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With the development of social economics and the increase of working pressure, 
more and more women are suffering from long-term serious stress and showing 
symptoms of perimenopausal depression (PMD). The incidence rate of PMD is 
increasing, and the physical and mental health are seriously affected. However, 
due to the lack of accurate knowledge of pathophysiology, its diagnosis and 
treatment cannot be accurately executed. By consulting the relevant literature 
in recent years, this paper elaborates the neuroendocrine mechanism of 
perimenopausal depression from the aspects of epigenetic changes, monoamine 
neurotransmitter and receptor hypothesis, glial cell-induced neuroinflammation, 
estrogen receptor, interaction between HPA axis and HPG axis, and micro-
organism-brain gut axis. The purpose is to probe into new ways of treatment of 
PMD by providing new knowledge about the neuroendocrine mechanism and 
treatment of PMD.
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Introduction

Major depression disorder (MDD) is one of the leading causes of disability and premature 
death around the world. The incidence rates of chronic physical injury and death due to MDD 
are increasingly high (1). It is estimated that more than 300 million people worldwide suffer 
from MDD, equivalent to 4.4% of the world’s population (2). It brings great pain to patients and 
their families, and great economical pressure on the society. Women are twice more likely to 
suffer from depression than men (3), and it is estimated that approximately 20% of women 
experience severe depression in her life (4). It can occur or worsen during certain physiological 
periods with large hormone changes, such as premenopausal, perinatal, perimenopausal and 
postmenopausal (5). Compared with premenopausal and late postmenopausal women, the 
incidence of severe depression in perimenopausal women increased by two to three times (6).

The reason why perimenopausal women are prone to depression is unclear, which may 
be related to various neurological, endocrine, genetic, behavioral and social factors (7). Many 
studies have proposed different mechanisms and hypotheses, such as the estrogen withdrawal 
hypothesis, which suggested that estrogen deficiency directly leads to depression (8). However, 
many other factors are also involved, for example, Han et al. (9) pointed out that it may be related 
to lower education level, more severe perimenopausal symptoms and cognitive change. Gordon 
(10) proposed that the fluctuation of tetrahydroprogesterone was related to Regulation of 
γ-aminobutyric acid. De Kruif (11) held that vasomotor symptoms led to chronic sleep 
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interruption, which leads to irritability and depression. This article 
will focus on the life stress and its effects on neuroendocrine changes, 
the relevant evidence and neuroendocrine mechanism of the increased 
risk of PMD.

Symptoms of perimenopausal depression

The period of perimenopause represents the transition from 
reproductive life to non-reproductive life, which is a critical 
physiological transition period for women, with ovarian recession and 
endocrine disorder. However, not every menopausal woman suffers 
from PMD, only about 23.8% menopausal women are affected by 
depression, which suggested that there are several more reasons for 
PMD in addition to estrogen withdraw. According to the criteria of 
the seminar on reproductive aging stage, perimenopause is defined as 
the time span between the first major change in the length of 
menstrual cycle (the change with a difference of more than 7 days 
from the individual’s normal cycle length) and 12 consecutive months 
of amenorrhea (12). More than 80% of perimenopausal women show 
various physiological and psychological symptoms due to changes in 
sex hormones (13), such as depression and no interest, sleep disorders, 
tired, low energy, no self-confidant and thinking of death (Figure 1) 
(14). Women with anxiety sensitivity are more likely to suffer from 
vasoconstriction symptoms (15), and some will also suffer from 
mental disorders (16). Multiple menopausal symptoms occur at the 
same time and overlap with emotional disorders (17), leading to an 
increased risk of new or recurrent depression (18).

Life stress and perimenopausal depression

Women in the menopausal transition and early postmenopausal 
period have a higher risk of depressive symptoms and negative 
emotions than those in the postmenopausal period, which may be due 
to a series of bio-psycho-social risk factors (19). Stress has been 

suggested to be the major reason for depression. Early life stress can 
affect one’s whole life, and induce depression in later lives, such as 
menopause (20). In addition, a large number of clinical studies and 
animal experiments have shown that chronic stress can lead to 
neuroendocrine disorders. When stress stimulation persists, 
glucocorticoids are continuously released and at a high level, which 
will lead to abnormal release of monoamine neurotransmitters in the 
brain (21). For example, previous study in our lab has shown that 
stress can induce changes of hydroxylamine, L-glutamine, L-tyrosine 
and 3-phosphoglycerate occurred in the hippocampus and intestine 
of rats with unpredictable chronic mild stress-induced depression 
(22). Other hormones are also related to depression, for example, 
melatonin which is release by pineal body, is a strong positive 
correlation factor between climacteric symptoms and 
depression intensity.

