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Introduction: The locus coeruleus-noradrenaline (LC-NA) system is involved 
in a wide range of cognitive functions and may be altered in schizophrenia. A 
non-invasive method to indirectly measure LC activity is task-evoked pupillary 
response. Individuals with schizophrenia present reduced pupil dilation compared 
to healthy subjects, particularly when task demand increases. However, the extent 
to which alteration in LC activity contributes to schizophrenia symptomatology 
remains largely unexplored. We aimed to investigate the association between 
symptomatology, cognition, and noradrenergic response in individuals with 
schizophrenia.

Methods: We assessed task-evoked pupil dilation during a pro- and antisaccade 
task in 23 individuals with schizophrenia and 28 healthy subjects.

Results: Both groups showed similar preparatory pupil dilation during prosaccade 
trials, but individuals with schizophrenia showed significantly lower pupil dilation 
compared to healthy subjects in antisaccade trials. Importantly, reduced preparatory 
pupil dilation for antisaccade trials was associated with worse general symptomatology 
in individuals with schizophrenia.

Discussion: Our findings suggest that changes in LC-NA activity – measured 
by task-evoked pupil dilation – when task demand increases is associated with 
schizophrenia symptoms. Interventions targeting the modulation of noradrenergic 
responses may be suitable candidates to reduce schizophrenia symptomatology.
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1. Introduction

Schizophrenia symptoms may arise from dysregulation in neuromodulatory systems. 
Evidence suggests that the locus coeruleus-noradrenergic (LC-NA) system might be involved 
in the development of schizophrenia pathophysiology (1, 2), although the prevailing hypothesis 
involves the dopaminergic and glutamatergic systems (3, 4). Cognitive deficits, for example, have 
long been recognized as a core feature of schizophrenia and are associated with poor functional 
outcomes (5–7). There has been a growing interest in studying cognitive deficits in schizophrenia 
as they predict functional outcomes, resist antipsychotic treatment, and often persist throughout 
life (7–11).
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The LC-NA system plays a pivotal role in regulating cognitive 
functions, such as working memory, learning and attention, and 
memory consolidation (12–17), which are largely impaired in 
schizophrenia. In individuals with schizophrenia, noradrenaline (NA) 
is elevated in both the blood and the cerebrospinal fluid (CSF) (18), 
especially in those with positive symptoms (e.g., delusions, 
hallucinations, thought disorders) (19). Postmortem studies have also 
reported increased markers for NA in the brains of schizophrenia 
individuals (20, 21). In general, studies associated positive symptoms 
with hyperactivity of the NA system, while negative symptoms (e.g., 
affective blunting, inattention, abulia) were related to hypoactivity of 
the NA system (1). For instance, diminished frontocentral P300 
amplitudes observed in individuals with schizophrenia during oddball 
and inhibition tasks may be an indicator of LC hypoactivity (22). 
Additionally, drugs increasing the central NA concentration (e.g., 
modafinil) lead to better performance in some cognitive abilities 
(23, 24).

Task-evoked pupil dilation is a non-invasive, well-established 
indirect measure of LC-NA activity (12, 25–27) and has been used 
as an effective indicator of cognitive processing (28–32). For 
example, pupil dilation scales with levels of difficulty across a 
variety of cognitive tasks (e.g., N-back, Digit Span, Stroop tasks), 
and it is associated with task difficulty in different cognitive 
domains (28, 33–40). Among healthy subjects, changes in pupil size 
during the preparatory period to exert an antisaccade, which 
requires a saccade to the opposite side of the target, are larger than 
for prosaccades (41).

In cognitive tasks, individuals with schizophrenia tend to exhibit 
reduced pupil dilation compared to healthy subjects, especially as task 
demands increase (39, 42–45). For instance, reduced task-evoked 
pupil response in preparation for antisaccades might contribute to 
deficits in executive cognitive control in individuals across the 
psychosis spectrum (46). Interestingly, changes in pupil size for 
pro-and anti-saccades were reported as similar (47), which may 
suggest a deficit in LC activity regulation in response to higher task 
demands in schizophrenia. Moreover, reduced pupil dilation has been 
related to the severity of negative symptoms of schizophrenia (44, 48). 
For example, greater pupil dilation was associated with worse 
motivational negative symptoms, which include lack of motivation, 
anhedonia, and asociality (49). Additionally, in the digit span task, a 
measure of working memory capacity, individuals with schizophrenia 
who had severe defeatist attitudes showed significantly less pupil 
dilation when processing demands increased compared to individuals 
with mild defeatist attitudes (43). Despite the groundwork in this area, 
the relationship between LC-NA system dysregulation and 
schizophrenia symptomatology is still not fully comprehended.

