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organoid research
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Tridimensional cultures of human induced pluripotent cells (iPSCs) experimentally 
directed to neural differentiation, termed “brain organoids” are now employed as 
an in vitro assay that recapitulates early developmental stages of nervous tissue 
differentiation. Technical progress in culture methodology enabled the generation 
of regionally specialized organoids with structural and neurochemical characters 
of distinct encephalic regions. The technical process of organoid elaboration is 
undergoing progressively implementation, but current robustness of the assay 
has attracted the attention of psychiatric research to substitute/complement 
animal experimentation for analyzing the pathophysiology of psychiatric 
disorders. Numerous morphological, structural, molecular and functional insights 
of psychiatric disorders have been uncovered by comparing brain organoids 
made with iPSCs obtained from control healthy subjects and psychiatric patients. 
Brain organoids were also employed for analyzing the response to conventional 
treatments, to search for new drugs, and to anticipate the therapeutic response 
of individual patients in a personalized manner. In this review, we  gather data 
obtained by studying cerebral organoids made from iPSCs of patients of the three 
most frequent serious psychiatric disorders: schizophrenia, major depression 
disorder, and bipolar disorder. Among the data obtained in these studies, 
we emphasize: (i) that the origin of these pathologies takes place in the stages 
of embryonic development; (ii) the existence of shared molecular pathogenic 
aspects among patients of the three distinct disorders; (iii) the occurrence of 
molecular differences between patients bearing the same disorder, and (iv) that 
functional alterations can be activated or aggravated by environmental signals in 
patients bearing genetic risk for these disorders.
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Introduction

Preclinical psychiatric research has attempted for decades to generate animal models that 
replicate mental disorders (1-3). The advances obtained in the study of the human genome, and 
the alterations detected in patients with different neuropsychiatric pathologies have contributed 
to consolidating the generation of genetically modified animal models to uncover pathogenic 
mechanisms of behavioral alterations. However, the structural complexity of the nervous system 
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and human behavior compared to other mammals (4–8) together with 
the polygenic nature of the genome alterations detected in psychiatric 
disorders (9), limited the progress of psychiatry based on preclinical 
studies using animal models. It must be  taken into account that 
rodents, used more frequently in biomedical research, from an 
evolutionary point of view are more than 90 million years older in 
their origin compared to humans and have enormous structural and 
functional differences (10).

From initial studies in the middle of the last century, modeling 
neural tissue differentiation by in vitro assays, constituted a promising 
tool to overcome limitations of animal models for the study 
neuropsychiatric disorders. The conventional 2D in vitro approaches 
enabled the study of morphological, molecular, and 
electrophysiological features of neurons and glia, providing 
remarkable insights in the mechanisms that regulate normal and 
abnormal neural tissue differentiation, as well as, for the identification 
of alterations induced in response to drug administration [see 
(11–14)].

In addition, the use of mixed cultures containing combinations of 
wild-type or abnormal, (i.e., genetically modified), neural cells were 
of great help to explore basic neuropathological mechanisms. Data 
obtainable from conventional two-dimensional cultures include 
aspects such as of neurite outgrowth, synaptogenesis, the release of 
neurotransmisors, being also useful to design protocols that direct 
differentiation of stem cell towards neuron and glia subtypes (15, 16). 
A major weakness of two-dimensional cultures (2D-cultures) came 
from their impossibility to replicate the complex architecture of 
neurons and glia in distinct brain regions that is of critical importance 
for function (17).

Attempts to develop three-dimensional cultures to study the 
structure and function of specific neural circuits, employed substrate 
scaffolds that support the formation of neural networks (18). In the 
last decade, advances in tissue bioengineering generated efficient 3D 
multicellular culture systems, termed “organoids” where cells growing 
in matrix substrates are able to self-organizing and re-capitulate, quite 
accurately, functional and structural development of the adult organs 
[reviewed by Goldrick et al. (19)]. Many methodology variations to 
the basic organoid technology has been introduce in the last years to 
adapt the assay to unravel specific questions (20). Among these 
variations are the formation of 3D cultures free of matrix scaffold, 
termed “spheroids,” or the combination of organoids obtained from 
distinct cell sources to explore interactions involving distinct cell 
types, that has been termed “assembloids” (21, 22). Overall, organoids 
provided a great methodological advance to study the bases of 
multiple human pathologies including neuropsychiatric disorders 
and, most important, to test the effects of different treatments in a 
personalized fashion [see (11, 12, 14)]. The progress achieved in the 
organoid technology in the last years has open the possibility to 
employ brain organoids in the next future, as biological chips for 
artificial intelligence (23, 24). The term of “organoid intelligence” has 
been proposed for this potential application (24).

