

2.2. Problem formulation

We formalize the problem of using a ML model to predict

the depressive state of an interview subject via spoken text of

conversational dialogue. Formulated as a supervised learning task,

the model is trained to predict the PHQ-8 score y ∈ Y from an

input interview transcription x ∈ X , from training data. As the

PHQ-8 score takes on an integer value from 0 to 24, we formulate

the task as a regression problem. We regard a conversational

interview as a semi-structured dialogue between a clinician and a

subject, from whom the clinician elicits information insightful to

the subject’s state of mind through a series of questions. A pattern

can be identified in which the clinician asks a question q, followed

by a response r from the subject. We group each question and

response together to model x as a sequence of N question-response

(QR) pairs, S = [s1, ..., sN], where sn is a concatenation of qn and rn
for n ∈ {1, ...,N}.

As illustrated in Figure 2, our model encodes S in two stages.

In the first stage, a language encoder embeds each variable-length

QR pair sn as a fixed-length numeric vector (embedding) en,

such that S is mapped to a sequence of QR-level embeddings

E = [e1, ..., eN]. Ideally, en encapsulates the semantic and

contextual meaning of sn, of which the quality depends on the

language encoder used. We describe our proposed approach for

QR-level encoding in Section 2.3. In the second stage, a sequence

encoder encodes E as a fixed-length interview-level embedding a.

Conceptually, a summarizes the entire interview. Section 2.4 details

the implementation of our interview-level sequence encoder.

Finally, a is passed through a linear layer to output a PHQ-8 score

prediction ŷ.

2.3. Question-response-level modeling:
prefix-tuning + sentence transformer

We explore two approaches for the QR-level encoding. In the

first approach, as described in Section 2.3.1, we discuss adapting

pretrained language encoders to our target depression dataset by
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FIGURE 2

Overview of the proposed dual encoder model architecture.

prefix-tuning. This model adaptation method has been shown to

achieve comparable performance to traditional fine-tuning method

while using significantly less trainable model parameters. A model

with larger learning capacity (more learnable parameters) is more

prone to overfitting, wherein the trained model performs well

on the training data but generalizes poorly on unseen data. The

risk of overfitting is magnified when training data is scarce.

We hypothesize that depression-adapted embeddings extracted

via prefix-tuning are more suitable than embeddings from fine-

tuning. In the second approach, as described in Section 2.3.2,

we discuss the use of pretrained encoders without modifying the

pretrained weights to suit our limited training data. Pretrained

embeddings can be seen as general-purpose without any task-

specific knowledge. We aim to show that by carefully selecting

an appropriate pretrained encoder, it can extract effective QR

embeddings. Furthermore, we hypothesize that depression-adapted

and general-purpose embeddings are complementary with one

another. In Section 2.3.3, we describe our experimentation with

fusing both types of embedding.

2.3.1. Depression-adapted encoding via
prefix-tuning

Performance envelope advancements from pretrained large

language models can be partly attributed to their continuing

growth in size. While application-driven researchers are disposed

to adopt the newest models to their specific needs, the number

of learnable parameters often grows much faster than application-

specific data available for model adaptation, e.g., just one BERT

transformer (29) layer has ∼7M parameters. Although prior work

have found success on fine-tuning pretrained language models

for specific tasks, we posit these models are overparameterized

for specialized tasks and thus provide room for as yet unrealized

potential performance gain.

Initially conceived as a more efficient and effective method to

extract information from pretrained models, prefix-based methods

have shown remarkable results on a wide range of downstream

tasks, including conditional generation tasks and sequence labeling

tasks (24, 25, 30). Specifically, prefix-tuning (24) works by

introducing a small set of trainable continuous vectors to a

pretrained transformer-based model and only updates the prefix

vectors while keeping all the pretrained weights frozen. Originally

developed for natural language generation tasks, we retrofit prefix-

tuning for feature extraction on QR pairs.