Recently, genetic studies found that early life stress can induce 
DNA expression changes which might affect adult behavioral 
phenotypes (23). Epigenetic changes can make the same genome to 
expression differently, due to DNA methylation, histone modification, 
and miRNA etc. It is really the case the early life traumatic events can 
induce epigenetic changes for many MDD related neuromodulator 
receptors or transporters, such as methylation DNA of MAO 
(monoamine oxidase) or HPA axis, or through miRNA and lnRNA 
(24). The study of MAOA epigenetics found that depression may 
occur when MAOA is subjected to disordered DNA methylation 
programming, and MAOA-genotypic variants may mediate NR3C1’s 
metabolism (25). Recent studies also suggested that epigenetic changes 
in estrogen receptors are also related to MDD. E2 causes extensive 
epigenetic changes, mainly through DNA methylation to change gene 
transcription, such as methylation of genes (such as Est1, Cacna1c and 
Dcc) related to stress sensitivity and mental disorders (including 
human MDD) with significant differences (26). In addition, E2 
changes the mRNA and protein expression of DNA methyltransferases 
(DNMTs) (27). In general, estrogen-receptors (ERs) combine with 
estrogen-responsive elements (EREs) in the nucleus and induce gene 
transcription. ERα plays a role in passive demethylation through 

FIGURE 1

Signs and symptoms of PMD.
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ERE-mediated inhibition of DNMT1 expression. Although the ligand 
ER binds to the ERE in the DNMT1 promoter, it does not start gene 
transcription, but inhibits other transcription factors to start the gene 
expression of DNMT1 (28). Long-term stress stimulation will lead to 
epigenetic changes in monoamine oxidase receptor or estradiol 
receptor, increasing the risk of depression. Similarly, due to the 
biphasic stimulation of physiological changes and social pressure, the 
genome expression of perimenopausal women is abnormal, and the 
risk of PMD is increased.

Prevalent mechanisms of 
perimenopausal depression

Monoamine neurotransmitter and receptor 
hypothesis

PMD is a unique subtype of depression during perimenopause, 
and some of its neuroendocrine characteristics are consistent with 
depression. The hypothesis of monoamine neurotransmitters and 
receptors is a very important hypothesis for the pathogenesis of 
depression (24). At present, the first-line treatment for MDD are still 
antidepressants that have evolved from the monoamine hypothesis. 
Monoamine neurotransmitters are mainly secreted by the brain and 
adrenal gland, such as dopamine (DA), norepinephrine (NE) and 
5-hydroxytryptamine (5-HT), and play an important role in brain 
development, emotion regulation, stress, etc. In our previous studies, 
we  originally proposed that there might be  only three primary 
emotions, which are subsided by these three monoamine 
neurotransmitters (23). The neurotransmitter hypothesis believes that 
the decrease of monoamine neurotransmitter level in the brain will 
lead to depression (29). In our hypothesis, we originally differentiate 
the functions of these three monoamine, and we were the first to 
propose that norepinephrine is related to stress, dopamine is related 
to joy, while serotonin is related to depression (Figure  2). Thus 

we hypothesized that the three monoamine work differently to make 
three distinct emotions, as in the three primary colors (31). Therefore, 
monoamine might be  the primary substrate for emotions; thus 
we  introduced a new emotional theory based on the three 
monoamines, which can be  called “three primary color model of 
emotions” (31). The traditional hypothesis proposed that the decrease 
of 5-HT in the limbic system and cerebral cortex of stroke patients 
may be  an important factor of MDD (32). For example, Pestana-
Oliveira et al. (33) found that the level of 5-HT in the amygdala of 
PMD rats treated with 4-Vinylcyclohexen Diepoxide was lower than 
that of the control group. However, we proposed that the release of 
5-HT might be related to sleep and calm or depression (23).

Alternatively, monoamine decrease in the stress induction 
experiment of PMD rats, might be  related with the release of 
luteinizing hormone after ovariectomy. In addition, it is observed that 
5-HT deficiency in the basolateral amygdala of PMD mice increased 
glutamate release and inhibited γ- the release of aminobutyric acid 
leads to anxiety-like behavior. According to the hypothesis of 
monoamine neurotransmitter hypothesis, different findings have been 
made in the treatment of perimenopausal patients. He Z et al. (34). 
believed that the decrease of dopamine D3 receptor alone in the 
nucleus accumbens accompanying perimenopause was not enough to 
induce depressive behavior, while the decrease of D3 receptor was 
greater under the combined effect of stress, which could induce 
depressive behavior during perimenopause. Xiao M et al. (35) pointed 
out in a randomized controlled experiment that Huolisu Oral Solution 
can reduce the depressive behavior of depressed rats and increase the 
levels of DA, 5-HT and NE in hippocampus and serum. Bhatt (36) 
have shown that 5-HT3 receptor antagonists are effective in treating 
the comorbidity of depression and anxiety, and can reduce the 
symptoms of depression and anxiety in rodent models. Amin (37) 
used fluoxetine and 7,8-dihydroxyflavone to optimize the integration 
scheme, which can effectively reverse the depressive behavior of 
perimenopausal mice. In all, monoamine neuromodulator seems to 
be out dated because the traditional antidepressants are not effective 
in about one third of MDD patients (38).