In the present study, we evaluated whether impairments in the 
LC-NA system, measured using task-evoked pupil dilation, were 
associated with impairments in the performance of cognitive tasks 
and clinical symptoms in individuals with schizophrenia compared 
with matched healthy subjects. First, we examined participants’ task-
evoked pupillary response using an oculomotor task that required 
lower cognitive effort (i.e., prosaccade) and higher cognitive effort 
(i.e., antisaccade). Considering previous findings, we expected that 
individuals with schizophrenia would exhibit reduced pupil dilation 
in the antisaccade task compared to healthy subjects. Second, 
we examined the relationship between task-evoked pupil dilation, 
cognition and clinical symptoms. We  expected that abnormal 

pupillary response would be associated with cognitive deficits and 
increased general symptomatology.

2. Methods

2.1. Participants

The sample included 23 subjects with chronic schizophrenia or 
schizoaffective disorder recruited from the day-hospital and outpatient 
clinic of the Institute of Psychiatry (IPUB) at the Federal University of 
Rio de Janeiro, from September 2013 to December 2019.

The diagnosis was established by a board-certified psychiatrist 
using a best estimate approach, combining information from medical 
records and the results of the Structured Clinical Interview for 
DSM-IV in a validated Brazilian Portuguese version. Chlorpromazine 
(CPZ, antipsychotic medication) (50) and Benztropine 
(anticholinergic medication) (51) equivalents (mg) were calculated 
(Table 1). All patients were stable in the same medication during the 
period of the experiment and had not suffered a psychotic relapse in 
the 2 months before study entry. IQ was estimated from the WAIS-III 
Brazilian version and the severity of symptoms from the Positive and 
Negative Syndrome Scale (PANSS). Participants were included if they 
(1) were between the ages of 18 and 65 years of age, (2) had a diagnosis 
of schizophrenia or schizoaffective disorder, (3) were clinically stable, 
and had an outpatient status for at least 2 months before starting the 
study, and (4) had Portuguese as the primary language. Participants 
were excluded if they (1) had any history of another psychiatric 
diagnosis, (2) history of psychotic episodes in the previous 2 months, 
(3) had intellectual disability (IQ < 80), (4) diagnosis of substance 
dependence, and (5) uncorrected visual or hearing problems.

For the control group, a board-certified psychiatrist recruited 28 
volunteers via personal approach. They were free from current or past 
history of major psychiatric illness and denied a family history of 
psychotic disorders in first-degree relatives. Recruitment of healthy 
controls was managed to match the schizophrenia group by sex, age, 
education, and ethnicity.

All participants signed a written consent form after being 
informed about the study procedures. The study was approved by the 
Brazilian National Committee of Ethics in Research 
(12990013.0.0000.5263) and pre-registered at ClinicalTrials.gov 
(1R03TW009002–01).

2.2. Assessments

2.2.1. Cognition
We measured the performance of participants in seven cognitive 

domains that have been defined as impaired in schizophrenia by the 
Measurement and Treatment Research to Improve Cognition in 
Schizophrenia (MATRICS). We  used the following tests: the 
Cambridge Neuropsychological Test Automated Battery (CANTAB) 
Reaction Time (RT) and Cogstate Detection to assess speed of 
processing; the CANTAB Rapid Visual Processing (RVP) and the 
Cogstate Identification to evaluate attention; the CANTAB Spatial 
Working Memory (SWM) and Cogstate Two Back for working 
memory; the MATRICS Consensus Cognitive Battery recommended 
tests (MCCB) Hopkins Verbal Learning Task (HVLT) for verbal 
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learning; the MCCB Brief Visuospatial Memory Test for visual 
learning; the CANTAB Stocking Of Cambridge (SOC) and Cogstate 
Groton Maze Learning for reasoning and problem-solving; and the 
MCCB Mayer-Salovey-Caruso Emotional Intelligence Test for social 
cognition. Raw scores were converted to z-scores using developer 
normative data. Further details regarding cognitive assessments are 
available in our previous work (9).