Our prefix-tuning-based QR encoder Ept assumes a pretrained

language encoder based on the transformer architecture (e.g.,

BERT, RoBERTa (31)) with L layers and hidden size dmodel. Each

transformer layer l ∈ {1, ..., L} contains Ihead parallel self-attention

layers (heads), which allow word-level embeddings in an input

sequence to draw dependencies between each other. To adapt
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the pretrained encoder to the depression data, task-specific prefix

vectors are prepended to every key-value pair of self-attention as

learnable parameters. As illustrated in Figure 3, while fine-tuning

modifies pretrained parameters near the output, tunable prefix

vectors are added to every layer, a mechanism found to engender

more expressive adaptation. In contrast to fine-tuning, prefix-

tuning freezes the core pretrained model parameters and only

modifies the auxiliary set of task-specific parameters. This prevents

the model from altering the general comprehension of language

acquired from pretraining (25).

The details of the transformer’s self-attention can be found

in Vaswani et al. (29). For completeness of this paper and for

facilitating the discussion of our prefix-tuning-based components,

we summarize the central idea of the self-attention mechanism

below. Given a self-attention head that takes as input a sequence

ofmn word-level embeddings Sn ∈ R
mn×dmodel , the head projects Sn

to queries, keys, and valuesQ,K,V ∈ R
mn×dhead through pretrained

matricesWQ,WK ,WV ∈ R
dmodel×dhead , respectively, where dhead =

dmodel
Ihead
∈ N:1

head = Attention(SnW
Q, SnW

K , SnW
V )

= Attention(Q,K,V)

= Softmax(
QK⊤

√

dhead
)V

(1)

In practice, multiple self-attention heads parameterized by

W
{Q,K,V}
l,i

work in parallel for i ∈ {1, ..., Ihead}. Prefix-tuning

introduces two sets of prefix vectors PK ,PV ∈ R
|P|×dhead to each

head with |P| being the prefix vector’s length. By prepending them

to the keys and values, Equation (1) becomes:

head = Attention(Q, [PK;K], [PV ;V])

= Softmax(
Q[PK;K]⊤

√

dhead
)[PV ;V]

(2)

where the semicolon ; denotes concatenation. The set of all prefix

vectors is randomly initialized and gathered as a tensor P ∈

R
L×Ihead×|P|×dhead×2.

We manifest Equation (2) as Figure 4 to graphically illustrate

the insertion mechanism of prefix vectors in a self-attention

layer. These prefix-enhanced self-attention layers are only present

in the transformer layers of Ept in Figure 2. In self-attention,

keys and queries are essentially used to compute self-attention

weights for the values. These prefix-enhanced keys and values

are propagated up through the transformer and error is back-

propagated through P while all other encoder parameters are kept

frozen. Effectively, once tuning is completed, the fixed-value P

plays a similar role to the pretrained parameters W
{K,V}
l,i

, such

that inserting P into the pretrained encoder effectively modulates

the distribution of the original pretrained parameters in mapping

the input embeddings. Compared to fine-tuning, adaptation via

prefix vectors is localized at the keys and values while its effect

permeates throughout the whole network. Furthermore, the prefix

length |P| being a design hyperparameter allows a more flexible

1 We ignore indices for the transformer layer and the self-attention head

for brevity sake.

number of trainable parameters, such that performance comparable

to fine-tunedmodels can be achieved using a fraction of fine-tuning

parameters (24, 32). Therefore, prefix-tuning can substantially

reduce training time and memory cost. We implement prefix-

tuning based on P-Tuning v2 (32), which applied prefix-tuning

for natural language understanding tasks (e.g., classification) using

RoBERTa as its pretrained backbone. For our task, we adapt P-

tuning v2 by discarding its classification layer and extract QR-level

embeddings by averaging the output word embeddings from its last

layer. To the best of our knowledge, our work is among the first to

apply parameter-efficient tuning for modeling medical text.

Built on the above modeling, for an input QR pair sn of length

mn, the prefix-enhanced QR encoder Ept generates a fixed-length

embedding e
pt
n :

Ept
:R

mn×dmodel → R
dmodel (3)

2.3.2. General-purpose encoding via sentence
transformer

Given training data, maximizing a model’s learning capacity for

performance and maximizing its generalizability on unseen data is

a bias-variance trade-off. An alternative way to limiting the risk of

overfitting a pretrained encoder on a target dataset is by using it as

is, making nomodification to the pretrained network. Such usage of

a pretrained encoder can be thought of as a general-purpose feature

extractor. We hypothesize that general-purpose embeddings can be

complementary to depression-adapted embeddings.