Neuroplasticity hypothesis

The neuroplasticity hypothesis points out that the changes of 
neuroplasticity caused by stress and other negative stimuli play an 
important role in the occurrence and development of depression (39), 
and lead to the occurrence of depression by changing the hippocampal 
structure, increasing or decreasing neuronal apoptosis or regeneration, 
signal pathway disorder and synaptic plasticity damage (40). In a 
group of PMD animal experiments, it was found that the hippocampal 
pyramidal cell layer of rats in the model group became thinner, the 
gap increased, the structure was incomplete, a large number of cells 
were missing, and the ultrastructure of the hippocampus had obvious 
pathological changes, indicating that the spatial learning and memory 
of rats in the model group decreased, which was related to the 
pathological changes in the hippocampal structure (41). Ge (42) 
induced activation of microglia and inflammatory reaction in the 
prefrontal cortex of ovariectomized rats can accelerate anxiety and 
depression mediated by chronic stress. Yao (43) regulated the IL-4R/
JAK1/STAT6 signal pathway through astragalus, reduced the 
activation of microglia in the dentate gyrus, increased ki67 positive 

FIGURE 2

Three primary basic emotions. Russell proposed that all emotions 
can be located on a circle, instead of a quadrant. We proposed that 
there might be three primary emotions (Joy, fear, and sadness), 
adopted from our previous paper (30).
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cells, and alleviated depression behavior and memory deficits. Zhao 
et al. (30) found that scutellaria baicalensis can up-regulate TGFβ. The 
level of p-SMAD2/3 and NEDD9 protein and the increase of the 
number of DCX-, MAP2- and NeuN positive cells in the hippocampus 
indicate that scutellaria baicalensis can mediate TGFβ3-Smad2/3-
Nedd9 signal pathway protects neurons to improve depressive 
behavior. Jing et  al. (44) treated PMD model rats with 
electroacupuncture therapy of “combination of kidney and brain” for 
28 days. Compared with clomipramine hydrochloride drug group, in 
the experimental group, the content of estradiol and dopamine 
increased, the expression of DKK-1 increased, the expression of LRP-5 
and LRP-6 decreased in the hippocampus, and Wnt β- Catenin signal 
pathway is inhibited, thus promoting the repair of nerve cells and 
improving the symptoms of depression, but acupuncture has less side 
effects than drugs.

Changes of brain-derived neurotrophic 
factor level

The level of brain-derived neurotrophic factor (BDNF) in 
peripheral serum is closely related to the severity of depression (45). 
When patients have depressive symptoms, the content, synthesis and 
release of BDNF in peripheral blood serum are significantly reduced 
(46). This change is of great significance for the diagnosis and 
treatment of perimenopausal syndrome (47). In a clinical controlled 
trial, Xue (48) found that the BDNF level of perimenopausal 
depression patients who took venlafaxine capsule increased, the 
HAMD score and depression symptoms improved significantly, and 
the good or bad drug effect was related to the BDNF level. Chaihu has 
been used in clinical treatment of PMD for a long time. It mainly 
regulates the expression of neurotransmitters and the abnormality of 
ERK1/2-CREB-BDNF signal pathway (49), so as to improve the 
behavioral changes and inhibit the depression of perimenopausal rats 
with liver depression. Both Chaihu Shugan San (50) and Saikosaponin 
(51) can promote the activation of BDNF – TrkB signal pathway in the 
hippocampus and mediate the recovery of the neurotrophic system to 
produce antidepressant-like effects.

Neuroglia cell and glial lymphatic system

The brain is the only organ without lymphatic system, but the 
blood–brain barrier (BBB), special immune cells and the system 
connecting the brain and peripheral circulation are known as 
glymphatic system (52), which enables the brain to respond to injury 
as sensitively and accurately as the immune system. Many nervous 
system diseases, such as severe depression, autism, Alzheimer, 
Parkinson’s disease and multiple sclerosis, are manifested as aggravated 
inflammation or incorrect response of central nervous system 
immunity (53).

Microglia respond to stress-induced neuroinflammation by 
releasing pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) and its 
metabolites (54), meanwhile, the excessive activity of neurons triggers 
ATP release through activation of N-methyl-d-aspartic acid receptor 
and microglia ATP receptor to recruit microglia (55), leading to a 
series of reinforcement reactions, damaging the nerve function and 
leading to depression. Interferon-gamma(IFN-γ) The activation of 

microglia damages the neurogenesis of adult hippocampus and leads 
to depressive behavior and cognitive impairment (56). Microglia 
regulate inflammation, synaptic plasticity and the formation of neural 
network, which will affect depression, so some people think that 
depression can be regarded as a microglial disease (57).

The glymphatic system is dependent on the activity and 
polarization of aquaporin 4 (AQP4) on the terminal foot of astrocytes 
to mediate the exchange and flow system of cerebrospinal fluid and 
brain tissue fluid, and to mediate the excretion of macromolecular 
substances in brain tissue fluid (58). There are abnormal or decreased 
astrocytes (59, 60), depolarized AQP-4 (61) and dysfunctional 
glymphatic system (62) in emotional disorders. The expression of 
messenger RNA (mRNA) transcripts involved in AQP4 expression in 
MDD patients is down-regulated (63), and even the pathological 
conditions of depression may increase the risk of Alzheimer’s disease 
development through the impairment of glial lymphatic pathway 
function (62). The decrease of astrocyte density can also be transmitted 
to the offspring of depressed females through epigenetic mechanism 
(64). Liu et al. found that the supplementation of polyunsaturated fatty 
acids improved the physical signs of depression and the accompanying 
cognitive dysfunction by restoring the potential damage of the 
glymphatic system and protecting the cerebrovascular function (65). 
However, the study found that when iron accumulation and chronic 
stress exist simultaneously, the expression of transferrin receptor in 
neurons increases, and the increase of neuronal apoptosis caused by 
the destruction of glymphatic system by iron metabolism disorder 
aggravates the depression of stress mice (66). In astrocyte proliferation, 
astrocytes do not act alone, but together with microglia and neural/
glial antigen 2 cells (67). Microglia can activate astrocytes, leading 
them to enter the pro-inflammatory state (68). To sum up, chronic 
stress leads to the release of inflammatory factors from microglia and 
damages the function of glymphatic system induced by neurons and 
astrocytes, which is the possible cause of depression.

