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Post-partum depression (PPD) with varying clinical manifestations affecting new 
parents remains underdiagnosed and poorly treated. This minireview revisits the 
pharmacotherapy, and relevant etiological basis, capable of advancing preclinical 
research frameworks. Maternal tasks accompanied by numerous behavioral 
readouts demand modeling different paradigms that reflect the complex and 
heterogenous nature of PPD. Hence, effective PPD-like characterization in 
animals towards the discovery of pharmacological intervention demands research 
that deepens our understanding of the roles of hormonal and non-hormonal 
components and mediators of this psychiatric disorder.
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1. Introduction

The development of psychological disorders is associated with demanding physical and 
psychological changes during pregnancy and the postpartum period (1). Childbirth often 
increases the risk of mental disorders as well as higher rates of hospitalization and psychiatric 
treatment (2, 3). The global impact of post-partum depression (PPD) has been estimated around 
20% of women at peripartum – during pregnancy or post-partum period (4). The plethora of 
clinical manifestations in patients with PPD includes emotional tension, mood swing, guilt, 
agitation, insomnia, irritability, anxiety, depressive disorder, and confusion characterized by 
withdrawal, intrusiveness, hostility, and non-response to infant’s cues (5, 6). The infant may later 
suffer from the impairment of the cognitive performance, executive function, intelligence, and 
language development (7, 8). Poor maternal–infant bonding, impaired development, infanticide, 
child neglect, and negative neurodevelopment and behavior, as well as suicide tendencies, may 
result from untreated PPD (5, 9, 10). Stressful life events, history of psychiatric illness, drug 
abuse, low levels of social or partner support, unexpected pregnancy or complications, and 
genetic susceptibility are among PPD’s risk factors (11, 12).

A population-based cohort study has revealed the first-time experience of psychiatric 
disorder in many women with PPD (13). High rates of manic-depressive, obsessive–compulsive, 
post-traumatic stress, eating, bipolar and pain disorders often increase the recurrence risk of the 
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post-partum episode (14–16). Complex clinical manifestations or 
comorbidity of PPD with other disorders pose challenges to the 
accurate assessment of its prevalence. A set of cross-cultural variables, 
differences in the perception of mental health and its stigma, 
differences in environmental and socioeconomic contexts remain 
compounding factors (17, 18).

Historically, mental illnesses associated with childbirth were 
considered a discrete disease entity, a toxic-confusional or delirious 
picture, puerperal disorders, post-partum psychoses, baby blues, 
puerperal fever, or milk fever (19–23). The PPD was first described with 
the expression “if the womb is too moist, the brain is filled with water, and 
the moisture running over the eyes, compels them to involuntarily shed 
tears” in the 13th century or thereabout (24). With years of conceptual 
descriptions marked by little consensual breakthroughs on the criterion 
for PPD, the fifth edition-text revision of the Diagnostic and Statistical 
Manual of Mental Disorders (DSM-V-TR) considers PPD as a major 
depressive disorder (MDD) of peripartum onset. Distinguishing between 
MDD and PDD is difficult, for example, about 80% of PPD cases are 
relapses of MDD; however, particularly in PPD there are gonadal 
hormonal changes that accompany delivery  - dramatic elevation of 
hormones during pregnancy that drop dramatically after delivery (25). 
The symptoms of PPD are often identified within the first 4 weeks of 
delivery up to 12 months (26, 27). Early detection, proper diagnosis, and 
treatment are key to preventing symptom exacerbation (28). Low mood 
in the early postpartum period which is largely deemed “normal” with 
50–80% of new mothers often makes early intervention against PPD 
elusive (29, 30).

Hence, leveraging etiological factors of PPD and emotional 
burden exacerbation to preclinical cues could engender early 
intervention and benefit at-risk mothers. In this manner, this 
minireview revisits available pharmacological interventions, 
etiological hypotheses of PPD, key mediators, parameters, and 
preclinical framework for effective screening of drugs.