Transformer-based architecture is arguably the most popular

backbone used in pretrained encoders, of which there are two

factors that can affect the quality of an encoder’s embedding:

the pretraining data and pretraining objectives. Considering that

an input QR utterance are a string of sentences, we argue that

pretrained models such as BERT and RoBERTa by themselves are

not the most suitable for our task as they were not pretrained

for sentence-level embeddings. Although previous work have

successfully applied pretrained BERT directly to encode spoken

text for depression and Alzheimer’s disease assessment tasks (19,

33, 34), pretrained BERT has been found to generate subpar

sentence-level embeddings that are often worse than averaging

non-contextualized word embeddings (35). This is likely due to

BERT’s pretraining objectives of masked language modeling and

next sentence prediction tasks, neither of which constrained the

encoder to directly optimize for generating quality sentence-level

embeddings. A similar argument applies to RoBERTa, as seen in

Figure 5.

Instead, we employ all-mpnet-base-v2 from

SentenceTransformers (ST) library (35) as a general-purpose

QR encoder, E st . ST is a framework designed to pretrain

transformer-based encoders specifically for sentence-level

embeddings. Specifically, all-mpnet-base-v2 is an extension of

MPNet (36) which was pretrained on the same data as RoBERTa

and also architecturally faithful to BERT and RoBERTa. As

illustrated in Figure 5, the ST model is additionally pretrained with

a self-supervised symmetric cross entropy contrastive loss (37) on

more than one billion sentence pairs. This objective constrains

the encoder to produce similar embeddings for semantically

similar sentences. ST models were evaluated on a number
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FIGURE 3

High-level comparison between the two depression adaptation methods of QR encoding on an example tokenized QR pair. (Left) QR encoding by

fine-tuning pretrained layers. (Right) QR encoding by prepending prefix vectors to pretrained layers.

FIGURE 4

A prefix-enhanced self-attention head.

of semantic search tasks and sentence embeddings tasks. In

particular, all-mpnet-base-v2 has achieved the highest average

score across 20 evaluation datasets and is thus suitable as a

general-purpose encoder.

For an input QR sentence pair sn of length mn, the general-

purpose QR encoder E st generates a fixed-length embedding, estn :

E st
:R

mn×dmodel → R
dmodel (4)

2.3.3. Fusion of depression-adapted and
general-purpose embeddings

Since the two types of QR embeddings convey complementary

information, we expect that making both available to the model

would be beneficial. Therefore, we train our proposed model by

combining ept and est at the QR level, as shown in Figure 2,

denoted as dual encoder model. Three types of fusion methods are

experimented: fusion by addition, averaging, and concatenation.

2.4. Interview-level modeling: BiLSTM with
attention

The purpose of QR-sequence encoding is to capture depression-

salient information over the whole interview. We treat the QR

embeddings of S as dependent events, wherein adjacent QR pairs

are likely to be related and contextually contiguous. We employ a

bidirectional long-short term memory (BiLSTM) (38) layer for the

sequence modeling. Although transformer can model sequences

as well, it requires a significant amount of training data to be

trained from scratch. Accordingly, we use BiLSTM as the annotated

training data is scarce.

Specifically in our model, under the assumption that certain

segments of a clinical interview are more revealing of the subject’s

depressive state, we endow differential attention along the sequence

of QR embeddings by means of an attention mechanism. For

instance, cool-down dialogues toward the end of DAIC-WOZ
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interviews are less likely to be relevant for depression screening

than ones regarding the subject’s medical history. The attention

mechanism allows the model to automatically weigh and attend

to the most informative QR embeddings in E. Formally, we

assume a BiLSTM network with a single layer, with the forward

and backward LSTMs computing hidden states,
−→
h n and

←−
h n,

respectively, at every time step. Our implementation of attention

is based on (39), which introduces a QR-level context vector c that

learns to measure the relative importance of each QR pair:

Ha = tanh (Wa (Ho)) (5)

w = softmax
(

H⊤a · c
)

(6)

a = H⊤o · w (7)

where matrix Ho comprises the forward-backward hidden states

from all time steps and is mapped to Ha through weight matrix

Wa. The context vector c is randomly initialized and learned during

training. We can think of w as a vector of normalized attention

weights, of which each weight assigns the importance of the n-th

QR embedding. Finally, latent vector a is computed as a weight sum

of the QR representations, effectively encoding, and summarizing

the interview. This interview vector a is passed through a linear

feed-forward layer to compute the depression severity prediction

score ŷ.

