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Introduction: Oxidative stress has been implicated in psychiatric disorders,

including posttraumatic stress disorder (PTSD). Currently, the status of glutathione

(GSH), the brain’s most abundant antioxidant, in PTSD remains uncertain.

Therefore, the current study investigated brain concentrations of GSH and

peripheral concentrations of blood markers in individuals with PTSD vs. Healthy

Controls (HC).

Methods: GSH spectra was acquired in the anterior cingulate cortex (ACC)

and dorsolateral prefrontal cortex (DLPFC) using MEGA-PRESS, a J-di�erence-

editing acquisition method. Peripheral blood samples were analyzed for

concentrations ofmetalloproteinase (MMP)-9, tissue inhibitors ofMMP (TIMP)-1,2,

and myeloperoxidase (MPO).

Results: There was no di�erence in GSH between PTSD and HC in the ACC (n

= 30 PTSD, n = 20 HC) or DLPFC (n = 14 PTSD, n = 18 HC). There were no

group di�erences between peripheral blood markers (P > 0.3) except for (non-

significantly) lower TIMP-2 in PTSD. Additionally, TIMP-2 and GSH in the ACCwere

positively related in those with PTSD. Finally, MPO and MMP-9 were negatively

associated with duration of PTSD.

Conclusions: We do not report altered GSH concentrations in the ACC or

DLPFC in PTSD, however, systemic MMPs and MPOmight be implicated in central

processes and progression of PTSD. Future research should investigate these

relationships in larger sample sizes.
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magnetic resonance spectroscopy, glutathione, metalloproteinase (MMP),
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1. Introduction

There is a need to develop effective medication for

posttraumatic stress disorder (PTSD), as currently, <30% of

people diagnosed with PTSD will achieve remission (1). Employing

brain imaging to understand the underlying neurobiology of PTSD

can identify therapeutic targets. Magnetic Resonance Spectroscopy

(MRS) is a valuable imaging modality that enables the in vivo

measurement of brain-based metabolites. Indeed, MRS has been

employed in PTSD to measure selected brain metabolites; to

date the literature reports decreases in N-acetylaspartate (NAA)

a marker of neuronal integrity and density, and mixed or null

findings of glutamate (Glu), γ-aminobutyric acid (GABA), myo-

inositol (mI), and choline (Cho) (2). Since NAA is a mitochondrial

metabolite, decreased NAA could reflect damaged mitochondria

in cerebral tissue (3). Oxidative stress is a primary driver of

mitochondrial dysfunction/damage (4). Interestingly, the status

of glutathione (GSH), the brain main’s antioxidant in PTSD

remains uncertain, as to our knowledge, the one study (5),

investigating GSH in PTSD employed an MRS sequence that is not

validated to measure GSH in the brain [see Rae and Williams (6)

and discussion].

It is not surprising that oxidative stress and redox biology

have been implicated in PTSD (7, 8), considering that the

brain in particular is susceptible to oxidative stress related

damage due to the central organ’s high lipid content and

metabolic rate (7). Notably, relevant features of PTSD, including

dysregulated hypothalamic pituitary adrenal (HPA) axis (9), sleep

disturbances (10), metabolic syndromes (11), neurodegeneration

(12), inflammation (13), and brain atrophy (14) are also associated

with oxidative stress (15). Preclinical research investigating

oxidative stress in animal models of PTSD has reported decreased

antioxidants (e.g., GSH) or increased free radical by-products

[e.g., malondialdehyde (MDA)] and related enzymes in various

regions of the brain such as the hippocampus (16–19), amygdala

(20, 21), and prefrontal cortex (PFC) (20, 22, 23). Human post-

mortem brain analysis has also reported alterations in genes related

to oxidative stress in the dorsolateral PFC (DLPFC) of patients

with PTSD (24). GSH plays an important role in protecting

the central nervous system from oxidative stress related damage,

where it serves as a co-factor for antioxidant enzymes including

glutathione peroxidase, which functions to detoxify peroxides,

as well as glutathione-s-transferase, which functions to reverse

oxidized protein residues (25), and is, therefore, a useful molecule

to investigate to understand the role oxidative stress might have

in PTSD.