2.2.2. Symptoms
The PANSS was administered to assess participants’ clinical 

status (52).

2.3. Recording and apparatus

Eye position and pupil size were measured with a video-based eye 
tracker (Eyelink-1000 plus; SR Research Ltd., Ontario, Canada) at a 
rate of 1,000 Hz with a monocular recording (the right eye and pupil 

were used). After a 9-point calibration, stimuli were presented on a 
23-inch LCD monitor (Philips 144 Hz refresh rate and 1920×1080 
pixels resolution). The distance from the eyes, with the head on a chin 
rest, to the monitor was 56 cm. The pupil diameter provided by 
EyeLink gives pupil area or diameter in arbitrary units. Therefore, 
we converted the arbitrary units into absolute units, that is, millimeters 
(see Supplementary material). All participants were tested under the 
same lighting conditions.

2.4. Oculomotor task

Participants performed the prosaccade and antisaccade tasks. 
Each trial began with the appearance of a green (prosaccade condition) 
or red (antisaccade condition) fixation point (FP) (diameter, 0.5°; 
42 cd/m2) on a black background (0.1 cd/m2). In prosaccade trials, 
participants were instructed to look toward the peripheral stimulus 
and in the opposite direction in antisaccade trials. After 1,000 ms of 

TABLE 1 Participants’ characteristics.

Individuals with schizophrenia Healthy subjects

N =  23 N =  28

Mean (SD) Mean (SD) Statisticsa

Male | female 14 | 10 18 | 10 X2 = 0.19, p = 0.66

Age (years) 37.39 (12.12) 36.93 (11.38) t = 0.09, p = 0.92

Education (years) 10.67 (2.61) 11.24 (2.53) t = 0.81, p = 0.42

Years of illness 15.96 (12.31) NA

IQ 102.7 (14.29) NA

Clinical symptoms (30–210)

PANSS total score 55.30 (11.37) NA

PANSS positive score 12.22 (5.56) NA

PANSS negative score 14.52 (5.42) NA

PANSS general score 28.39 (5.53) NA

Cognition (z-scores)

Global cognition −0.91 (0.98) NA

Attention −1.72 (1.76) NA

Speed of processing −1.33 (1.85) NA

Working memory −1.17 (1.54) NA

Visual memory and learning −0.25 (0.86) NA

Verbal memory and learning −0.34 (0.98) NA

Reasoning and problem solving −0.54 (1.00) NA

Social cognition −1.12 (1.85) NA

Performance

Antisaccade error rate 0.38 (0.13) 0.30 (0.20) t = 1.78, p = 0.08

Antisaccade RT (ms) 242.5 (57.70) 240.3 (63.78) t = 0.12, p = 0.90

Prosaccade RT (ms) 203.6 (41.46) 170 (36.05) t = 3.01, p = 0.003

Medication (mg)

CPZ equivalent 374.7 (263.8) NA

Benztropine equivalent 2.92 (3.42) NA

aChi-squared test for sex and Independent Samples t-test (two-tailed) for age and education. IQ, intelligence quotient. PANSS, Positive and Negative Syndrome Scale. RT, reaction time. CPZ, 
chlorpromazine. Benztropine equivalent was calculated for 21 subjects.
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central fixation, the FP disappeared for 200 ms before the peripheral 
stimulus appeared for 1,000 ms (diameter, 0.5°; white dot with 
luminance 42 cd/m2) to the left or right of the FP (10° eccentricity on 
the horizontal axis) (Figure 1). Each trial had an inter-trial period of 
1,000 ms which provided enough time for the pupil to return to 
baseline. The experiment consisted of 60 trials of pro-and 60 trials of 
antisaccade. Trial conditions (prosaccade and antisaccade) and 
stimulus location (left and right) were randomly interleaved.

Reaction time (RT) was defined as the time from response cueing 
to saccade onset, determined when eye velocity exceeded 30°/s. Trials 
were correct if the first saccade after the FP was in the correct 
direction. Directional errors were identified as the first saccade after 
FP that was executed in the wrong direction (e.g., toward stimulus on 
antisaccade trials). The error rate was calculated as the ratio of the 
number of incorrect antisaccades to the total number of antisaccades. 
Trials with RT less than 90 ms were excluded from the data 
analysis (53).