Endocrine mechanism of perimenopausal 
depression

The above discussion on the neurosecretory mechanism of PMD 
is based on depression, mainly including the hypothesis of monoamine 
neurotransmitters and receptors, the hypothesis of neural plasticity, 
and the hypothesis of neurotrophic molecules. However, they cannot 
explain the phenomenon that depression much more easily occurs in 
female, and the gender difference in MDD are attracting more and 
more attention from the scientists (69). Many studies indicate that, 
although girls are no more depressed than boys in childhood, more 
girls than boys are depressed by ages 13 to 15. The onset time of this 
sex bias has been attributed to a wide variety of factors, such as 
emotional regulation, rumination, cognitive style or temperament, or 
pubertal hormones. Even though the list of possible causal factors has 
been reviewed previously, actually they are possibly derived from 
changes of sexual hormones. For example, perimenopause is a more 
complex process of internal environment, mainly manifested in the 
decline of ovarian function, decreased estrogen secretion, and 
increased secretion of luteinizing hormone (LH) and follicular 
estrogen (FSH) (70). Estrogen can regulate the transcription and 
expression of target genes after binding with receptors, which can 
affect the synthesis of monoamine neurotransmitters, promote the 
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growth of neurons, inhibit their apoptosis, and regulate the signal 
pathway of brain-derived neurotrophic factors (71, 72). It shows that 
PMD is the result of the changes of neuroendocrine.

Changes of hypothalamus-pituitary- 
gonad axis

The HPG axis is the neuroendocrine axis that drives and guides 
the reproductive function. The hypothalamus secretes gonadotropin-
releasing hormone(GnRH) to act on the pituitary, and the pituitary 
secretes FSH and LH to stimulate the production of estrogen and 
progesterone and drive the growth and maturation of germ cells. The 
reproductive function of women is cyclical.

Estrogen is a major female hormone, including estrone and 
estradiol, which are mainly produced by the ovary and placenta. The 
great role of estrogen in women’s life cannot be  replaced by any 
hormone. It dominates the development and maintenance of women’s 
secondary sexual characteristics, regulates the stability of women’s 
internal environment, controls women’s life cycle, and women’s 
periodic menstruation, women’s fertility, and women’s unique body 
shape cannot be separated from the role of estrogen. In addition to the 
reproductive system and estrogen, many tissues and organs in women 
have their target organs, such as the nervous system, cardiovascular 
system, bone, urinary system, and so on. LH is a gonadotropin 
secreted by the pituitary gland, which promotes the conversion of 
cholesterol in gonadal cells into sex hormones. For women, FSH 
works together to promote the maturation of follicles, secretion of 
estrogen, ovulation, formation and maintenance of corpus luteum, 
secretion of progesterone and estrogen. FSH is a hormone secreted by 
basophils in the anterior pituitary gland. Its component is glycoprotein 
and its main function is to promote follicular maturation. Follicle-
stimulating hormone can promote the proliferation and differentiation 
of granulosa layer cells and promote the growth of ovary.

For healthy women, the ovaries undergo periodic ovulation and 
the production and secretion of estradiol/progesterone under the 
action of FSH and LH. The estradiol/progesterone secreted by the 
ovaries has a feedback regulation on the synthesis, secretion and 
release of hypothalamic hormones, and GnRH can also directly inhibit 
the function of the ovaries (73). This bottom-up and top-down 
interaction of HPG axis makes female endocrine maintain a relatively 
stable dynamic balance under normal conditions.

The incidence of depression in women is more than twice that in 
men (3), indicating that estrogen is related to the incidence of depression 
(74). The secretion of estrogen decreases during perimenopause, and 
the incidence rate of depression is two to three times that before 
menopause (6), indicating that estrogen deficiency will lead to 
depression (12). The two views are diametrically opposite. During 
perimenopause, changes in physiology, emotion, psychology and society 
mark the development of women from childbearing to menopause. No 
matter from the number of follicles or the quality of oocytes, the ovaries 
gradually fail, the sex hormone fluctuates greatly, and the negative 
feedback effect of the hypothalamus-pituitary-gonad axis also weakens 
(75), resulting in an increase in the secretion of LH and FSH (70), until 
the onset of hypergonadotropic hypofunctional amenorrhea. Whether 
women are in the early or late menopause, the highly variable and 
unpredictable reproductive hormone dynamics during perimenopause 
at least partially explain the variability of depressive symptoms (76). 

Next, we will discuss the role of estrogen, progesterone and other sex 
hormones in the pathogenesis and treatment of PMD.