2.5. Baseline models

To evaluate the effectiveness of our proposed model, we

implement baseline models with different QR-level encoding

methods for comparison. First, a prefix-only model that uses

only Ept for QR encoding is implemented (415K tunable

parameters). Given a sequence of QR pairs S, this model only

computes depression-specific QR embeddings. Second, a ST-

only model using only E st for QR encoding is implemented

(231K tunable parameters). This model only computes general-

purpose embeddings and thus might neglect linguistic semantics

specific to depression-centric spoken text. Third and forth, we

implement two models using a pretrained BERT and a pretrained

RoBERTa, denoted as BERT-PT and RoBERTa-PT respectively, for

QR encoding (231K tunable parameters). BERT is a transformer-

based model that was pretrained on a large collection of English

books and Wikipedia pages. RoBERTa is architecturally faithful

to BERT and further improves upon BERT by modifying key

training hyperparameters, substantially increasing the amount

of pretraining data, and removing the next sentence prediction

objective. These modifications have been empirically demonstrated

to provide substantial improvements over the original BERT

results on a number of language tasks. These two models

serve as baselines for obtaining general-purpose QR embeddings.

Lastly, four baseline models for acquiring depression-adapted QR

embeddings are developed by fine-tuning pretrained BERT and

pretrained RoBERTa. Given the limited training data, we restrict

fine-tuning to the last transformer layer, providing models BERT-

FT1 and RoBERT-FT1 (7.32M tunable parameters) and to the

last two layers resulting in models BERT-FT2 and RoBERTa-FT2

(14.4M tunable parameters).

2.6. Data preprocessing

For replicability, below we describe the details of our data

preprocessing. We first standardized the annotations throughout

the transcriptions (e.g., {〈laughter〉, [laughter]}→*laughter*,

{〈sigh〉}→*sigh*). Annotations irrelevant to the dialogues were

removed, e.g., unique identifiers related to hardware syncing

([syncing], [sync], 〈sync〉), scrubbed dialogue due to privacy

concerns (scrubbed_entry), unintelligible utterances (xxxx).

Underscores in words denoting acronyms were removed (e.g.,

l_a→la) and all transcriptions were lowercased. Punctuationmarks

were kept as these could provide the models semantic information.

We identified and removed interview prompts that were deemed

redundant, for they were routine questions that preceded and

concluded every interview (e.g., “hi i’m ellie thanks for coming

in today...,” “goodbye”). After the cleaning of transcriptions, each

interviewer’s question and its corresponding response from a

subject were concatenated as model input s.

2.7. Training strategy and implementation
details

Following previous work and the original challenge’s setup,

we use a train-validation-test scheme on the data partitions

(described in Section 2.1) to evaluate our models2. The

development (validation) set is used to select and validate

the best hyperparameters for each model, specifically by observing

the loss on the development set. Performance on the development

set is also used to gauge the effectiveness of each fusion method.

Once the hyperparameters of a model have been determined, the

model is trained five times by randomly varying the initialization

seed. The mean and standard deviation of the development set

performance from these five runs are reported, from which the best

one is selected to be evaluated on test set.

We implemented all variants of BERT, RoBERTa, and ST using

Huggingface (40) library and thus adopt the Huggingface model

nomenclature. We implemented both pretrained and depression-

adapted BERT and RoBERTa with bert-base-uncased (L=12,

Ihead=12, 110M parameters) and roberta-base (L=12, Ihead=12,

125M parameters), respectively. P-tuning v2, which is built on top

of roberta-base, is retrofitted from the original code3 to obtain

sentence-level embeddings. We set the prefix length to 10 and did

not find a reparameterization of the prefix vectors to be necessary

as suggested by Liu et al. (32). The following hyperparameters

were common to all models. Batch size was set to 2. Models

were optimized through the minimization of a mean squared

error loss function for the regression task of depression severity

prediction. AdamW (41) optimizer was used with learning rate

2 Code of our proposed model will be made publicly available at https://

github.com/clintonlau/dual-encoder-model.