For pupil data, trials with an eye position deviation of more than 
2° from the FP during the period of central fixation were excluded 
from the analysis. If the eye is in a blink, the EyeLink will report the 
specific field as missing values. Therefore, when blinks were detected, 
following the literature, pre-, and post-blink pupil values were used to 
do linear interpolation to replace values during the blink period (47). 
Importantly, there was no significant difference between groups for 
the number of detected blinks (prosaccade: t = 1.30, p = 0.20; 
antisaccade: t = 0.21, p = 0.82). Only correct trials were used for 
the analyses.

Approximately 30% of trials were excluded from the analysis. At 
least 53% of trials were included for statistical analysis. At least 22 
trials remained for each condition from each participant. Importantly, 
there was no significant difference between groups for the total trials 
excluded (t = 0.83, p = 0.40).

We evaluated relative pupil size using baseline correction (41, 54). 
The baseline pupil diameter value was determined by averaging pupil 
size from the first 150-350 ms after fixation onset, and for each trial, 
original pupil diameter values were subtracted from this baseline pupil 
diameter value. As video-based tracking systems can distort pupil size 
following variations in eye gaze (55), we examined pupil size prior to 
saccade initiation. Following previous work (41), pupil size was 
determined in three epochs prior to saccade initiation (i.e., when the 
gaze was located at the center of the screen): the start of the fixation 
point epoch (150-300 ms after fixation onset), the maximal pupil 
constriction, and the pre-saccade epoch (50 ms before peripheral 
stimulus onset) (Figure 1).

The change in pupil size prior to saccade initiation was defined as 
the averaged pupil size during the pre-saccade epoch minus the 
averaged pupil size across 50 ms at the time of greatest constriction 
during fixation.

2.5. Statistics

The distributions of demographic, cognitive, clinical, and pupil 
size data were tested for normality using the Shapiro–Wilk Test. 

FIGURE 1

Change in pupil size (baseline-corrected to 150-300  ms of fixation point onset) for correct prosaccade and antisaccade trials in 23 individuals with 
schizophrenia and 28 healthy subjects. The shaded colored regions around the pupillary response represent +/− standard error range (between 
participants) for the different conditions. The gray area represents the selected epochs for pupil analyses. The magnitude of pupil dilation during task 
preparation was calculated by averaging the pupil size during the Pre-saccade epoch (50  ms before peripheral stimulus onset) minus the average pupil 
size over 50  ms at the time of maximum constriction (Max constriction) during fixation.
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Independent Samples t-tests (two-tailed) or Chi-squared tested for 
group differences in demographic variables between healthy subjects 
and individuals with schizophrenia. We performed a mixed ANOVA 
(2×2 ANOVA: between-subjects factor: individuals with 
schizophrenia/healthy subjects x within-subjects factor: (prosaccade/
antisaccade)) for statistical analysis. We further included the results 
from the dependent and independent t-tests as a post-hoc analysis to 
specifically test our hypothesis that the modulation of pupil size 
(prosaccade x antisaccade) was impaired in the schizophrenia group, 
but intact in the healthy control group. First, within-group post-hoc 
comparisons between changes in pupil size for prosaccades and 
antisaccades were calculated using Paired samples t-tests (2-tailed). 
Second, between-groups post-hoc comparisons were calculated using 
Independent samples t-tests (2-tailed). Pearson or Spearman 
correlations were used to examine associations between the change in 
pupil size in prosaccades and antisaccades, cognition, clinical 
symptoms, performance, and medication in the schizophrenia and 
control group.

We used participants’ neuropsychological tests z-scores and the 
raw data of the clinical scales. Data were analyzed using IBM SPSS 
(28.0 version) with a statistical significance level set at p < 0.05.

3. Results

3.1. Participants

Participants’ characteristics are presented in Table  1. The two 
groups did not differ in any demographic characteristics.