Estradiol
Estradiol has a profound impact on the chemistry, structure and 

function of the brain, and has a nutritional effect on the prefrontal 
cortex and hippocampus, which are important for regulation and 
cognition (77). Estrogen stimulates serotonin activity by increasing the 
number of serotonin receptors and the transport and uptake of 
neurotransmitters (78). A considerable number of women show 
moderate and high emotional sensitivity to changes in endogenous 
estrogen during the menopausal transition period, and the emotional 
sensitivity to estradiol indicates the level of PMD risk (79). Excessive 
menstruation and fluctuating estradiol levels affect the binding of 
monoamine oxidase A (80), and increase the risk of severe depression 
in women by affecting the stress response and emotional regulation in 
the brain network. Therefore, estradiol treatment needs to 
be considered in the early menopausal transition period before the 
decline of ovarian hormone level permanently affects the serotonin 
function (77). Kulkarni (81) found in a 12-week randomized controlled 
trial that oral tibolone could improve the depression score of 
perimenopausal women without any significant side effects. Another 
study proved that the experimental group (receiving 12 weeks 17 β- 
Estradiol transdermal patch) is superior to placebo in the treatment of 
PMD (82). The effect of estrogen on the psychological status of patients 
with depression and schizophrenia fluctuates, but the overall trend is 
improving (81). However, there are many clinical studies show that 
hormone replacement therapy has little effect on PMD (83). For 
postmenopausal women without a history of severe depression, taking 
estrogen leads to decreased activity in the inferior frontal lobe, 
decreased emotional regulation function, and more negative emotional 
reactions to psychosocial stress (84). Demetrio (85) and Girdler (86) 
found that the BID score of oral estrogen replacement therapy did not 
improve in postmenopausal women. In a randomized controlled 
experiment, subjects were randomized to receive percutaneous 
estradiol, oral zolpidem or placebo treatment for 8 weeks after a 
one-week running-in period. The score of the Montgomery Depression 
Scale was improved in all groups, and the sleep quality of menopausal 
and postmenopausal women was improved (87). Depression is a 
psychological disease, and patients’ psychological cues to themselves 
are also extremely important, so it cannot be  concluded that the 
improvement of depression score is the effect of hormone therapy. To 
sum up, the efficacy of estrogen replacement therapy on PMD is 
controversial, and the side effects of estrogen on breast cancer, 
endometrial cancer, cardiovascular disease (88) cannot be ignored. 
Therefore, whether estrogen replacement therapy can be used as a 
clinical first-line treatment remains to be discussed.

However, recent studies have found that E2 has little effect on 
perimenopausal depression. Female depression induced by estrogen 
deficiency may be related to 5-hydroxytryptamine (5-HT) deficiency. 
In addition, luteinizing hormone (LH) changes significantly in 
menstrual cycle, perinatal period and perimenopause, which may 
be the main cause of depression (89). Before ovulation, LH secretion 
can reach 3–8 times of the basic level, and during perimenopause, LH 
secretion can increase to 3 times of the previous level (90). LH and 
FSH are positively correlated with the changes of stress hormones 
such as cortisone and adrenocorticotropin. LH and FSH may 
be specific risk factors for the development of PMD (91).

https://doi.org/10.3389/fpsyt.2023.1162501
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Han et al. 10.3389/fpsyt.2023.1162501

Frontiers in Psychiatry 06 frontiersin.org

Estrogen receptors
Estrogen receptors are distributed in different brain regions (such 

as the medial amygdala, hippocampus and limbic system), and many 
studies have suggested that they can affect many types of glia cells 
(Figure 3) (92). There are three known receptors, estrogen receptor α 
(ERα) Estrogen receptor β (ERβ) and g-protein-coupled estrogen 
receiver (GPER). ERα and ERβ are composed of different functional 
domains, and have several common structural regions, including 
N-terminal terminal domain (NTD) and estrogen response element 
(ERE). Estrogen can play a direct role by entering the plasma 
membrane, bringing the estrogen receptor complex to the nucleus, 
and interacting and binding with the ERE of ERα and ERβ in the cell. 
In addition, estrogen can also play an indirect role by interacting with 
receptors to activate various intracellular signal pathways such as 
PI3K/Akt, ERK or Jak/STAT (93). Therefore, estrogen signals can 
be divided into genome (directly binding to ERE) and non-genome 
(activating intracellular signal cascade).

Estrogen receptors widely exist in neurons and glial cells, and bind 
to receptors through estradiol and play a neuroprotective role (94). The 
anti-inflammatory effect of estradiol on astrocytes is mainly mediated 
by regulating the nuclear factor NF-γB of activated B cells (95). In the 
Lipopolysaccharide (LPS) – induced depression model, it was found 
that E2 or ERα agonist treatment inhibited the activation of NF-γB and 
reduced the expression of pro-inflammatory cytokines, indicating that 
NF-γB and downstream inflammatory cytokines were regulated by E2/
ERα (96). Estradiol can also inhibit the transcription of NF-γB 
dependent cytokines such as CCL2 by activating ERα in astrocytes 
(97). It can also play an anti-inflammatory role by increasing the release 
of growth factors such as IGF-1 and reducing the release of Ca2+ (98). 
Some studies have found that two gene variants of ERα gene (ESR1) 
(rs22346939 and rs9340799) are associated with MDD risk and its 
characteristics in individuals and combinations (99). Like astrocytes, 
estradiol binds to ERα of microglia and inhibits transcription factor 
NF-γB through activation of PI3K (100). On the other hand, estradiol 
down-regulates the gene expression of plasma membrane monoamine 
transporters (PMAT, Slc29a4) through ERβ and MAPK/ERK signaling 
pathways, thereby reducing the reuptake of 5-HT (101). Estradiol can 
also increase GABA levels in hippocampus and frontal cortex through 
ERβ and/or GPR30, and up-regulate GABA-related genes in amygdala 