3 https://github.com/THUDM/P-tuning-v2
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FIGURE 5

Di�erence in the pretraining process of BERT (bert-base), RoBERTa (roberta-base), and sentence transformer (all-mpnet-base-v2).

set to 3 × 10−4. Training was performed with a maximum of

200 epochs and was stopped only if the validation loss did not

decrease within 20 epochs. The BiLSTM module was implemented

with one layer with a hidden size of 64. All models utilized the

same interview-level encoder (BiLSTM + attention) configuration

which was fully tunable. During preliminary experimentation,

we found that inserting a linear down-projection layer after

each sentence encoding stage helped stabilize training with an

additional benefit of reducing training parameters. This down-

projection layer was set to 128 in size. A dropout layer with

an activation probability of 0.5 was inserted before every linear

layer to mitigate overfitting. All models were implemented using

PyTorch (42) framework.

3. Results

We followed the original challenge (9) and previous work

by using root mean square error (RMSE) and mean absolute

error (MAE) to evaluate the regression task of depression

severity prediction:

RMSE =

√

√

√

√

1

|Y|

|Y|
∑

i=1

(yi − ŷi)2 (8)

MAE =
1

|Y|

|Y|
∑

i=1

|yi − ŷi| (9)

where |Y| is the number of training samples and y, ŷ denote the

PHQ-8 ground-truth label and prediction, respectively.

3.1. Prediction performance of pretrained
models

Results from the pretrained models are presented in Table 1

under five-run validation and test setting. The results show

TABLE 1 Development set and test set results of pretrained models (mean

and standard deviation are shown for five-run validation results).

Model
Development Test

Loss RMSE MAE RMSE MAE

BERT-PT 26.29± 9.45 5.07± 0.84 4.16± 0.75 6.10 5.01

RoBERTa-PT 29.24± 13.97 5.29± 1.26 5.29± 1.27 5.82 4.74

ST-only 18.16 ± 0.89 4.26 ± 0.10 3.22 ± 0.11 5.32 4.37

The best score of each metric is boldfaced.

that the ST-only model performed better than both BERT-PT

and RoBERTa-PT. We noticed that BERT-PT performed better

than RoBERTa-PT on average on the development set but fell

short on the test set. Compared to the two baseline pretrained

models, ST-only delivered a much lower variance while achieving

better results on both the development and test sets. The

relatively high variance of BERT-PT and RoBERTa-PT was in

part due to certain runs failing to converge within the prescribed

training epoch.

3.2. Prediction performance of
depression-adapted models

Table 2 shows the results for the depression-adapted models.

The prefix-only model performed the best on the development

set with the lowest performance variance, as well as on the

test set. Between the two types of proposed QR encoding

methods, we highlight the performance lead of the prefix-

only model over the pretrained ST-only model, albeit that

the prefix-only model was not pretrained on a sentence level.

This performance gain is likely due to the depression-specific

knowledge gained from learning on the DAIC-WOZ dataset.

Among the baseline depression-adapted models, both BERT-FT1

and RoBERTa-FT1 performed better than their two-layer fine-

tuned counterparts, on both the development set and test set.
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TABLE 2 Development set and test set results of depression-adapted models (mean and standard deviation are shown for five-run validation results).

Model No. of parameters tuned
Development Test

Loss RMSE MAE RMSE MAE

BERT-FT2 14.4M 30.38± 11.79 5.43± 1.06 4.41± 0.99 6.53 5.64

BERT-FT1 7.32M 25.37± 5.68 4.81± 0.55 3.89± 0.37 5.72 4.76

RoBERTa-FT2 14.4M 41.97± 2.72 6.48± 0.22 5.37± 0.27 6.13 5.20

RoBERTa-FT1 7.32M 28.34± 8.74 5.28± 0.77 4.17± 0.76 5.62 4.66

Prefix-only 415K 16.19 ± 1.22 4.02 ± 0.15 3.24 ± 0.20 5.02 4.17

The best score of each metric is boldfaced.

TABLE 3 Development set results of dual encoder with three fusion

methods (mean and standard deviation are shown for five-run validation

results).

Fusion Method Loss RMSE MAE

Concatenation 15.68± 0.75 3.96± 0.09 3.05± 0.18

Addition 16.12± 0.93 4.01± 0.12 3.11± 0.06

Average 15.46± 0.98 3.93± 0.12 3.10± 0.15

Average (with warm-start) 14.02 ± 1.01 3.74 ± 0.14 2.96 ± 0.17

The best score of each metric is boldfaced.

Although RoBERTa-FT1 performed worse on average than BERT-

FT1 on the development set, it achieved better performance on the

test set.