3.2. Performance in prosaccade and 
antisaccade trials

Participants’ performance was evaluated using antisaccade 
reaction time (RT) and error rate. As expected, individuals with 
schizophrenia and healthy subjects had significantly longer RTs for 
antisaccade than for prosaccade trials (t = 5.74, p < 0.0001; t = 6.62, 
p < 0.0001 respectively). Given previous findings of longer RTs and 
higher direction errors in schizophrenia in the antisaccade task (56), 
antisaccade RTs and antisaccade error rates were compared between 
groups. We found a trend toward significance for individuals with 
schizophrenia to make more errors than controls (healthy subjects: 
mean = 0.30, SD = 0.20; individuals with schizophrenia: mean = 0.38, 
SD = 0.13; t = 1.78, p = 0.08). No significant differences between groups 
were observed for antisaccade RT (healthy subjects: mean = 240.3 ms, 
SD = 63.78 ms; individuals with schizophrenia: mean = 242.5 ms, 
SD = 57.70 ms; t = 0.12, p = 0.90). Interestingly, individuals with 
schizophrenia showed significantly longer prosaccade RT than healthy 
subjects (mean = 203.6 ms, SD = 41.46 ms; mean = 170 ms, 
SD = 36.05 ms, respectively; t = 3.01, p = 0.003).

3.3. Pupillary responses for correct 
prosaccade and antisaccade trials

Figure 1 shows relative pupil diameter corrected by the diameter 
at fixation onset (see methods), revealing two components of the pupil 

response: an initial constriction that began shortly after fixation point 
appearance followed by pupil dilation. The initial constriction is 
mainly driven by the changes in luminance level following the 
presentation of a luminant fixation point, while the dilation is related 
to task preparation (41).

Baseline pupil size was similar between schizophrenia and healthy 
subjects (prosaccade (t = 0.60; p = 0.55)), antisaccade trials (t = 0.50; 
p = 0.61). There was also no significant difference in pupil size at 
baseline between trial conditions in individuals with schizophrenia 
(t = 0.1.36; p = 0.18) and healthy subjects (t = 0.18; p = 0.85).

3.4. Pupil dilation in task preparation

Figure  2 outlines pupil dilation prior to saccade initiation in 
prosaccade and antisaccade trials in healthy subjects and individuals 
with schizophrenia. The effect of trial (prosaccade/antisaccade) and 
group on pupil dilation was assessed using a mixed model 
ANOVA. There was a significant main effect of trial condition (F (1, 
49) = 9.90, p = 0.003, η (2)= 0.16), trial-by-group interaction (F (1, 49) 
= 8.16, p = 0.006, η (2)= 0.14) and a trend towards significance for 
group (F (1, 49) = 3.27, p = 0.07, η (2)= 0.06). Within-group post-hoc 
comparisons revealed larger pupil dilation in antisaccade preparation 
compared to prosaccade preparation in healthy subjects (prosaccade 
mean = 0.018 mm, SD = 0.019; antisaccade mean = 0.037 mm, 
SD = 0.031; t = 3.82, p < 0.0007; Hedges’s g = 0.68), but not in individuals 
with schizophrenia (prosaccade mean = 0.017 mm, SD = 0.018; 
antisaccade mean = 0.018 mm, SD = 0.015; t = 0.26, p = 0.26). Between-
group post-hoc comparisons revealed reduced pupil dilation in 
individuals with schizophrenia compared to healthy subjects (t = 2.62, 
p = 0.01; Hedges’ g = 0.72). In contrast, pupil dilation during 
prosaccade preparation was similar between schizophrenia and 
healthy controls (t = 0.23, p = 0.81). Importantly, all statistics were 
maintained even when blinks were removed from the analysis 
(Supplementary material).

Next, we examined if the pupil size increase during antisaccade 
preparation would be associated with cognition, symptoms, or 
medications. We found no significant associations between pupil 
dilation in antisaccade preparation and cognition (data not shown). 
In regards to symptomatology, lower pupil dilation was negatively 
correlated with PANSS total (r = −0.61; p = 0.01) score (Figure  3; 
Table 2) and, at a trend level, with PANSS general (r = −0,39, p = 0.06) 
and negative (r = −0.36, p = 0.08) scores (Table 2); this result indicates 
that, for individuals with schizophrenia, the higher the 
symptomatology scores, the lower the pupil size will increase in 
preparation for antisaccade trials.