and hippocampus (102). Estradiol also binds to ERγ and GPER1/
GPR30 microglial receptors, thereby regulating the release of 
inflammatory mediators and reducing the activation of microglial cells 
(103). The above researches show that ERβ activation has antidepressant 
effect, and the research report on the increase of anxiety-like behavior 
in ERβ gene knockout mice (104) further supports this view. GPR30 or 
GPER1 is a new estrogen receptor found in recent studies (105, 106). 
GPR30 is widely distributed in the brain of rodents, and high levels of 
immunoreactivity are found in areas related to emotional behavior, 
such as cortex, hippocampus, hypothalamus and brain stem (107). The 
activation of GPR30 can lead to the activation of adenylate cyclase, 
stimulate the production of cAMP, and finally activate the transcription 
factor cAMP-response element binding protein (CREB) (108). 
Estradiol can activate extracellularly signal-regulated kinase (ERK) 
through GPER1, and then mediate the increase of synaptic 
transmission (109). Tian et al. (110). proposed that GPR30 regulates 
anxiety-like behavior by changing the balance between GABAergic and 
glutamatergic signals in the basolateral amygdala, and the activation of 
GPR30 increases the inhibitory synaptic transmission in the basolateral 
amygdala of ovariectomized mice. The above discussion mainly focuses 
on the contribution of each estrogen receptor in anxiety and anxiety-
like behavior, providing theoretical support for hormone replacement 
therapy of perimenopausal depression.

Progesterone
In addition to the wide fluctuation of estradiol during 

perimenopause, the changes of gonadal hormones also include the 
reduction of the frequency of progesterone production during 
anovulation. The potential independent effect of progesterone on mood 
may be mediated by its neurosteroid metabolite tetrahydroprogesterone 
(10). As a neurosteroid, it may directly inhibit γ- Aminobutyric acid 
receptor, which mediates the protective effect of peripheral progesterone 
on mood, thus has a beneficial effect on the mood of women with 
hormone-related mood disorders (69). Tetrahydroprogesterone has 
been approved by the US Food and Drug Administration for the 
treatment of postpartum depression (111). The use of estrogen alone 
increases the risk of endometrial thickening and endometrial tumor 
(112). Progesterone can cause endometrial abscission, interfere with the 
binding of estrogen and receptor, and thus offset the proliferative effect 
of estrogen on uterine tissue (113). Progesterone is used in combination 
with hormone replacement therapy to stabilize endometrial tissue and 
reduce estrogen side effects. Sovijit (114) found in ovariectomized 
depressed mice that progesterone can reduce depression and anxiety by 
regulating the changes of intestinal microbiota composition, especially 
increasing Lactobacillus population. Hormone therapy is usually used 
to relieve depression and anxiety symptoms, but the health risks of 
estrogen, progesterone or synthetic progesterone treatment are greater 
than their benefits (89). However, progesterone is effective in improving 
depression symptoms and safer for menopausal women (115).

Changes of hypothalamus-pituitary- 
adrenal axis

HPA axis is an important endocrine system, responsible for 
coordinating stress response, which is a complex set of behavioral, 
neuroendocrine, autonomic and immune responses, and making 
appropriate response to stressful life events (116). When stimulated 

FIGURE 3

HPG and HPA axis.
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by external pressure, the paraventricular nucleus of the hypothalamus 
(PVN) synthesizes and secretes adrenocorticotropin-releasing 
hormone(CRH), stimulates the pituitary to synthesize and release 
adrenocorticotropic hormone(ACTH) into the blood, and after 
reaching the adrenal cortex, sends out the signal of glucocorticoid 
synthesis (117), glucocorticoid is released into the blood to promote 
the proper response of the body to environmental disturbance. The 
HPA axis is finally inhibited by the same hormone acting on different 
regions of the brain, and this negative feedback process reconstructs 
the baseline steady-state (118).

The abnormality of hypothalamus-pituitary-adrenal (HPA) axis is 
a common neuroendocrine abnormality of PMD, which is 
characterized by the persistent stress state of the body for a long time, 
and the continuous high level of serum glucocorticoids, ACTH and 
CRH (119). Compared with men, the HPA axis imbalance caused by 
chronic stress in women is more serious, which is manifested by a 
significant increase in glucocorticoids and ACTH (120). This 
difference is mainly due to the regulation of gonadal hormones such 
as estradiol (121). Gonadoxins can interact with the central and 
peripheral components of HPA axis to regulate the synthesis and 
release of CRH, ACTH and glucocorticoids (122). Li (123) found that 
Orcinol Glucoside (OG) can improve the dysfunction of HPA axis 
caused by estrogen withdrawal and hormone fluctuation, alleviate the 
hyperactivity of HPA axis by regulating the levels of corticosterone, 
ACTH and CRH, and strengthen the BDNF-TrkB-CREB signal 
pathway in the hippocampus, which has potential antidepressant 
effect. Erxian decoction has neuroprotective effect on PC12 cells 
damaged by corticosterone, and can effectively inhibit reserpine-
induced hypothermia, ptosis and dyskinesia in mice. It has 
antidepressant-like effect, which may be related to the regulation of 
monoamine nerve transposition system in the brain (124). Contrary 
to the traditional idea, Guerrierieri GM (125) tested the HPA axis 
function of perimenopausal women with and without depression 
using the combined dexamethasone-adrenocorticotropin releasing 
hormone test. It was found that there was no inter-group difference in 
both baseline and stimulated ACTH and cortisol secretion. No 
abnormal HPA axis activity related to PMD was observed, indicating 
that PMD and HPA imbalance were not consistent. It may reflect the 
different underlying pathophysiological processes of patients with 
non-productive depression.