2. Pharmacological approaches and 
implications

Diverse mediators of PPD that are involved in complex 
pathophysiological changes provide support for hormonal and 
non-hormonal pharmacological interventions. The current use of 
typical antidepressants to treat PPD suffers from limited evidence of 
safety and efficacy coupled with suboptimal outcomes (31, 32). 
Psychotherapy or antidepressants was recommended by the American 
Psychiatric Association as first-line treatment for mild-to-moderate 
PPD (33). The monoamine-based medication which sometimes 
comes with the risk of teratogenicity, neonatal toxicity, and/or long-
term developmental impact is widely used as the first-line treatment 
(Table 1). Some of them are selective serotonin reuptake inhibitors 
(SSRIs), serotonin and norepinephrine reuptake inhibitors (SNRIs), 
and tricyclic antidepressants (TCA). The worrisome infant exposure 
to these conventional antidepressants throughout perinatal and 
breastfeeding periods (40–42) should ideally limit their administration 
in patients. According to Deligiannidis et al. in 2021, none of these 
monoaminergic antidepressants have specific indications for 
PPD (43).

The etiological implication of the GABAergic system (44) 
through allopregnanolone [3α, 5α-tetrahydroprogesterone; a 

modulator of γ-aminobutyric acid (GABA) A receptor] provides 
additional insights into the drug development program for 
PPD. Negative feedback involving this neuroactive steroid rapidly 
suppresses neuronal excitability and HPA axis responses to 
postnatal stress to restore homeostasis (45, 46). Besides 
allopregnanolone, 3α, 5β-tetrahydro progesterone (pregnanolone), 
5α, 3α-tetrahydrodeoxycorticosterone, pregnenolone, 
progesterone, and deoxycorticosterone are important neuroactives 
of pharmacological interest. The hypothesis supporting 
neurosteroids and GABAergic transmission in PPD favors clinical 
applications of synthetic allopregnanolone (brexanolone) and the 
development of zuranolone now in the third phase of the clinical 
trial (1). Brexanolone induces a positive allosteric modulation of 
GABA receptors. The activation of these receptors prior to chloride 
ion influx reduced the depression score. In addition, possible 
impairment of episodic memory has been reported in some women 
receiving intravenous brexanolone (47). Reducing GABA signaling 
has been suggested to precede exacerbated glutamatergic 
transmission that contributes to depressive phenotype. The 
approval of ketamine, a non-competitive NMDA receptor 
antagonist, for treatment-resistant depressive patients can support 
the idea of a promising effect on PPD (48, 49). Furthermore, the 
neurosteroid-induced GABA A receptor (GABAAR) modulation of 
the hypothalamic–pituitary-gonadal axis (50) provides a clue on 
the reduction in the plasma levels of luteinizing and follicle-
stimulating hormone without estradiol or progesterone alteration. 
Hence, direct activation of GABA receptors plays important role 
in hormonal oscillations and regulations.

Cortisol, corticotropin-releasing hormone (CRH), 
adrenocorticotropic hormone (ACTH), oxytocin, prolactin, 
testosterone, and/or estradiol provide important pharmacological 
clues. Transdermal estrogen and estradiol are considered the effective 
treatment of depressive episodes in women with PPD or 
perimenopause. As the outcome of estradiol treatment raised 
expectations (51, 52), a transdermal estrogen for severe PPD treatment 
elicited more rapid improvement in depressive symptoms using the 
Edinburg Postnatal Depression Scale (53). However, the effectiveness 
and acceptability of these two treatment protocols vary among 
patients. The administration and abrupt withdrawal of a high dose of 
estradiol and progesterone during ovarian suppression in euthymic 
non-pregnant women increased depressive symptoms in women with 
a history of PPD (54). The leuprolide-induced hypogonadal post-
partum hormonal changes simulation was reversed among 62% of the 
women with a history of PPD by supraphysiological doses of estradiol 
and progesterone (55). Altogether, these results reiterate how relevant 
hormonal targets are key to the understanding of meaningful 
pharmacological intervention in drug screening and 
development programs.