We also examined the relationship between pupil dilation and 
task performance across subjects, as indexed by error rate and RTs. 
We found a negative correlation between pupil dilation in antisaccade 
preparation and antisaccade error rate in individuals with 
schizophrenia (r = −0.55, p = 0.005), but not in healthy subjects 
(Table 2). No significant correlation between pupil dilation in the 
preparation of antisaccades and RT was found in both groups 
(Table 2).

We further asked whether changes in pupil size in the preparation 
of prosaccades would be  associated with cognitive performance, 
symptom severity, and medication in individuals with schizophrenia. 
We did not observe any significant associations between pupil dilation 
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in prosaccade preparation and cognitive performance, symptom 
severity, performance, and medication in individuals with 
schizophrenia. Furthermore, for both groups, we found no significant 
correlations between pupil dilation in prosaccade preparation and task 
performance measures (Supplementary Table S2).

4. Discussion

In this study, we  investigated the relationship between 
changes in noradrenergic response, as measured by task-evoked 
pupil dilation, and cognition and symptomatology severity in 
individuals with schizophrenia. We found that preparatory pupil 
dilation in antisaccade trials was significantly reduced in 
schizophrenia outpatients as compared to healthy subjects, which 
was found to be associated with the severity of clinical symptoms 
(PANSS total score).

First, we Start date of the program for which the scholarship 
is requested (year/month)confirmed the hypothesis that 
individuals with schizophrenia have reduced task-evoked pupil 
dilation with increasing task demands compared to healthy 
subjects, which is consistent with the literature (32, 42–44, 48). 
In our study, individuals with schizophrenia were not able to 
increase their noradrenergic response to correctly perform a task 
that requires higher cognitive effort (i.e., antisaccade task), as 
demonstrated by reduced pupil dilation in task preparation. 
Surprisingly, the allocation of cognitive effort in antisaccade 
trials was not associated with better cognitive performance in any 
of the MATRICS domains, as opposed to the literature. For 
example, studies using a cognitive effort-based decision-making 
task observed that in individuals with schizophrenia, greater 
pupillary change on the hard versus easy conditions was 
correlated with better cognitive ability. However, these two 
studies did not include a healthy comparison group and the 
schizophrenia group was composed of participants with moderate 
to serious negative symptoms, reducing the generalizability of the 
findings (49, 57).

Additionally, reduced task-evoked pupil dilation in 
antisaccade preparations was significantly associated with higher 
PANSS total and, at a trend level, with higher PANSS negative 
scores. As cognitive deficits, negative symptoms correlate 
strongly with functional outcomes and respond insufficiently to 
conventional treatments (58). Previous studies reported that 
higher negative symptoms were associated with smaller pupil 
dilation (48, 49). Individuals with schizophrenia, particularly 
those with more severe negative symptoms, are less willing to 
exert appropriate effort, suggesting that they may overestimate 
the cost of difficult actions, which leads to avolition. 
Consequently, it may reflect reduced pupil dilation in tasks that 
require greater cognitive effort (e.g., antisaccade task).

The LC projects to various cortical regions, including the 
prefrontal cortex (PFC). Disruptions in LC-NA projections to the 

FIGURE 2

Change in pupil size in preparation for correct prosaccade and antisaccade in 23 individuals with schizophrenia and 28 healthy subjects. Pupil dilation 
in antisaccade preparation was reduced in individuals with schizophrenia compared to healthy subjects. Values are presented as mean and standard 
deviation.

FIGURE 3

Associations between change in pupil size in antisaccade preparation 
and PANSS total in 23 individuals with schizophrenia. Smaller pupil 
dilation in antisaccade preparation was associated with higher PANSS 
total scores. Inserts show r and p values of the Spearman correlation 
(2-tailed). PANSS, Positive and Negative Syndrome Scale.
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PFC and other brain regions have been linked to cognitive 
abnormalities (2, 59–61). In their study, Devilbiss et al. identified 
two distinct modes of LC activation: Phasic activation, driven by 
top-down attentional processing, and Tonic activation, associated 
with the maintenance of overall arousal and preparedness to respond 
to stimuli (62). Changes in pupil diameter serve as a reflection of LC 
activity and task-related cognitive demands, with increased pupil 
size indicating higher cognitive effort allocation and vice versa (26). 
Our study revealed that individuals with schizophrenia allocated 
significantly fewer cognitive resources during antisaccade trials, as 
evident from reduced pupil dilation, indicating insufficient effort 
allocation, which aligns with previous research (44, 49, 57). 
We propose that the observed reduction in pupil dilation among 
individuals with schizophrenia during the antisaccade task may 
be linked to dysregulated phasic LC activation.