HPA and HPG
Because the lipophilicity of peripheral steroid hormones can 

cross the brain blood barrier, they can be  transformed into 
bioactive metabolites in the brain through the action of aromatase, 
3β-HSD, and 5α- reductase (126), interact with receptors to 
regulate cell function. For example, the effect of testosterone on 
the brain is usually controlled by the conversion of testosterone 
into estradiol by aromatase (118). 5α- Reductase converts 
progesterone and glucocorticoid into their respective metabolites 
in the brain (127). 3β- Diol plays a role by binding and activating 
ERβ (128). E2 can reduce the response of ACTH to stress (129). 
One study found that the incidence rate of depression in some 
women with oral contraceptives increased, which may be due to 
the fact that the contraceptives inhibit the production of 
endogenous steroids such as estradiol, which destroys the HPG 
axis and thus affects the regulation of the HPA axis (130). These 
data indicate that estradiol is an important inhibitor of female 

hypothalamus-pituitary–adrenal stress response. However, other 
experiments have shown that E2 can increase stress-induced 
neuronal activation (131) and CRH gene expression (132), and 
increase the sensitivity of adrenal gland to ACTH (133). The 
report on the obvious adverse effect of E2 on HPA axis activity 
may be due to different experimental conditions, such as the dose 
or duration of E2 treatment, on the other hand, it may be E2 on 
ERα and ERβ (ERβ Decrease, while ERα Increase HPA axis gain) 
mediated nondifferential binding of signal transduction (134). At 
the same time, this may explain the phenomenon that estrogen 
plays different roles in women’s depression at different periods 
and has different incidence rate.

At the same time, glucocorticoids have inhibitory effects on 
different levels of HPG axis, such as thalamus (reducing the synthesis 
and release of GnRH), pituitary (inhibiting the synthesis and release 
of LH and FSH), testicle/ovary (directly regulating steroid production 
and/or gametogenesis) (135). The central neuropeptide and CRH of 
HPA axis significantly inhibit the activity of HPG axis at the central 
level (136). CRH inhibits the HPG axis at the central and pituitary 
levels through CRHR1 and CRHR2, respectively (137). Infusion of 
CRH receptor antagonists can reverse the inhibition of LH level 
induced by acute stress. HPG axis is easily affected by stress, which has 
a strong impact on estrus cycle, GnRH/LH activity and fertility (138). 
To sum up, in order to improve the survival rate and quality of life, 
HPA and HPG axes work together and fine-tune each other, so as to 
integrate environmental, psychological, reproductive and genetic 
factors. Problems in any of the regulatory systems will cause the 
disorder of body functions.

Cushing’s syndrome (CS) is a rare endocrine disease. The excessive 
secretion of ACTH caused by pituitary adenoma or HPA axis 
dysfunction stimulates bilateral adrenal cortex hyperplasia, resulting 
in excessive production of chronic glucocorticoid (GC). In addition 
to typical clinical symptoms (full moon face, centripetal obesity, 
hypertension, etc.), there are also severe depression, mania, anxiety 
and neurocognitive disorders (139). GC plays a crucial role in stress 
response. GC receptors have pleiotropic distribution in the central 
nervous system (CNS), mainly in the hippocampus. GCs induced 
brain injury put forward four hypothesis mechanisms – decreased 
glucose intake leads to brain atrophy, increased excitatory amino acid 
toxicity on nerve cells, inhibition of “long-term enhancement” leads 
to cognitive impairment, and inhibition of dentate gyrus neurogenesis 
(140). These mechanisms seem to be able to explain the GC-induced 
brain damage, mainly the hippocampus damage that leads to 
neurocognitive impairment. After the disappearance of 
hypercortisolism, although the overall prevalence of mental disorders 
and neurocognitive disorders has improved, some patients may still 
show depression, anxiety, panic disorder and neurocognitive 
disorders, which play a key role in affecting the health and daily life of 
patients after long-term remission (141). Clinical study found that the 
continuous increase of LH can induce ACTH-independent Cushing 
syndrome (142). Our research team found in the previous study that 
ovariectomized rats showed a synchronous and continuous increase 
in LH and cortisol in the stress environment (143), while ACTH and 
cortisol have been proved to be an important mechanism of increased 
susceptibility to depression. At the same time, depression will continue 
to stimulate the HPA axis, resulting in its hyperactivity and pseudo 
Cushing syndrome, which brings many difficulties to the diagnosis of 
CS (144).
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Changes of microbiota-gut-brain axis