3. Etiological understanding and 
relevant mediators

The behavioral cues and neurobiological aspects suggestive of 
depressive signs, sleep, and cognitive disruptions, and hormonal and 
non-hormonal alterations are important components of PPD 
(Figure 1). Some of these etiological components of PPD and infant 
suffering are the outcome of maternal exposure to stress. For instance, 
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TABLE 1 General considerations and reports on antidepressant-induced adverse effects during pregnancy and lactation.

Medication Structure General considerations and reports on adverse effects

SSRI

Fluoxetine (Prozac) Earlier studies indicated minor malformations in neonates. Colic, seizures, irritability, 

withdrawal symptoms, and cyanosis during lactation. Long half-life with the stereoselective 

disposition of fluoxetine and norfluoxetine in the mother, fetus, breast milk, and infant

Paroxetine (Paxil) Temporary neonatal respiratory distress associated with late third trimester. Potential to 

increase risk in cardiovascular malformations. No adverse effects have been reported during 

lactation. With short half-life and high protein binding difficulty accounts for its small excretion 

in milk or negligible infant serum concentrations

Fluvoxamine (Luvox) With limited data, it is not associated with an increased risk of malformations, lower birth 

weights, or younger gestational age and adverse effects. Shortest half-life among all SSRIs

Sertraline (Zoloft) Not associated with increased risk of malformations, lower birth weights, or younger gestational 

age and adverse effects. Negligible effect on platelet serotonin transport in breastfed infants

Citalopram (Celexa) Rate of congenital anomalies was no higher than that for other SSRI exposures. Irritability, 

restlessness, uneasy sleep during lactation decreased feeding. Concentrations in milk is higher 

than in maternal plasma

Escitalopram (Lexapro) Active S-isomer of citalopram. Low potential for causing adverse effects as limited information 

indicates that maternal doses produce low levels of milk

SNRI

(Continued)
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stress-induced reduction in circulating allopregnanolone at birth 
could in turn reduce its production in the neonate’s brain with 
far-reaching childhood adversity and multigenerational consequences 

(56). The stressful and intense demands of caring for a newborn are 
often accompanied by psychological, social, and biological factors (26, 
57). Qualitative and quantitative analysis of hormonal and 

TABLE 1 (Continued)

Medication Structure General considerations and reports on adverse effects

Venlafaxine (Effexor) Infants receive venlafaxine and its active metabolite in breastmilk; however, concurrent side 

effects have rarely been reported. Breastfed infants should be monitored for excessive sedation 

and adequate weight gain with moderate effects of neonatal withdrawal syndrome in infants 

exposed to the drug during pregnancy

Desvenlafaxine (Pristiq) Venlafaxine’s metabolite. Neonates exposed late in the third trimester may require respiratory 

support. Breastfed infants should be monitored for excessive sedation and adequate weight gain

Milnacipran (Savella) Unavailable data

Tricyclic antidepressants

Nortriptyline (Aventyl) Less anticholinergic, consequently less orthostatic hypotension and constipation

Imipramine (Trofanil) There have been clinical reports of congenital malformations. Limited data suggest that 

imipramine is likely to be excreted in human breast milk

Monoamine oxidase inhibitors

Isocarboxazid 

(Marplan)

Interacts with some medications and foods to cause a life-threatening hypertensive crisis

(Continued)
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non-hormonal input to PPD mediated by stress is pertinent (Figure 2) 
as stress adaptation and resilience instinct affect the perception of 
uncontrollable/unpredictable events from the ones that are or become 
controllable/predictable. Hypothetically, stress-induced suppression 
of the inherent rewarding component of the maternal-newborn 
buffering bond could drive depression and behavioral deficits because 
of the disruptions of the maternal resilience and recovery system. The 
psychosocial hypothesis supports PPD being an endpoint of excessive 
worry and abrupt perinatal changes in the immunity and physiological 
state emanating from adapting to the maternal role and life with a new 
infant (57, 58). Psychosocial predictors impacting women’s resilience 
and mental health recovery seem to be  associated with genetic 
components as supported by family and twin studies (59–61). These 
studies among others identified relevant genes that are associated with 
depressive episodes (60–62).