First approaches in the design of three-dimensional cell 
cultures have been carried out using stem cells obtained largely 
from experimental animals. However, in the first decade of this 
century, the contribution of the Japanese Nobel awarded Shinya 
Yamanaka and other research groups in cell reprogramming has led 
to a revolution in the application of organoids to the study of 
human pathology. Takahashi and Yamanaka (25) managed to 

generate pluripotent stem cells by transfecting fibroblasts obtained 
from the skin of adult subjects with a cocktail of 4 genes, which 
encode for transcription factors. These cells were called “induced 
pluripotent stem cells” (iPSCs) and grown under appropriate 
conditions are capable of differentiating into all cell lines, including 
specific neuron subtypes and glia (26). The procedures to obtain 
IPSCs have been implemented in subsequent studies, allowing the 
use of different cells from adult tissues as a source to obtain 
iPSCs (27).

Since the studies by Lancaster et al. (28), it has been found that 
brain organoids replicate the establishment of interneuronal 
connections and the production of neurotransmitters. In addition, it 
has been verified that according to culture protocols (29) brain 
organoids can be  designed to replicate the structural and 
neurochemical characteristics of specific regions of the CNS [see (7, 
30, 31)], including diencephalon (32), brain stem (33), cerebellum 
(34), spinal cord (35, 36) and even to develop models of the cerebral 
cortex (37, 38). Furthermore, the combination of optogenetic 
techniques transfecting neural progenitors with genes that encode 
markers that are stimulated by light, allows highly sophisticated 
functional studies to be carried out (39).

Despite the extraordinary utility of organoids for the study of 
human brain development and pathology (40), they show weakness 
that need to be taken into account for appropriate modeling human 
diseases. From the technical point of view, a major shortcoming of 
current organoid methods is the lack of blood vessels in the culture. 
Due to insufficient surface diffusion, the interior of the organoid is 
under hypoxia resulting in central cell death. This causes slow tissue 
growth and developmental variability among distinct samples. 
Numerous efforts have been done to design procedures that ameliorate 
tissue nutrition. A relatively simple protocol is to slice organoids in 
thinner samples to bypass the diffusion limit and prevent cell death 
over long-term cultures. This method sustains development and 
neurogenesis in the organoid allowing the study of late stage cortical 
development (37).

A most promising modification of the tridimensional culture assays 
of special interest for drug screening, is the so-called “organ-on-a-chip” 
(41). In this assay, cells are cultured in micro-channels subjected to 
controlled fluid flow within a microfluidic device that is provided with 
biosensors to monitor biomarkers secreted by the organoids (42, 43). In 
addition to detect modifications induced by selected drug treatments, 
this assay enables to explore interactions between distinct organoids 
growing within channels interconnected together (“multiorgans 
microdevice”) or to generate a network of microvessels by adding 
growing vascular progenitors in connection with the organoid (44). 
Over-all, the organ-on-chip technology is a fast-moving field of research, 
and we could anticipate, that distinct types of these organ chip models 
will be manufactured and standardized in the next future [see (42, 45)].

In clinical medicine, the use of non-neural organoids offers the 
possibility of being used as a personalized test for therapeutic planning 
of tumor pathology and degenerative diseases, and the application of 
neural tissue organoids to the study of psychiatric disorders is promising. 
Since iPSCs are obtained from patients, the differentiated components 
in the organoid share their alterations, including genetic abnormalities. 
In addition, the response to drug administration could replicate, at least 
in part, that caused if it were administered to the patient.

There are however major limitations of organoid technology when 
applied to gain clinical insights of psychiatric disorders. The first one is 
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the inability of organoids for modeling cognitive and behavioral 
symptoms that are core features of psychiatric disorders. In some way, 
this is the same that happens in animal models. Another major 
limitation refers to the importance of environmental biopsychosocial 
factors such as life experiences or substance abuse in the evolution of 
psychiatric disorders. While some environmental factors such as drug 
abuse could be tested in the organoid assay, most of them are out of the 
organoid resolution. A further limitation of organoid studies came from 
the implication of different brain regions in the pathophysiology of 
psychiatric diseases. However, different strategies have been proposed 
to solve, at least in part, these limitations. As mentioned above, 
“assembloids” and/or organ-on-chip models (46) has been developed 
for this purpose. In addition, it is now possible investigating the 
functional effect of organoid implantation in the brain of host 
experimental animals. This is a novel aspect in the experimental use of 
brain organoids, which combines the formation of human organoids 
with animal experimentation. Models of implantation of mature 
organoids in the brain of adult or newborn experimental animals are 
being developed (47). Organoids have been shown to integrate into the 
cerebral cortex of host animals and have a specific influence on 
functional aspects of the selected brain area (48, 49). At present, there 
is only tentative data on the possible relevance of this experimental 
approach. However, it should be mentioned that within the field of 
neurology, neurological deficits due to traumatic cortical lesions in mice 
have been alleviated by implanting human organoids in the injured area 
(50). These results have raised ethical concerns due to the risk that 
chimeric animals may experience a certain degree of humanization that 
generates an increased perception of suffering (51, 52).