3.3. Prediction performance of dual
encoder model

The results of the three fusion methods are shown in Table 3.

Based on the loss values, the results demonstrate that fusion by

averaging performed the best among the three types of fusion

methods on the development set but with a higher variance.

Therefore, we used average fusion in our final implementation

of the dual encoder. Motivated by the prefix-only model’s slight

performance gain over ST-only, we performed warm-start training,

wherein the fusion model parameters (prefix-based encoder linear,

BiLSTM, and attention layers) were initialized by copying from

a previously trained model, in this case the prefix-only model.

This training process can be seen in Figure 6. To verify the

proposed model’s performance, we performed significance testing

between the warm-start dual encoder and the baseline models

in Tables 1, 2. Pairwise comparisons were done using a one-way

ANOVA test on the test set predictions. Both absolute errors

and squared errors were tested and we found that the dual

encoder was significantly better than all baseline models (p <

0.05).

Table 4 compares our models on the DAIC-WOZ dataset to the

existing state-of-the-art models with test set results: the AVEC 2017

audio-and-video-based model (9), a random forest model using

handcrafted text-based features (43), a speech-only attention-based

model (18), andmultimodal models that utilized all available audio,

video, and text information (44–47). On both the development

and test sets of DAIC-WOZ, all four of our text-based models

outperformed the AVEC 2017 model. Using all available input

modalities (audio, video, and text), the model proposed in Yang et

al. (47) achieved the best results on the development set but fell

short on the test set, compared to the prefix-only model and dual

encoder model. On the test set, our dual encoder model achieved

an improvement of 6.22% (4.67 vs. 4.98) in RMSE and 1.8% (3.80

vs. 3.87) in MAE over the best reported result (43) on the test set of

DAIC-WOZ. To the best of our knowledge, our proposed model

is the best performing model on this dataset, outperforming all

previously reported models. While incorporating other modalities

into our proposed framework is interesting, in this work our

main goal is to leverage the most recent advancement in transfer

learning based on large language models and parameter-efficient

tuning, which are still relatively underdeveloped in othermodalities

due to the lack of both quality pretrained models and their

corresponding parameter-efficient tuning mechanisms. However,

we showed that our models have brought forward the state-of-

the-art performance and we will leave the fusion of modalities as

future work.

3.4. E�ects of small data on
depression-adapted models

To further investigate the efficiency (number of learnable

parameters used) and effectiveness (prediction performance) of

prefix-tuning in low-data setting, we conducted an experiment to

understand the relationship between training set size and model

performance. Training data was randomly sampled to produce

subsets with {20, 40, 60, 80%} of the total size, separately with

respect to the depressed/non-depressed groups to preserve PHQ-

8 score distribution. Three models (prefix-only, BERT-FT1, and

RoBERTa-FT1) were adapted for each subset, with each model

trained using three random seeds. The same training subset data

was applied across all models to be compared. Prefix length

was a hyperparameter with possible lengths of {2, 4, 6, 8,

10} and was chosen based on a single validation run on the

development set.

The results of the experiment are shown in Figure 7. All

three models performed competitively at 20% with prefix-only

model on average taking a slight lead on the development

set. As the training set size increased, the performance gap

between the prefix-only model and fine-tuning models began
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FIGURE 6

Two-step warm-start training of the proposed dual encoder.

to widen. All three models achieved their best results when

100% of the training data was available, with the prefix-only

model achieving the lowest errors on both the development and

test sets.

4. Discussion

4.1. Selecting appropriate pretrained
models and adaptation method

With the difference in pretraining objectives and datasets,

ST-only outperformed BERT-PT and RoBERTa-PT by a significant

margin (over 8% in both RMSE and MAE). BERT-PT and

RoBERTa-PT were not pretrained to generate semantically

meaningful embeddings for encoding sentences. On the other

hand, by selecting more appropriate pretraining objectives

and materials to pretrain sentence embeddings, the resultant

model eased our task. Compared to the pretrained model

baselines (BERT-PT and RoBERTa-PT), training of the ST-only

model was more stable and converged faster. The results

suggested that sentence transformer was the appropriate

pretrained general purpose model for our depression severity

estimation task.