Genetic variants in hormones, transporters, receptors, and 
metabolic enzymes contributing to behavioral changes have been 
detected and analyzed during the post-partum period. Genetic 
alterations in estradiol, oxytocin, glucocorticoid, and CRH, estrogen 
receptors, and maternal gene expression across multiple brain regions 
with altered immune transcriptomic landscape and activation were 
associated with PPD (63–68). The variants of the serotonin transporter 
(SLC6A4; SERT), dopa decarboxylase, and protein kinase C beta play 

roles in stressful life events, depression, and PPD onset (69–72). High 
expression and polymorphism of SERT that are more reactive to 
environmental stressors (5-HTTLPR and STIN2-VNTR), 5-HT2A 
receptor, tryptophan hydroxylase (TPH), neurotrophic factors, 
Val158Met COMT or MAO-A, as well as tryptophan depletion, could 
contribute to a net decrease in brain 5-HT bioavailability prior to 
depressive phenotype (69–73).

Physiological adaptations required for gestation undoubtedly 
involve neuroendocrine fluctuations at different perinatal phases (74) 
and may converge to set the mother’s mental health state (75, 76). This 
may be part of a bidirectional feedback loop settled on some hormonal 
axes during the peripartum period that results in persistent anxiety 
and depression in some women (77, 78). Over the years depressive 
episodes have increased research hypotheses on monoaminergic 
neurotransmission. Monoamines seem to be affected by hormonal 
changes, as revealed by the substantial modification in monoamine 
oxidase kinetics through a short postpartum timeframe. Robust and 
accelerated degradation of neurotransmitters in PPD (79) supports 
monoamine involvement. Estrogen has a neuroprotective role, reduces 
inflammatory responses, also, can improve serotonin function (25). 
The monoamine-lowering process with a dramatic elevation of 
MAO-A and simultaneous estrogen decline during the first week of 
postpartum (79, 80), as well as tryptophan depletion or tyrosine 

TABLE 1 (Continued)

Medication Structure General considerations and reports on adverse effects

Phenelzine (Nardil) Interacts with some medications and foods to cause a life-threatening hypertensive crisis

Others

Trazodone (Donaren) No differences in the rate of major malformations

Nefazodone (Serzone) No differences in the rate of major malformations

Mirtazapine (Remeron) No adverse effects in infants have been reported

Bupoprion (Wellbutrin) Increased risk of seizure, especially in those with a history of seizure. Limited information 

indicates that maternal bupropion daily produces low levels in breastmilk. Hence, more 

information about its use is needed

Some of these reports still have limited clinical trials, or child outcomes, and underpowered samples. SSRIs, selective serotonin reuptake inhibitors; SNRIs, serotonin norepinephrine reuptake 
inhibitors (34–39). All structures were designed from the name found in literature data using the ChemDraw JS program.
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hydroxylase inhibition (81) are all connected to low mood and stress-
induced immune-inflammatory (proinflammatory cytokines) 
components of peripartum changes leading to PPD (Figure 2). For 
instance, a report showed varying peripartum tryptophan with lower 
plasma concentration in the second and third trimesters as compared 
to the first trimester, and gradual postpartum restoration after 
6 weeks (82).

Additionally, sleep disruptions and cognitive decline involving 
complex endocrinal and psychological interplays are important 
etiological manifestations in PPD patients (83–89). Cognitive 
dysfunction may be an early symptom of a depressive episode (89, 90). 
The sleep initiation, maintenance, and circadian rhythm prior to 
depressive manifestations and/or cognitive deficits implicate 
alterations in melatonin levels (91, 92), estrogen, and progesterone 
(90, 93–101). Besides, a high level of stress-induced immune-
inflammatory activity could shift tryptophan-serotonin-melatonin 
metabolism to a metabolites-driven kynurenine pathway (102, 103). 
This is followed by a significant reduction of serotonin, a substrate for 
the synthesis of melatonin precursor N-acetylserotonin, at mid-late 
pregnancy and the early postpartum period (104). The downregulation 
of serotonin and melatonin synthesis coupled with the upregulation 
of kynurenic and quinolinic acid contribute to depressive phenotype 
(105, 106). The alterations in the tryptophan-kynurenine pathway can 
lead to excessive activation of NMDARs, lipid peroxidation, 
autoimmune, inflammation, and oxidative stress responses 
underlining cellular damage, and PPD (5, 107–112).