Also of interest, are various molecules circulating in peripheral

blood that might relate to central markers of oxidative stress.

Several lines of inquiry have investigated concentrations of

common inflammatory mediators, including interleukin (IL)-1β,

IL-6, and tumor necrosis factor (TNF)- α, with mixed results

reported (26). An emerging line of interest (not yet investigated

in humans living with PTSD), has begun to explore matrix

metalloproteinases (MMPs) and their tissue inhibitors (tissue

inhibitor of metalloproteinases (TIMPs) in psychiatric disorders

(27). MMPs are extracellular matrix (ECM) proteins that help

degrade ECM molecules and release growth factors. MMP-9 (28–

30) and TIMP-2 (31) have been implicated in preclinical models

of PTSD and its clinical features including learned fear. Also of

interest is myeloperoxidase (MPO), a peroxidase enzyme that can

catalyze the formation of ROS. MPO has also been implicated

in PTSD (32), as well as major depressive disorder (MDD) (33).

While these proteins are not by-products of oxidative stress or

antioxidants, they can be activated by oxidative stress and correlate

with TBARS (by-product of lipid peroxidation) (34, 35). To date,

the relationship between these peripheral markers and brain GSH

has not been explored. Therefore, the current study employed

MEGA-PRESS (optimized for GSH) to quantify brain GSH in

the ACC and DLPFC [to replicate previous research (5)] in

people with PTSD and healthy controls. The investigation of brain

GSH was complemented by the measurement of plasma levels of

MMP-9, MPO, TIMP-1&2. Our primary aim was to investigate

group differences in brain GSH and peripheral blood markers;

secondarily, we aimed to explore relationships between central and

peripheral markers and features/symptoms related to PTSD.

2. Materials and methods

2.1. Participants

This study was performed from September 2017 to October

2022 at the Center for Addiction and Mental Health (CAMH,

Toronto, ON). After receiving approval for this study from the

CAMHResearch Ethics Board, research participants were recruited

from the Greater Toronto Area and relevant communities/clinics

(including Parkwood Operational Stress Injury Clinic, London

ON) using posted and online advertisements and brochures.

After providing written informed consent, research participants

completed a comprehensive medical and psychiatric screening

assessment (using the structured clinical interview for DSM

(SCID)-IV/5) (36) and questionnaires assessingmood [Generalized

Anxiety Disorder (GAD)-7 (37), Patient Health Questionnaire

(PHQ)-9 (38), Beck Depression Inventory (BDI) (39)], PTSD

symptoms [PTSD symptom scale (PSS) (40) and PTSD Checklist

(PCL) (41)], and the traumatic life events questionnaire (42) at

CAMH. Research staff also collected urine samples to screen

for drug use, medication and pregnancy in female participants.

Volunteers were eligible to participate if they were 17 years old or

older, physically healthy, and had no current or previous DSMAxis

I diagnosis except co-morbid mood disorder with PTSD (PTSD

group only). PTSD participants were included if they met criteria

for PTSD based on the Structured Clinical Interview for DSM-

IV-5. Cannabis and medication use was not exclusionary in the

PTSD group as long as participants did not meet criteria for current

substance use disorder (according to DSM-IV/5 criteria). Nicotine

dependence was not exclusionary in both study groups.

2.2. MRI session

On magnetic resonance imaging (MRI) scan day, urine

toxicology (BTNX Inc. Pickering, Canada), breath alcohol and

expired carbon monoxide measurements were taken to assess

recent alcohol and smoking. Additionally, a urine sample was

collected to detect substance use and medications (and to confirm
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FIGURE 1

GSH metabolite acquisition. (A) Fitted GSH spectra obtained at 2.95 ppm (top line: di�erence spectrum; middle line: GSH model fit; bottom line:

di�erence spectrum—model fit). (B) Voxel placement in the left DLPFC; (C) Voxel placement in the ACC.

that female participants were not pregnant). MRI scans took place

in a 3T GE Discovery scanner (GE Healthcare; SW: DV26 201)

in the Brain Health Imaging Center at CAMH for ∼1.5 h. To

minimize head movement, each participant was positioned at the

center of the eight-channel head coil with soft padding around the

head. Magnet homogeneity was adjusted using the manufacture

automated shimming routine. High resolution SagT1-weighted

BRAVO images were obtained for each participant [echo time (TE)

= 3.016ms; recovery time (TR) = 6.768ms; field of view (FOV) =

256× 256; scan time= 4:42 (min:sec)].