In summary, the use of brain organoids from psychiatric patients 
allows at least the following data to be obtained:

 1. Detecting functional and structural alterations of nervous 
organs complementary to those obtained by imaging studies 
and in autopsy samples.

 2. Exploring the effect of new drugs on the alterations present 
in organoids.

 3. Verifying, in a personalized fashion, the effect and efficacy of 
the different possible treatments for the patient’s disorder (53).

 4. Investigating the functional effect of their implantation in the 
brain of host experimental animals.

In this essay, we gather data obtained through the use of brain 
organoids regarding three highly prevalent pathologies in psychiatric 
clinic, including schizophrenia, major depression disorder, and 
bipolar disorder.

Schizophrenia

The elaboration of brain organoids through the use of iPSCs from 
schizophrenic patients has confirmed that it is a mental disorder 
associated with the development of the CNS, as well as confirming the 
alterations detected in postmortem studies and improving our 
knowledge about them (54). The most notable alterations of these 
organoids deal with neuronal development that included impaired 
differentiation of dopaminergic cells and lack of maturation of 
glutamatergic cells (55). From the cellular point of view, neurons with 
less dendritic branching and reduced synaptic connectivity are 

formed, and migration of neuroblasts within the tissue is deficient (56, 
57). Functionally, electrophysiological alterations have been described 
due to abnormalities of Na+ channels, increased GABA-ergic 
neurotransmission (58) that generate imbalance between activating 
and inhibitory signaling (59, 60), and mitochondrial alterations 
accompanied by increased oxidative stress (61, 62). The later has been 
proposed to be a central feature of SCZD since transfer of normal 
mitochondria to SCZD-iPSCs cells improved differentiation of 
glutamatergic neurons and, in vivo similar treatment rescued 
attentional deficits in a rodent model of schizophrenia (63).

Consistent with the morphological and functional alterations, 
differences in the expression of a high number of genes and 
non-coding micro RNAs (mi-RNAs) with respect to controls have 
been also detected (56, 64). The panel of regulated genes includes 
components of the Wnt and cAMP signaling pathways (56), and 
regulation of the FGFR1 receptor (65, 66). Members of these signaling 
pathways play important roles in basic aspects of neural development 
and differentiation in the embryo. Other characteristic molecular 
alterations are the overexpression of the nuclear protein called 
disrupted in schizophrenia 1 (DIC 1); the reduction of the synaptic 
protein PSD95, that is a marker of excitatory synapses (67), and the 
mitotic arrest defient-1 gene (MAD1), that regulates neuronal 
migration (68). It is important to note that those proteins also regulate 
basic aspects of CNS development and neurotransmission.

Remarkably, not all the alterations have been observed in all the 
patients analyzed (67). Some of the alterations, such as MAD1 
deficiency, or the increase expression of DISC 1, have been found also 
in other mental disorders such as major depression and bipolar 
disorder (69). We do not know if there is a common causal factor 
shared by these alterations, but it is known that major depression has 
a high incidence among schizophrenic patients (70).

Given that there are genetic variations between patients, the 
existence of different causal factors which converge in basic alterations 
of neural development, giving rise to a similar phenotype has been 
suggested (71). The heat shock-induced transcription factor, HSF1, 
has been identified as a protective factor in response to stress signals 
during embryonic development of the cerebral cortex whose 
regulation is deficient in iPSCs from schizophrenics (72). This fact 
would make the developing CNS of schizophrenics more vulnerable 
to different kinds of damaging agents (alcohol, hypoxia, convulsive 
pathology of the mother, etc.). In this same sense, it has been seen that 
organoids of schizophrenic patients are particularly vulnerable to 
exposure to the cytokine TNF alpha (tumor necrosis factor) generated 
by immune cells, suggesting that environmental factors, including 
maternal immune activation due to infections during pregnancy, can 
act as a trigger in fetuses with a genetic background of SCZD (73).

Concerning the evaluation of the therapeutic efficacy of drugs 
using brain organoids, it has been observed that treatments with the 
antipsychotic loxapine improves the connectivity of neurons by 
increasing the expression of glutamate receptors and reducing the 
deficiency in the expression of members of the WNT family (56).