While fine-tuning improves upon its pretrained counterpart

(e.g., BERT-FT1 vs. BERT-PT, RoBERTa-FT1 vs. RoBERTa-PT), as

an adaptation method it does not appear to be sufficient enough

to surpass selecting an appropriate pretrained encoder, such as

a ST-based model. Nonetheless, prefix-only outperforming ST-

only suggests that selecting an appropriate adaptation method

TABLE 4 Key results from current literature, experiments on baseline

models, and the proposed model, in terms of RMSE and MAE scores

(lower is better).

Methods Modality
Development Test

RMSE MAE RMSE MAE

Previously reported

AVEC2017 Baseline (9) SV 6.62 5.52 7.05 5.66

HATN&HAE (18) S 3.68 2.87 5.51 4.20

RF (43) T 4.97 3.66 4.98 3.87

Topic (44) SVT 3.54 2.77 4.99 3.96

SVM (45) SVT 4.43 3.22 5.11 3.98

DCNN-DNN (46) SVT 4.65 3.98 5.97 5.16

Hybrid (47) SVT 3.09 2.48 5.40 4.36

Proposed

ST-only T 4.10 3.03 5.32 4.37

Prefix-only T 3.76 2.92 5.02 4.17

Dual encoder T 3.67 2.81 4.84 3.98

Dual encoder (warm-start) T 3.56 2.79 4.67 3.80

Dual encoder achieved a new state-of-the-art performance among text-only models and

multi-modal models. The best score of each metric is boldfaced (S, speech; V, video; T, text).

benefited depression severity prediction more than the sentence

embedding pretraining.
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FIGURE 7

Results for low-data setting experiment (prefix-only, BERT-FT1, and RoBERTa-FT1). (Left) Development set results with error bars indicating standard

deviation across three runs for training subset {20, 40, 60, 80%}. (Right) Test set results using the best model from the three runs. Prefix length for

each percentage is displayed as a bar.

FIGURE 8

Results from reference models (20, 43, 48–50) between text-based approach and speech-based approach.

4.2. Finding the right balance between
pretraining and depression adaptation

We observe that pretrained models with more tuned

parameters (BERT-FT2 and RoBERTa-FT2) performed worse on

the development set than their less parameter-tuned counterparts

(BERT-FT1 and RoBERTa-FT1). When we consider the results

from both pretrained regime and fine-tuning regime, results

from both the development and test sets show a trend wherein

BERT-/RoBERTa-FT1 performed the best, followed by the

pretrained BERT/RoBERTa, and BERT-/RoBERTa-FT2 last. On

this dataset, the optimal point seems to lie between no fine-tuning
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and fine-tuning two layers. Results of the prefix-tuning model is

fitting: using only 6% of trainable parameters compared to FT1

models (∼7M parameters), the prefix-only model outperformed

all other depression-adapted baselines and all pretrained-only

baselines on both data partitions. This result renders evidence

showing that fine-tuning on a dataset of this size would result in

overparameterization, a phenomenon that has also been observed

in other tasks with similar sizes of data (25). Furthermore, the

performance gain of prefix-only model over ST-only model

suggests that some degree of task adaptation is beneficial and

reemphasizes that the method of adaptation can also be significant.

This likely indicates that certain depression-specific information in

the dataset can be learned by the model.

By the same token, the complementary effect observed in the

dual encoder model from fusing embeddings can be seen as another

approach to balancing between pretraining and task adaptation.

While the RoBERTa-based prefix-tuning module was pretrained

for subword-level embeddings, sentence-level embeddings from

the ST encoder could be adding another layer of complementarity

by providing sentence-level semantics. Furthermore, warm-start

further improves model training by starting training from a better

initialization point on the loss surface and converge to a better

solution. Final training of the dual encoder model incorporated

network parameters of the prefix-only model. This enables the ST

embeddings to offer useful complementary information to ensure

the resultant model to be either as good as the prefix-only model

or better. Since the warm-start initialized dual encoder model has

already learned some useful features from the target data, the

ultimate fusion model did not have to learn them from scratch. In

essence, warm-start training of the fusion model helped to reduce

the amount of data and computational resources required to train

a model. Thus, this training step was complementary to learning

under limited training data for the fusion model. We observe that

the combination of prefix-based and ST encodings improves upon

the two embeddings used alone. This validates our assumption that

the two types of embeddings offer complementary information to

the predictive model.