2.3. MRS data acquisition and analysis

All participants completed an MRS scan where spectra were

obtained from one region of interest: the anterior cingulate cortex

(ACC). A subset of participants also completed an MR scan where

spectra were obtained from the ACC as well as the left DLPFC

(Figure 1). Voxel dimensions for both ROIs were 4 cm x 2 cm

x 3 cm, resulting in a nominal size of 24 cc. Shimming was

performed using the manufacture automated shimming routine

(AUTOSHIM), to achieve a full-width at half maximum (FWHM)

≤10Hz. The MEGA-PRESS sequence was used to obtain MRS

spectra as previously described (43, 44). MEGA-PRESS acquires

spectra under two different conditions in an interleaved manner:

editing “on,” which applies a frequency selective RF inversion

(editing) pulse targeting the protons of GSH’s cysteine moiety at

4.56 ppm; and editing “off” with editing pulse set to 7.5 ppm, a

region with nometabolite resonances. Upon subtraction of the “on”

and “off” conditions, the edited-GSH resonance at 2.95 ppm is

observed, uncovered from the previously overlapped Cr resonant

peak (Figure 1). Data acquisition parameters were: TE= 68ms; TR

= 1.5 s; spectral width = 5,000Hz; number of points per spectrum

= 4,096; NEX = 8; total averages acquired = 512; editing RF pulse

width= 14.4ms; scan time= 13:12 (min:sec).

IDL-based software [XsOs-NMR (45)] was used to process the

edited GSH and the unsuppressed water spectra. Raw MRS data

from each coil was combined in the time domain based on coil

sensitivity (46) from the unsuppressed water signal, weighted by

the sum of squares of the signal intensities from each coil. The

data was spectrally apodised with a 3Hz Gaussian filter and then

zero filled to 8,192 points, prior to being Fourier transformed.

Frequency alignment, additional manual phasing and baseline

correction was performed on the data prior to fitting. Edited GSH

and unsuppressed water peaks were modeled using pseudo-voight

fitting functions and then fitted in the frequency domain using

a highly optimized public-domain Levenberg-Marquardt non-

linear least-squares minimization routine, MPFIT (47). Due to the

manual phasing and baseline correction that require user input, the

data set was randomized and processed twomore times by the same

user, resulting in three measurements per scan. The measurements

were averaged together, and the standard deviation (SD) was

calculated. The coefficient of variability (%CV = SD/average) was

used to assess the reproducibility of the user. Histograms of the

%CV could be used to identify outliers. We found that a %CV

threshold of 10% yielded good results and excluded spectra that

were visibly of poor quality. SPM12 (48) was used for tissue

segmentation of the T1 images. MRS voxel and image registration

and fractional tissue within voxel was performed using Gannet and

SPM12 (49, 50); data were inspected for correct voxel placement.

2.4. Blood samples

Participants provided peripheral blood samples as part of

a larger study (51). Venous blood was drawn into a 10-mL
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K2EDTA tube and left at room temperature for ∼45min before

a 20-min centrifugation at room temperature. Plasma supernatant

was then aliquoted and frozen at −80◦C until analysis. Biofluid

analysis comprised the quantitation of MMP-9, TIMP-1,2, and

MPO using Simple PlexTM cartridges on the automated Ella R©

fluorescence-based detection immunoassay system (ProteinSimple,

Biotechne, San Jose, CA, USA) (52). Simple Plex cartridges were

run according to the manufacturer’s instructions, and data were

processed automatically using default software settings as outlined

in the Ella User’s Guide. About an hour after test initiation, triplicate

results for every analyte of each sample are provided and blood

analyte concentrations are reported as the calculated mean of

triplicate values.