Complex interactions of kynurenine, gut microbiota, and 
inflammatory and hormonal mediators (113) provide additional 
important targets in PPD. Although both indoleamine 2,3-dioxygenase 
(IDO) and tryptophan 2,3-dioxygenase (TDO) convert tryptophan 
into kynurenine, the IDO-induced tryptophan conversion contributes 

to maternal-fetal immune tolerance in placental villi (protecting the 
fetus from maternal T-lymphocyte and natural killer cell attack during 
pregnancy) (114) unlike TDO that is primarily induced by the stress 
hormone. The IDO is induced by gamma-interferon (INF-γ), and 
other pro-inflammatory cytokines (5). The involvement of gut 
microbiota in tryptophan and serotonin metabolism provides 
additional insight into the role of kynurenic acid in PPD. The release 
of pro-inflammatory cytokines could be exacerbated by the vicious 
cycle of the stress-induced release of catecholamine (norepinephrine 
and epinephrine) and activation of the nuclear factor-kappa-beta 
(NF-kB) cascade (Figure 2).

The modification of autonomic and neuroendocrine reactivity 
(115) in response to infant cries and odors may drive maternal hyper-
reaction (116). While a study associated increases in stress hormone 
levels with the modification of a mother’s mental health (117), an 
alteration in the hypothalamic–pituitary–adrenal (HPA) axis around 
the third month of pregnancy could boost positive feedback involving 
placental CRH (118). The abrupt withdrawal of placental CRH a 
couple of days from delivery towards the re-establishment of the 
maternal HPA axis could contribute to the PPD phenotype (119). 
Therefore, peripartum HPA screening may pave the way for new PPD 
pharmacotherapy interventions.

In addition, a 3-4-fold increase in basal serum oxytocin 
(implicated in well-being and social interaction) during pregnancy 
(120) prior to pulsatile increase during labor (121) seems to support 
the pathophysiological role of the central oxytocinergic target. The 
sudden reductions in oxytocin levels following the delivery in PPD 
(122) constitute an important hypothetical mediator. The report 
showed that higher oxytocin levels induced by serotonin-targeted 
antidepressant drugs improved cognitive performance (123) and 
parenting (124). This finding supports cross-communication between 

FIGURE 1

Etiological understanding of post-partum depression (PPD). The behavioral clues and neurobiological aspects suggestive of depressive signs, sleep, 
and cognitive disruptions, hormonal and non-hormonal alterations are important components of PPD etiology.
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oxytocinergic, and serotoninergic pathways often impact other 
systems. The synergistic effects of the serotonin system and brain-
derived neurotrophic factor (BDNF) modulate neuronal development 
and plasticity (125). Of note, N-acetylserotonin mimics BDNF 
activating TrkB (126). Hence, a decrease in serotonin may lower TrkB 
activation. Stress-induced BDNF reductions might cause neuronal 
damage, which would in turn heighten biological vulnerability to PPD 
behavioral phenotypes (127).

According to the neurotrophic hypothesis, the altered activity of 
neurotrophins (NTs) or their receptors plays a well-defined role in 
depression (128–130). The nerve growth factor (NGF) and BDNF 
which regulates neuronal growth and survival (128, 131) play 
important roles during pregnancy in the process of placental 
angiogenesis and maturation (132, 133). After delivery, NTs continue 
to perform functions in both the baby and the mother. Reduction in 
the level of these growth factors seems to contribute to PPD. Although 
lower serum BDNF levels after delivery were reported in women with 
PPD as compared to others without PPD (134, 135), an author 
suggested that a marked decrease in BDNF serum levels before and 
after childbirth alone did not sufficiently predict PPD (104).