What mechanisms might account for the relationship between 
dysregulated noradrenergic responses and schizophrenia symptom 
severity? Dysregulated noradrenergic pathways underlie 
schizophrenia symptoms, including both positive and negative 
manifestations (2). For instance, positive symptoms may result from 
hyper-vigilant states of consciousness, while negative symptoms 
could be  linked to hypo-vigilant states (1). Positron emission 
tomography studies identified hyper-activation of the temporal 
cortex and limbic areas in positive symptomatology, along with 

hypo-activation of prefrontal areas in negative symptomatology (63, 
64). Furthermore, chronic paranoid individuals exhibited elevated 
NA levels in the forebrain, particularly in the limbic region, as 
confirmed by postmortem investigations (21, 65, 66). These findings 
align with studies detecting increased NA and its metabolites in the 
CSF and plasma of individuals with schizophrenia, with a 
pronounced impact on paranoid subgroups (18, 41). Moreover, van 
Kammen et al. rigorously confirmed the link between noradrenergic 
activity and the exacerbation of both positive and negative 
schizophrenia symptoms through CSF measurements (67). In 
summary, these findings strongly support the close association 
between noradrenergic function and the manifestation of 
schizophrenia symptoms.

The present study includes some limitations. First, pupillary 
responses are an indirect measure of LC activity; and other 
neuromodulators (e.g., acetylcholine) along with NA may contribute 
to changes in pupil size (68). Second, all patients were using 
antipsychotic medications, which have anticholinergic properties that 
can influence pupil size (69, 70), although we did not observe any 
association between reduced pupil dilation and chlorpromazine and 
benztropine equivalents. Third, pupil dilation involves a circuitry of 
both top-down and bottom-up control, potentially implicating other 
brain regions associated with arousal and attention, such as the 
superior colliculus and frontal/prefrontal cortex (68, 71). For instance, 
microstimulation of the intermediate layer of the superior colliculus 
induces temporary pupil dilation in non-human primates (54). 
Nevertheless, the LC is considered pivotal for pupil dilation in 
response to cognitive effort, and dysregulation of the LC-NA system 
may contribute to schizophrenia symptom severity. Lastly, this study 
comprises a relatively small sample size. Future studies should 
investigate changes in pupillary responses in a population of 
unmedicated individuals and with a larger sample size. Moreover, 
studies focused on the role of each neuromodulatory circuit in the 
modulation of pupil size are still needed.

In conclusion, our findings suggest that the modulation of LC 
activity when cognitive demand increases is associated with overall 
symptom severity in individuals with schizophrenia. These findings 
shed further light on the mechanisms underlying schizophrenia 
pathophysiology. More importantly, the modulation of noradrenergic 
responses may provide a strategy to improve clinical symptoms 
in schizophrenia.
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TABLE 2 Associations between change in pupil size in antisaccade 
preparation, cognition, clinical symptoms, performance, and medication 
in individuals with schizophrenia.

Change in pupil size (mm)

r p N

Cognition (z-scores)

Global cognition 0.20 0.34 23

Attention 0.22 0.28 23

Speed of processing 0.24 0.25 23

Working memory 0.18 0.39 23

Visual memory and learning 0.06 0.77 23

Verbal memory and learning −0.07 0.72 23

Reasoning and problem solving 0.14 0.49 23

Social cognition 0.27 0.25 21

Clinical symptoms

PANSS total score −0.61 0.001 23

PANSS positive score −0.29 0.17 23

PANSS negative score −0.36 0.08 23

PANSS general score −0.39 0.06 23

Performance

Antisaccade error rate −0.55 0.005 23

Antisaccade RT (ms) −0.03 0.88 23

Medication (mg)

CPZ equivalent −0.13 0.54 23

Benztropine equivalent −0.15 0.50 22

PANSS, Positive and Negative Syndrome Scale. CPZ, chlorpromazine. RT, reaction time. r 
and p values of the Pearson or Spearman correlations (2-tailed). N, number of subjects. Bold 
values show p values <0.05. Italic numbers trend towards significance (0.05 < p < 0.1).
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