2.5. Statistical analysis

Descriptive statistics (mean/median, standard

deviation/interquartile ranges) were calculated for participant

demographics and medical history (e.g., age, sex, race, and

questionnaire scores). Group differences were evaluated by

independent samples t-tests, Mann–Whitney U tests, or Chi

square tests where appropriate. Independent samples t-tests

were employed to evaluate group differences in GSH (in the

ACC and DLPFC), MPO, MMP-9, and TIMP-1,2, with follow

up tests completed to control for age, sex, BMI, and cannabis.

Additional t-tests were completed in the PTSD only group to assess

differences in GSH and blood markers between subgroups of PTSD

participants (e.g., medication, history of brain injury, comorbid

MDD). Two-tailed Pearson correlations were employed to evaluate

possible correlations between (1) peripheral and central markers

of oxidative stress and (2) markers of oxidative stress and PTSD

characteristics and symptoms. Next, interacting variables between

centered peripheral blood marker data and group status were

computed (biomarker ∗ group) and entered into a linear regression

model to predict brain GSH in the ACC and DLPFC. All statistical

analysis was conducted using IBM SPSS Statistics 27 (Armonk,

New York, USA).

3. Results

3.1. Participants

Thirty-two participants with PTSD and 24 healthy controls

(HC) were enrolled and scanned with MRS in the current study.

ACC single-voxel MRS was acquired in 32 PTSD participants and

24 HC; of those 30 PTSD participants and 24 HC had usable data.

DLPFC single-voxel MRS was acquired in 17 PTSD participants

TABLE 1 Participant demographics: PTSD and all healthy controls (ACC only).

PTSD (n = 30) Healthy controls (n = 24) P-value

Age, years 42.5± 10.5 33.5± 13.5 0.011

Sex, male n (%) 16 (53) 10 (50) 0.817

NIH race, Caucasian n (%) 24 (80) 10 (50) 0.103

BMI (kg/m2) 26.6± 3.7 25.1± 4.7 0.224

Years of education 16.4± 3.4 16.2± 2.6 0.834

Cigarette smokers, n (%) 4 (13) 1 (5) 0.87

Positive THC on MRI day, n (%) 10 (33) 3 (15) 0.148

Current cannabis use, n (%) 9 (30) 6 (30) 0.809

Cannabis (g)/week 13.3± 23.2 0.88± 1.2 0.492

Alcohol drinks/week 3.8± 5.4 2.9± 3.3 0.572

Questionnaires

BDI, median (range) 18 (4–39) 4.5 (0–7) <0.001

GAD-7, median (range) 10.5 (0–21) 0.5 (0–5) <0.001

PHQ-9, median (range) 13 (1–27) 2.5 (0–4) <0.001

Tissue fractions

ACC

CSF fraction 0.236± 0.58 0.219± 0.67 0.348

WM+ GM FRACTION 0.762± 0.59 0.779± 0.69 0.353

DLPFC

CSF fraction 0.131± 0.038 0.119± 0.032 0.354

WM+ GM fraction 0.865± 0.04 0.875± 0.034 0.445

Values are mean± SD unless otherwise indicated.

ACC, Anterior Cingulate Cortex; BMI, Body Mass Index; BDI, Beck Depression Inventory; CSF, Cerebrospinal Fluid; DLPFC, Dorsolateral Prefrontal Cortex; GAD-7, General Anxiety

Disorder-7; g, grams; NIH, National Institute of Health; PHQ-9, Patient Health Questionnaire-9; THC, Tetrahydrocannabinol.
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TABLE 2 PTSD characteristics.

PTSD in the
ACC

(n = 30)

PTSD in the
DLPFC
(n =1 4)

PSS, median (range) 30 (11–51) 32 (11–48)

PCL, median (range) 59 (26–83) 59 (26–76)

Duration of PTSD (years) 7.2± 7.7 5.8± 4.1

Age of onset (years) 35.9± 10.2 34.7± 6.8

Current MDD, n (%) 7 (23) 5 (35)

History of mTBI, n (%) 15 (50) 6 (43)

Medication use, n (%) 28 (93) 12 (85)

Cannabis 8 (26) 7 (50)

SSRI 12 (40) 7 (50)

SARI 4 (13) 2 (14)

SNRI or NDRI 5 (16) 5 (35)

Atypical antipsychotics 2 (6) 1 (7)

Benzodiazepines 5 (17) 6 (43)

PDE5 inhibitor 1 (3) 1 (7)

Alpha blocker 1 (3) 1 (7)

Operation-related PTSD, n (%) 26 (86) 14 (100)

Lifetime trauma exposure, n (%)

Natural disaster 10 (33) 5 (35)

Early childhood trauma 9 (30) 7 (50)

Physical violence 15 (50) 9 (64)

Sexual violence 6 (20) 3 (21)

Accident 18 (60) 10 (71)

War zone 9 (30) 7 (50)

Values are mean± SD unless otherwise indicated.