Throughout the perinatal period, considerable declines in BDNF 
occur from the first to the third trimester prior to post-partum 
increase (136). Decreasing levels throughout pregnancy may, in part, 
reflect the use of maternal BDNF by the placenta and fetus (137). An 
inverse relationship between BDNF and depressive symptoms as 
observed in the third trimester suggests that late pregnancy is the 
period of greatest vulnerability to BDNF-induced depression (136). 
Altogether, some of these reports perhaps reflect the etiological 
complexity of PPD.

4. Update on preclinical assessments 
of PPD in vivo

As pharmacological treatment of PPD is still shrouded by limited 
therapeutic evidence of available antidepressants, rodent models of are 
fundamental to drug research and effective understanding of the 
neurobiology of this disorder. The assessment of PPD in animals 
constitutes a great challenge considering the concept of the validity of 
pharmacological intervention producing a similar effect in both 

FIGURE 2

Hypothetical pathways contributing to peripartum depressive readouts. Stress-induced activation of the HPA axis could lead to a chain of events 
involving cortisol release and autonomic nervous system (ANS) release of catecholamines. Both HPA and ANS are highly coordinated and 
interconnected with the overall impact on neuroendocrine (reduced levels of progesterone, oxytocin, and estrogen), monoamines (norepinephrine, 
serotonin, and dopamine), and neuroinflammation (increased level of inflammatory cytokines) at the peripartum period. Long-term stress and reduced 
progesterone may lead to decreased GABAergic signaling, contributing to peripartum sleep disruption and anxiety. A high level of stress-induced 
immune-inflammatory activity could shift tryptophan-serotonin-melatonin metabolism to metabolites-driven kynurenine pathway. The 
downregulation of serotonin and melatonin synthesis coupled with the upregulation of kynurenic and quinolinic acid contribute to the depressive 
phenotype. The alterations in the tryptophan-kynurenine pathway can lead to excessive activation of N-Methyl-D-Aspartate receptor, inflammation, 
oxidative stress responses, and excitotoxicity leading to cellular damage, and depressive readouts in postpartum depression. A monoamine-lowering 
process with genetic polymorphism or a dramatic elevation of MAO-A following estrogen decline could potentiate stress-induced BDNF reductions 
increase the risk of neuronal damage and low mood. 5-HT, serotonin; ANS, autonomous nervous system; BDNF, brain-derived neurotrophic factor; 
DA, dopamine; GABA, gamma aminobutyric acid; HPA, hypothalamic–pituitary–adrenal; IDO, indoleamine 2,3-dioxygenase enzyme; MAO, 
Monoamine oxidase enzyme; NE, norepinephrine; NF-κB, nuclear factor kappa B; NMDAR, N-Methyl-D-Aspartate receptor; TDO, tryptophan 
2,3-dioxygenase enzyme.
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humans and animals (predictive), the similarity of the behavioral 
readout or phenotype of animals to the disease phenotype being 
assessed in human (face validity) as well as the correlation between 
the underlying genetic or cellular mechanisms that result in 
psychological dysfunction in the animal model and in the human 
population (construct validity) as earlier reported (138).

In laboratory animals, pregnancy, childbirth, and lactation often 
induce profound physiological, neuroendocrine, and behavioral 
changes. The neurobiological advancement and pharmacological 
screening of new drugs demand improved profiling of PPD-like 
readouts with appropriate investigational tools in animal settings (40). 
A manifold of temporal peripartum cellular and molecular machinery 
underlining tension, mood swings, irritability, anxiety, and depression 
make preclinical profiling of behavioral manifestations to 
be herculean. Comparative assessments of behavior before and after 
pregnancy particularly maternal interactions with the newborn are 
important. The highly validated forced swimming, tail suspension, 
open field (139), elevated plus maze, light–dark box, and sucrose 
preference tests are among the important set-up for 
behavioral profiling.