While the multi-modal model from (47) achieved the best

performance on the development set, their model underperformed

on the test set compared to our model. The result suggests that

prefix-tuning of a well pretrained model is less prone to overfitting

and promotes generalizability. Interestingly, our dual encoder

model which learned solely from text-based features attained

the best results among all published models (including multi-

modal ones). The inclusion of speech modality to complement

our current model with paralinguistic information may further

improve prediction performance, as evident in the referenced

models in Table 4. However, as discussed above, our main goal in

this work is to investigate the most recent advancement in transfer

learning based on large language models and parameter-efficient

tuning, and we will leave the fusion of modalities as future work.

4.3. E�ectiveness of prefix tuning for
depression adaptation

The performance curves in Figure 7 dovetail at 20% training set

size. There probably exists a limit in how much information the

models could learn from only so few examples (21 data points),

which could not even cover the whole PHQ-8 range. As more

training data points were introduced, the prefix-onlymodel showed

a greater proclivity toward lowering its prediction error, which

suggests its efficiency in utilizing the new training data. On the

other hand, the fine-tuning models struggled to minimize their

errors. We attribute this performance gap partly to the flexibility

of adjusting the prefix length, which allowed a finer adjustment to

the model’s learning capacity. This was evident by increase in prefix

length as the amount of training data increased.

4.4. Limitations of automated systems

Although this work aims to address the problem of data

scarcity that handicaps building ML models for healthcare, effort

should still be made to expand depression datasets to increase their

diversity, in order to better represent the population. Furthermore,

as mentioned in Section 2.1, the PHQ-8 score range is further

categorized into five severity ranges, each of which spans four

points. Although our proposed dual encoder system was able to

achieve a new state-of-the-art performance result on the test set

of DAIC-WOZ, the performance is only just within a severity

range, i.e., MAE of 3.80 comparable to a four-point range span.

A difference in estimating a whole depression level could result

in substantial change in treatment. There remains a sizable

performance gap before achieving a clinically significant automated

system. Our results demonstrate that, similar to self-assessment

tools like PHQ, the ML models can only be used in support of a

clinician’s diagnosis by providing them an auxiliary input.

4.5. Text-based systems vs. speech-based
systems

From an information theory perspective, the extraction of

linguistic information from speech can be seen as information

reduction, by subtracting paralinguistic information embedded

in speech signals. Consequently, it is logical to presume that a

model with access to the speech signal would be more predictive

than a model with only the textual information. However, we

observe from the current literature that the contrary is true, as

seen in Figure 8, where text-based models are generally better than

their speech-based counterparts. Likewise from our observation of

the dual encoder model outperforming the speech-based model

from (18).

We offer several reasons for why a text-only ML model may

be better than a speech-only model. One reason is that text-based

data is typically easier to work with than speech data. Transcribed

data can be easily cleaned and preprocessed, while speech signal

may be plagued with background noise, reverberation, and level

differences. Another reason is that text-based models can attend to

exploiting the rich context and structure of natural language; they

can focus on the semantics of the spoken content by leveraging

and adapting the state-of-the-art pretrained language models.

Even though semantics are embedded in the speech signal, the

signal carries many other types of variabilities, making it difficult

for speech-only models to tease out the more task-beneficial
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variabilities from the irrelevant ones. Finally, speech-based models

present other challenges such as reduced user privacy, where text

transcript is easier to anonymize than the speech signal.

5. Conclusion

In this paper, we demonstrated the usefulness and effectiveness

of deep pretrained language models based on a parameter

efficient tuning method, prefix-tuning, for the task of depression

severity prediction. Through experiments on the benchmark

dataset, DAIC-WOZ, we showed that with 94% fewer training

parameters, prefix-tuning outperformed models trained with fine-

tuning. Furthermore, we presented a novel approach of fusing

embeddings extracted from a prefix-based depression-adapted

encoder and a general-purpose encoder, to enable achieving a

new state-of-the-art performance in predicting the severity of

depression, outperforming models that used multiple modalities.

We attribute the complementarity between the two types of

embeddings to their scope (depression adapted vs. general purpose)

and pretraining strategies (word-level vs. sentence-level). We

conducted additional experiments to understand the effectiveness

of prefix-based adaptation for depression data and attributed it

partly to the flexibility of optimizing the prefix length for a

given amount of training data. Our research provides evidence

showing that prefix-tuning is a useful and powerful approach and

contributes to the development of effective tools for automatic

assessment of depression severity in patients.
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