MDD, Major Depressive Disorder; mTBI, Mild Traumatic Brain injury; NDRI,

Norepinephrine-Dopamine Reuptake Inhibitors; PDE5, Phosphodiesterase Type 5;

PSS, PTSD Symptom Scale; PCL, PTSD Checklist; SARI, Serotonin Antagonist and Reuptake

Inhibitors; SNRI, Serotonin-Norepinephrine Reuptake Inhibitor; SSRI, Selective Serotonin

Reuptake Inhibitor.

and 24 HC and of those 14 PTSD participants and 18 HC had

usable data. Peripheral venous blood samples were obtained from

48 participants (n = 25 PTSD and n = 23 HC). One hundred

percent of samples across all four blood biomarkers (MPO, MMP-

9, TIMP-1, and TIMP-2) were within the level of detection and

had a triplicate CV value <20%. Of the PTSD participants with

blood marker data, 23 had GSH scan data in the ACC and

14 in the DLPFC. Of the HC participants with blood marker

data, 19 had GSH scan data in the ACC and 17 in the DLPFC

(see Supplementary Figure 1 for sample visualization). A table of

demographics for participants with available MRS data in the

ACC is presented in Table 1. A separate table of demographics

is available for participants with usable MRS data in the DLPFC

(Supplementary Table 1). Participants with PTSD were older than

HC participants and reported using more cannabis compared

to HC.

PTSD specific characteristics are presented in Table 2.

Participants scored ∼36 on the PSS and 60 on the PCL

questionnaires and had been suffering from PTSD related

symptoms for 6 years. Twenty-five percent of participants were

also diagnosed with current co-morbid MDD and half reported

a history of mild traumatic brain injury (mTBI). The majority

(88%) of participants were on medication, the most common type

being selective serotonin reuptake inhibitor (SSRI)s, followed by

cannabis (25%). Although the primary trauma was occupation

related in 84% of participants, participants reported a range of

trauma exposure including early childhood trauma (38%) and

physical (56%) and sexual (22%) violence.

3.2. No group di�erences in brain levels of
GSH

We found no differences in brain levels of GSH in the ACC (-

3%, p= 0.536) or in the DLPFC in PTSD vs. HC (−3.5%, p= 0.618,

see Figure 2). GSH levels were not related to age (ACC: p = 0.621;

DLPFC: p = 0.805), sex (ACC: p = 0.681; DLPFC: p = 0.142) and

BMI (ACC: p = 0.492; DLPFC: p = 0.527) in the overall sample

and in the groups independently (PTSD and HC; P > 0.2). Testing

positive for cannabis on scan day did not affect GSH levels in HC

participants (4 THC+ vs. 20 THC-; ACC: p = 0.449; DLPFC: p =

0.326); however, GSH levels in the DLPFC were marginally higher

in PTSD participants who tested positive for cannabis (n = 10) on

scan day (p = 0.053, 25% higher), compared to those who tested

negative (n= 4). Use of SSRIs did not influence brain levels of GSH

(ACC n= 12/30: p= 0.275; DLPFC n= 7/14: p= 0.912). There was

no difference in GSH levels in the ACC between PTSD participants

with (n = 15) and without (n = 15) a history of mTBI (p = 0.449);

however, GSH was 24% higher in the DLPFC (p = 0.03) in PTSD

participants with a history of mTBI (n = 6) compared to those

without (n = 8). Comorbid MDD (PTSD + MDD) did not affect

GSH in the ACC (p = 0.623, n = 23 PTSD, n = 7 PTSD+MDD),

nor in the DLPFC (p= 0.457, n= 9 PTSD, n= 5 PTSD+MDD).