The development of depressive-like responses and its correlation 
with the reductions in the level of norepinephrine, dopamine, 
serotonin, and intermediates in the striatum (care-giving), 
hippocampus (cognitive function), and hypothalamus (maternal care 
& eating behavior) in female BALB/c during the pregnancy and post-
partum periods was used to establish PPD-like behavior (139). As 
PPD may be  associated with alterations in the level of 
neurotransmitters, preclinical screening of drug targeting 
normalization of these alterations may be a promising candidate for 
the treatment of PPD. In previous studies, the withdrawal of estradiol 
and progesterone resulted in an increase in immobility and a decrease 
in forced swimming (140, 141). According to Frye and Walf, intra-
amygdala administration of progesterone increased the entries in the 
central area of the open field, increased the time spent in the open 
arms of the elevated plus-maze, and decreased the freezing time after 
foot shock (antiaversive or antianxiety-like effect) (142). All these 
experimental manipulations could alter neuronal ensembles and 
impact maternal tasks.

The hormonal oscillations (progesterone, estradiol, prolactin, 
oxytocin among others) that reorganize the brain make drug injections 
into different brain structures an interesting preclinical procedure for 
behavioral profiling of despair, anhedonia, anxiety, and negative affect. 
Chemical injections and experimental lesions of different brain 
regions (medial preoptic area, ventral tegmental area, nucleus 
accumbens, and arcuate nucleus) in rodents could abolish the onset of 
maternal behaviors, motivation network, nursing behaviors, lactation 
(143, 144). These experimental interventions that disrupt endocrine 
and neurotransmitters communication such as monoamines are 
important preclinical strategies. Monoamine dysregulation especially 
in mesocorticolimbic structures contributes to parenting deficits and 
maternal care (145). Parenting tasks as measured with lactations, 
dams’ latency to approach the pups, total dam-pup time spent in 
contact measured as indices of maternal behavior, licking/grooming, 
active nursing, nest building, self-grooming, pups out of the nest, 
climbing/digging, pup retrieval, handling, crouching over pups could 
provide complementary cues to depressive-like behavior. Disruption 
of maternal tasks could provide insight into postpartum-related 
emotional disturbances. Lactating animals and humans have a 

diminished physiologic reactivity to stressors (146), increased 
calmness, and nurturing behavior that maintains milk quality and 
quantity (147). Different behavioral repertoires directed toward pups 
are exhibited by lactating animals with suppressed HPA responses 
(148). After lactation stress responses or HPA reactivity are 
downregulated as cortisol, glucose, ACTH, and prolactin levels return 
to normal (148, 149). Grooming and rearing behaviors during 
lactation which are indicative of increased HPA activity could 
be  measured indirectly through stress-induced anxiety and 
depressive phenotypes.

As estrogen directly stimulates CRH production prior to ACTH 
secretion (150), its low levels during lactation may therefore suppress 
the hypothalamic release of CRH (146). Hence, phasic hormonal 
(prolactin, oxytocin, estrogen, and progesterone) levels during 
pregnancy, at birth, and after lactation (150) could provide important 
cues to behavioral changes. A high level of oxytocin being maintained 
throughout lactation and emotional stress may be  an important 
parameter for measuring the antistress nature of lactation. The 
oxytocin-induced amnesia, anxiolysis, sedation, antinociception, 
lower blood pressure, decreased corticosteroid levels, and increased 
vagal activity (34, 146) imply systemic effects with the involvement of 
a wide range of mediators. An additional intervention like 
immobilization (stressor) of these lactating animals that elevated 
plasma catecholamines (epinephrine and norepinephrine) (35, 146) 
could be explored in preclinical settings and that could explain the 
role of the autonomic nervous system in PPD as shown in the 
hypothetic Figure 2.