Major depression disorder

Major depression disorder (MDD) is a highly prevalent 
disorder in western countries, but its molecular bases are not yet 
fully established (74). Genetic epidemiological studies support a 
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genetic basis with multiple subtype variations for this disorder 
(75). Clinical and pharmacologic studies support disruption of 
serotonergic neurotransmission as a central factor causal of the 
disorder and selective serotonin reuptake inhibitors (SSRIs) are 
considered first choice treatment. Numerous efforts were paid to 
design culture conditions to generate serotoninergic neuron from 
human iPSCs to explore alterations in MDD patients (76). 
However, the high number of patients resistant to SSRIs treatment 
(77), directed brain organoid-based research to elucidate the bases 
of resistance in order to unravel the pathophysiology of the 
disorder and to identify effective treatments.

When iPSCs from treatment-resistant patients have been 
studied, intensification of the response to serotonergic stimuli was 
detected in forebrain neurons associated with hyperactivity of 
excitatory serotonergic receptors (5-HT2A and 5-HT7) that did not 
appear in organoids from subjects normal or from MDD patients 
responding to SSRIs (78). This functional difference in treatment-
resistant patients is associated with structural changes in serotonergic 
neurons, including increased growth of neuronal cell extensions and 
negative regulation of protocadherin alpha 6 and 8 genes involved 
in cell adhesion (79). An important aspect is that experimental 
silencing of protocadherin genes in organoids from healthy subjects 
replicated the branching expansion of serotonergic neurons detected 
in the MDDs of patients resistant to SSRIs, and protocadherin-KO 
mice display apparently depressive behaviors (80). Overall, studies 
suggest an important role for protocadherins in resistance to 
SSRI treatments.

In recent years, the glutamate N-methyl-d-aspartate (NMDA) 
receptor antagonist, Ketamine, has been used as a promising 
antidepressant with a very rapid (hours) and sustained response over 
time (more than 1 week) despite the fact that its half-life is very short 
(2 h). Using a brain organoid model, Cavalleri et al. (81) have observed 
that after the administration of ketamine there is an increase in the 
size of the soma and in the pattern of dendritic branching of 
dopaminergic neurons. These rapid-induced structural changes (6 h) 
are maintained for days, which could explain the sustainability of the 
treatment effects over time (82). On the other hand, the effect of 
ketamine was inhibited by adding rapamycin, which is a specific 
inhibitor of the receptor called mTOR involved in anabolic processes, 
and also by inhibitors of brain-derived neural growth factor, 
BDNF (81).

An alternative approach to the analysis of the mechanisms of 
action of antidepressants on MDD patients using brain organoids is 
the application of this technology to detect adverse effects on the 
embryo and fetuses of antidepressant drug treatments administered 
to pregnant women (83). Using this approach, Zohng et al. (84) have 
verified that treatments with 60 ng/mL of paroxetine decrease 
dendritic density and the population of oligodendrocytes in brain 
organoids of healthy subjects.

Bipolar disorder

Bipolar disorder (BD) is a chronic psychiatric condition 
characterized by severe swings in mood, alternating periods of major 
depression and manic or hypomanic periods. The familial distribution, 
as well as the incidence between twin brothers, has revealed the 
hereditary profile of this pathology.

The use of brain organoids and iPSCs in the study of this 
pathology has focused on two fundamental aspects of the alteration: 
the characterization of the molecular bases involved in the 
pathogenesis; and in the analysis of the effect and mechanism of 
action of the drugs used to stabilize mood [lithium, valproic acid, 
lamotrigine (85)].

Although the samples analyzed are limited, and the results are 
often heterogeneous, modern genetic studies using iPSCs from 
families or individuals with BP detected a very large number of genes 
regulated differently from healthy controls, which often appear also 
altered in other psychiatric disorders such as MDD or SCZD (86, 87).

The organoids derived from BD patients develop a smaller size, 
have fewer neurons, and form less excitable and less complex networks 
than the controls (85). In these organoids, genes that code for 
membrane receptors and ion channels appear over-expressed, and 
Ca++ signaling is significantly disturbed (88), in addition to regulating 
a very large number of genes involved in maturation and neuronal 
plasticity. Regulated genes include members of the Wnt signaling 
pathway and other genes that appear also modified in organoids or in 
postmortem samples derived from SCZD patients (87, 89).