3.3. Are there group di�erences in
circulating blood markers?

There were no group differences in circulating plasma

concentrations of MPO (p= 0.887), MMP-9 (p= 0.345), or TIMP-

1 (p = 0.881). TIMP-2 was marginally lower in PTSD participants

compared to HC (11%; p = 0.052). All group means are presented

in Table 3.

There was no effect of sex (p = 0.321; p = 0.362; p = 0.301; p

= 0.216) and BMI (p = 0.564; p = 0.209; p = 0.405; p = 0.935)

on MPO, MMP-9 and TIMP-1 and TIMP-2 concentrations in the

sample overall. Age was positively related to TIMP-1 levels in the

overall sample (p = 0.024). An analysis of variance taking age into

consideration did not change the TIMP-1 finding (p= 0.463).

Testing positive for cannabis on scan day did not affect MMP-

9, TIMP-1 and TIMP-2 concentrations (P > 0.4). However, PTSD

participants testing positive for cannabis on scan day (n = 10) had

nominally higher MPO concentrations (p = 0.167, 26% higher)
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FIGURE 2

GSH between PTSD and HC in the ACC and DLPFC. (A) No di�erence (P = 0.536) in GSH concentrations in the ACC between PTSD participants (n =

30) and HC (n = 20). (B) No di�erence (P = 0.618) in GSH concentrations in the DLPFC between PTSD participants (n = 14) and HC (n = 18).

compared to PTSD participants who tested negative (n = 15). Use

of SSRIs did not appear to influence circulating concentrations of

MPO (p = 0.522), MMP-9 (p = 0.645), nor TIMP-2 (p = 0.337).

Concentrations of TIMP-1 were 15% higher (p = 0.074) among

PTSD participants on SSRIs (n = 13) compared to participants

not on SSRIs (n = 12). There were no differences in circulating

concentrations of MMP-9 (p = 0.697), MPO (p = 0.544), TIMP-

1 (p = 0.252), nor TIMP-2 (p = 0.971) between PTSD participants

with (n = 13) and without (n = 12) a history of mTBI. PTSD +

MDD (n= 18) and PTSD only (n= 7) participants did not differ in

circulating levels of MMP-9 (p = 0.282), TIMP-1 (p = 0.394), nor

TIMP-2 (p = 0.784). PTSD+MDD (n = 7) participants had 30%

higher (p = 0.015) MPO concentrations compared to PTSD only

participants (n= 18).

3.4. Relationship between GSH and
peripheral blood markers

Correlational analysis was employed to evaluate relationships

between central and peripheral markers of oxidative stress and

PTSD clinical characteristics within the PTSD group. GSH in the

ACC was positively correlated with circulating concentrations of

TIMP-2 (R = 0.539, p = 0.008). MPO (R = −0.566, p = 0.044)

and MMP-9 (R=−0.441, p= 0.05) were negatively correlated and

TIMP-1 (R= 0.367, p= 0.089) was marginally positively correlated

with duration of PTSD illness (see Figure 3). There were no other

relationships between brain, peripheral markers of oxidative stress

and symptom scores on questionnaires assessing PTSD, anxiety,

nor depression (P > 0.3).

To determine if the relationship between peripheral markers

and central GSH concentrations was group dependent, interaction

terms were calculated for group ∗ peripheral marker and entered

TABLE 3 Group di�erences GSH and peripheral blood markers.

Outcome HC PTSD P-value

GSH(acc) 1.215± 0.257 1.175± 0.201 0.536

GSH(dlpfc) 0.906± 0.181 0.874± 0.171 0.618

MPO (pg/mL) 31,128± 17,241 30,506± 12,850 0.887

MMP-9 (pg/mL) 1,17,955± 56,328 133,455± 56,132 0.345

TIMP-1 (pg/mL) 87,731± 16,776 88,445± 16,100 0.881

TIMP-2 (pg/mL) 83,992± 18,725 75,096± 11,697 0.052

Data presented as mean± SD.