The analysis of maternal behavior, impulsive responses, and 
consummatory behavior could correlate with hormonal oscillations. 
The estrogen and oxytocin modulation have been associated with 
maternal licking, grooming, pup gathering, and nest building in 
rodents (36). As estrogen levels decrease, impulsive behavior increases 
(37). An increase in food intake and a decrease in locomotor activity 
in certain female rodents following ovariectomy and the subsequent 
depletion of estradiol and progesterone leading to weight gain support 
hormonal regulation of eating behavior (38). Cyclic elevations in 
estradiol could modulate dopamine levels in the prefrontal cortex 
prior to changes in impulsive behavior. Progesterone suppression of 
depression-like behaviors, motor, and cognitive deficits have been 
associated with neuroprotection that is independent of changes in 
general motor coordination, pain threshold, or plasma corticosterone 
levels (39, 151, 152).

Altogether, drug stimulation or blockade of different brain regions 
as well as knockout models, lesion, or tissue removal could provide 
important neurobiological clues towards the screening of drug 
candidates. The knockout mice model with Gabrd gene (encoding 
GABAAR δ subunit) silencing was explored to establish abnormal 
peripartum GABAAR-induced neuroplasticity and tonic inhibition 
(40, 153). These mice exhibited depressive-and anxiety-like 
phenotypes in the postpartum period complementing the increased 
depressive symptoms following post-partum inhibition of 
progesterone metabolism (44). The perinatal cognitive impairment 
(90), and reduced memory processing speed deficits during late 
pregnancy and after childbirth could be detected using step down 
passive avoidance test. Ovariectomized rodents instrumented with a 
single bipolar stimulating electrode directed into the lateral 
hypothalamus could be  used to study anhedonia among other 
behavioral manifestations. Additionally, the brain-gut-microbiome 
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axis or pre-pregnancy exposure to stress (154), whole-cell patch-
clamp recording change in synaptic receptor function, pools, and 
plasticity could provide meaningful mechanistic data. Considering the 
temporal nature of peripartum changes, neuroimaging, and real-time 
monitoring represent promising technology for examining patterns of 
hormonal and neurochemical changes that discriminate PPD from 
physiological changes or other depressive-like episodes.

5. Final considerations

Despite the current knowledge of PPD, neurobiological 
understanding that can augment new drug screening and treatment is 
still at infancy. The etiological perspectives which reveal a wide range 
of PPD mediators partly explain the pharmacological approaches 
showing significant variation in the treatment response and remission 
in women with PPD. Reports provide consistent evidence of complex 
temporal changes in gene–environment, hormonal, non-hormonal, 
and stress-driven mediators. PPD is etiologically different from other 
depressive episodes which supports the necessity of specific treatment 
(155). The efficacy of the conventional antidepressant drugs may 
be largely enhanced with appropriate adjuvant treatments or evidence-
based psychotherapies. Despite the recent support for GABAergic 
target therapy, the reports on brexanolone or progesterone’s effects in 
PPD patients are still few and somehow inconclusive (156). Although 
the dosing regimen of brexanolone takes into consideration the serum 
allopregnanolone concentrations at the end of pregnancy (157, 158), 
the long-term impact on endogenous hormonal release or effects 
remains largely unclear.

The dearth of extensive analysis of peripartum phasic hormonal 
and non-hormonal changes leading to depressive readouts in PPD still 
limits the scope of pharmacological interventions. The determination 
of the early mediators of PPD and validated screening tools for PPD 
are key to early intervention, and screening of new drugs. The panacea 
to the myriads of controversy that are associated with the study of 
psychiatric disorders in animals (159, 160) includes analyses of the 
underlying factors of behavioral changes using a new and well-
validated animal model.

An increase in immobility time that indicate depressive-like 
readout in rodents in the most widely used forced swimming and tail 
suspension tests (161, 162) could turn out to be an adaptive coping 

response to stress rather than behavioral despair (163). In the case of 
drug treatment (amphetamine), an increase in the swimming time 
could be an indication of CNS stimulation rather than antidepressant 
effects. Hence, complementary assessments of different dimensions of 
the depressive state of PPD as characterized by complex, 
heterogeneous, and multiple factors (154) could eliminate false 
positive or erroneous interpretations of findings. Robust assessment 
of the key neurobiological pathways and mediators of PPD could help 
in the discovery of standard pharmacological intervention.
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