Mood stabilizers, especially lithium, are the treatment of choice 
for BD to which most patients respond, and it has been considered 
that clarifying their mechanism of action could provide relevant 
information to characterize the pathogenesis of the disease. Consistent 
with this interpretation, lithium pretreatment of BD organoids has 
been observed to modify Ca++ fluxes, and the expression of genes that 
confer topographic identity to telencephalic neurons during 
development (88). In addition, prolonged lithium treatments are 
associated with transcriptional regulation of more than 100 genes, and 
functionally attenuate the loss of excitability in BD organoids while 
having opposite effects in organoids from healthy control subjects 
(85). One significant aspect is that the response of iPSCs to mood 
stabilizers correlates with the response to treatment of the BP patients 
from whom they are derived (85, 90).

Preliminary studies using rat cerebellar neurons exposed to mood 
stabilizers (lithium and valproic acid) and subjected to glutamate 
excitotoxicity have shown that mood stabilizers have a neuroprotective 
effect mediated by the regulation of microRNAs [miR-34a, miR-147b, 
miR-182, miR-222, miR-495, and miR-690 (91)]. Out of all these 
microRNAs, miR-34a is overexpressed in organoids derived from BD 
patients and its experimental overexpression in organoids from 
healthy subjects alters neuronal morphology, represses their 
differentiation and reduces the expression of synaptic proteins (92). In 
a complementary fashion, silencing miR-34a promotes the expansion 
of dendritic arborization. Based on these effects, it has been proposed 
that this micro-RNA could constitute a central element on which 
different BD-inducing agents act to trigger this psychiatric disorder 
(92). MicroRNAs are small units of RNA that do not directly code for 
protein formation but rather modify the synthesis of specific target 
proteins by repressing the translation of the corresponding messenger 
RNA. Several factors regulated by miR-34a have been identified that 
support the idea of a critical position of this micro-RNA in the 
molecular cascade involved in the pathogenesis of BP. One of these 
targets is the cellular cytoskeleton regulatory phosphoprotein, called 
“collapsin response mediator protein-2” (CRMP2) (93). CRMP2 is 
involved in the formation of dendritic spines.

The effects of brain organoid exposure to valproic acid are of 
particular clinical interest because its administration during 
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pregnancy has been associated with a high incidence of autism 
spectrum syndrome in offsprings. In forebrain organoids, valproic 
acid, at high doses, has inhibitory effects on growth and neurogenesis, 
recapitulating the teratogenic effect of its administration during 
pregnancy (94).

Beside to the aforementioned alterations in neurons, BD 
organoids show alterations in astrocytes that cause less functional 
support for neurons and a reduction in their excitability. This effect is 
associated with a high production of interleukin-6 (IL-6) (95). IL6 
proinflammatory signaling has no effect on iPSCs from healthy 
subjects, and does not appear to be a specific aspect of BD as it is also 
observed in iPSCs from schizophrenic patients (96). According to this 
last study, the action of IL6 is carried out on microglial cells and is 
consistent with the role of maternal inflammatory processes as a 
trigger for both psychiatric conditions (96).

Conclusions and prospects

Brain organoids emerge as a new methodological approach for the 
study of the nervous system that in combination with animal 
experimentation and large-scale genome-wide studies might provide 
in the next years a great advance in understanding the pathophysiology 
of psychiatric disorders providing also insights on new therapeutic 
approaches for those disorders.

From the numerous data obtained so far by employing iPSCs 
gathered in this essay we would emphasize four major conclusions: (i) 
that the origin of these pathologies takes place in the stages of 
embryonic development; (ii) the existence of shared molecular 
pathogenic aspects among patients of the three distinct disorders; (iii) 
the occurrence of molecular differences between patients bearing the 
same disorder; and, (iv) that functional alterations can be activated or 
aggravated by environmental signals in patients bearing genetic risk 
for these disorders.

In recent years, the abundance of shared symptomatology 
among psychiatric patients with distinct diagnosis together with the 
occurrence of considerable overlapping patterns of gene alterations 

in distinct mental disorders has led to a re-evaluation of the 
traditional categorical diagnostic classification of psychiatric 
nosology (DSM and ICD) for the advance of psychiatry (97). There 
is a growing consensus that a “transdiagnostic” approach focused in 
the analysis of common underlying mechanisms involved in 
multiple psychiatric disorders may be  useful for a better 
understanding psychiatric disorders (98). Organoids can be used to 
investigate common mechanisms such as synaptic dysfunction, or 
neurogenesis deficits that may underlie multiple psychiatric 
conditions providing new criteria complementary to the 
information employed in transdiagnostic psychiatry (99). In this 
context, organoids can also serve as models for testing potential 
therapeutic interventions, which target these shared mechanisms 
rather than focusing on specific diagnostic.
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