Although the change of neuroendocrine mechanism is 
considered to be the main cause of PMD, microbiota-gut-Brain axis 
is also a very important possible mechanism. The communication 
network between the gut and the central nervous system is complex, 
including the branches of the enteral nervous system (ENS) (ENS), 
sympathetic nerve and parasympathetic autonomic nervous system 
(ANS), and neuroimmune and neuroendocrine signal pathways 
(145, 146). Microflora plays an active role in the function of the 
nervous system through the interaction with the gut – brain axis 
(147). Intestinal microbiota can regulate the synthesis and 
metabolism of neurotransmitters to affect brain functions, such as 
the neurotransmission of 5-HT, noradrenergic, dopaminergic, 
glutamatergic and GABAergic (148), and can also produce these 
neurotransmitters by itself. For example, Candida, Escherichia coli, 
Enterococcus and Streptococcus belong to serotonin producers 
(149), Bifidobacterium and Lactobacillus produce GABA (150), 
Lactobacillus produces acetylcholine, Bacillus and Serratia produce 
dopamine, and Escherichia coli and yeast produce norepinephrine 
(151). The intestinal microbiota of patients with depression is 
significantly different, and the diversity and richness of microbiota 
have decreased. At the phylum level, the abundance of Bacteroides 
and Proteobacteria increased, while the abundance of Thickwallida 
decreased (152); At the family level, the relative abundance of 
Prevalenidae increased; At the genus level, the abundance of fecal 
bacteria and rumen cocci (153), lactic acid bacteria and 
bifidobacteria decreased (154). First, some experiments have proved 
that intestinal microbial changes can induce depression. The levels 
of interferon c (IFN-c) and tumor necrosis factor alpha(TNF-a) in 
the hippocampus of mice treated with CUMS microbiota were 
significantly increased and depressive behaviors were observed 
(155). The protein expression level of several tissues (especially the 
prefrontal cortex and liver) in the gut microbiota of sterile mice 
receiving MDD patients changed. These protein changes 
participated in a variety of biological functions, including metabolic 
processes and inflammatory reactions (156). Secondly, the 
symptoms of mood disorder can be  alleviated through the 
transplantation of fecal microbiota (157), which opens up a new 
idea for the treatment of perimenopausal depression. Nishino et al. 
(158) showed that the intestinal colonization of symbiotic bacteria 
in CUMS sterile mice led to the increase of monoaminergic 
neurotransmission in the striatum, leading to the normalization of 
anxiety-like behavior. Deng et al. (159) found that Paraacteroides 
improved the level of adverse metabolites in the Kynsignaling 
pathway, such as Kyn and 3-HK, and revealed that by affecting the 
Kyn pathway in the gut brain interaction, it is beneficial to improve 
the depression and anxiety-like behavior induced by chronic 
inhibitory stress (CRS), providing potential evidence for the link 
between intestinal ecological disorders, Kyn signaling pathway and 
depressive behavior changes. A study have found that ERα protects 
the host from harmful inflammation and dysfunction of 
mitochondria through autophagy activation and intestinal 
microflora control, thus promoting intestinal homeostasis (160). 
For a long time, antidepressant therapy usually aims at brain 
abnormalities, while other organ dysfunction is ignored. Regulating 
intestinal microbiota and improving the function of microbiota-
entero-brain axis may have a profound impact on the treatment and 
prevention of depression (161).

Conclusion

With the development of social economics, the life stress is 
increasing, and the incidence rates of mental disorders and depression 
are also increasing, especially for the menopausal women. The incidence 
of perimenopausal depression has increased to a very high rate that 
cannot be ignored. Although various mechanisms are suggested for the 
PMD process, it seems that ovarian dysfunction might be the key reason 
that links the factors for PMD (162). Recently, many studies have 
evaluated the importance of ovarian dysfunction in the risk of PMD as 
well as some other complications such as cardiovascular disease (163). 
The pathogenesis of PMD is still unclear. It may be related to various 
neurosecretions, hormone fluctuations, genetics, psychology and society. 
This article focuses on two aspects, including changes in neurosecretions 
and endocrinology. Firstly, long-term stress of perimenopausal women 
will lead to epigenetic changes of estrogen receptors, neuroinflammation 
induced by microglia and glial lymphatic system disorder mediated by 
astrocytes, and increase the risk of PMD. Secondly, estrogen can interfere 
with monoamine neurotransmitters and GABA metabolism, and the 
activation of estrogen receptor has a regulatory effect on nerve cells. 
These effects become unstable with the changes of sex hormones during 
perimenopause, which may be  one of the reasons for the increased 
incidence rate of PDM. Finally, intestinal microorganisms are the focus 
of research in recent years. Microorganisms can regulate neuroendocrine 
through the gut – brain axis. Fecal bacteria transplantation may open a 
new idea for the treatment of PMD.

Although great progress has been made in the pathogenesis and 
treatment of PMD, there are still many problems to be solved. First of all, 
in terms of pathogenesis, the effect of estrogen on female depression 
(weakened or enhanced) is controversial (12, 74), and the enhancement 
of HPA axis secretion of PMD has not been observed in some clinical 
experiments (164). Secondly, in the treatment of PMD, the side effects of 
estrogen replacement therapy are large (114), and the results are doubtful 
(84–87). However, depressed menopausal women can benefit from 
antidepressants. Some people respond well to hormones, and some 
people need both (17). In addition, estrogen and progesterone need to 
work together (113) to reduce the side effects of estrogen. Of course, 
while paying attention to medication, mood stabilizers and psychotherapy 
will continue to be good methods for treating emotional disorders (165).
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