ACC, Anterior Cingulate Cortex; DLPFC, Dorsolateral Prefrontal Cortex; HC, Healthy

Control; GSH, Glutathione; MMP, Metalloproteinase; MPO, Myeloperoxidase; pg/mL,

picograms per milliliter; PTSD, Post-traumatic stress disorder; TIMP, Tissue inhibitors

of Metalloproteinase.

into linear regression models to predict GSH in the ACC

and DLPFC. There were no significant group∗blood marker

interactions in predicting GSH in the DLPFC (P > 0.7).

Additionally, there were no group∗blood marker interactions for

MMP-9 nor TIMP-1 (P > 0.4). The relationship between TIMP-

2 and GSH in the ACC seemed marginally group dependent (β =

−0.784, p=0.051, see Figure 4), where the relationship was positive

in PTSD participants but negative among HC participants. The

relationship between MPO and GSH in the ACC also appeared

to be marginally influenced by group (β = −0.389, p =0.099),

where the relationship was positive among PTSD participants and

negative among HC participants.

4. Discussion

To the extent of our knowledge, this is the first study to quantify

brain GSH, using a validated MRS method (53), and explore
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FIGURE 3

(A) Relationship between MPO (pg/mL) and duration of illness. MPO concentrations were negatively correlated with duration of PTSD illness (R =

−0.566, P = 0.044). (B) Relationship between MMP-9 (pg/mL) and duration of illness. MMP-9 concentrations were negatively correlated with duration

of PTSD illness (R = −0.41 P = 0.05). (C) Relationship between TIMP-1 (pg/mL) and duration of illness. TIMP-1 concentrations were correlated with

duration of PTSD illness (R = 0.367, P = 0.089). *n = 23 since age at time of PTSD diagnosis was not available for 2 PTSD participants.

FIGURE 4

Relationship between GSH in the ACC and TIMP-2 concentrations

(pg/mL). GSH in the ACC was positively correlated with TIMP-2

concentrations (R = 0.539, P = 0.008).

relationships between peripheral MMPs, TIMPs, and MPO in

participants with PTSD andHC.We did not observe any significant

group differences in brain GSH or circulating concentrations

of peripheral blood markers. Interestingly, peripheral TIMP-2

concentrations (which were marginally lower in PTSD) were

positively correlated with GSH in the ACC within the PTSD group

only. Additionally, we observed that, in PTSD participants, GSH in

the DLPFC (but not in the ACC) is elevated in cannabis users and

in individuals with a history of mTBI (albeit a small n = 10 sample

size); that MPO was associated with cannabis use and comorbid

MDD and that TIMP-1 was elevated among PTSD participants who

endorsed SSRI use. Finally, duration of PTSD illness was negatively

related with MMP-9 and MPO.

4.1. Group di�erences

Our null GSH finding in the ACC and DLPFC is at odds

with Michels et al. (5) who reported a 22% increase in GSH

(in ACC and DLPFC) among PTSD participants. Notably, the

GSH acquisition methods were different between studies; while

both employed MEGA-PRESS to acquire, Michels et al. (5)’s

scanning protocol was optimized for detecting GABA and not

GSH, while our scanning protocol was optimized for GSH. Next,

PTSD participants enrolled in both studies were suffering from

PTSD for similar durations (∼5 years) and were similar ages

(38 vs. 42 years). However, the current study’s PTSD sample

consisted of 16 males (53%) while Michels et al. (5)’s sample

was 91% (11/12) female. Additionally, we enrolled 8 cannabis

users while Michels et al. (5) did not report substance use. We

observed marginally higher GSH (DLPFC) in PTSD participants

who reported cannabis use (n = 10). Previous research has

reported no difference in brain GSH (medial PFC) between healthy

controls and regular cannabis users (54), while preclinical research

has observed increased brain GSH following administration of

cannabis (55). A recent review assessing the therapeutic potential

for cannabis in counteracting inflammation and oxidative stress

(56) concluded that while preclinical evidence supports this, the

clinical evidence in humans is not convincing. We also observed

nominally higher (16%) GSH (DLPFC) in PTSD males compared

to females and higher GSH (DLPFC) among PTSD participants

with a history of mTBI (n = 6). Previous research has associated

increased brain GSH in a persistent concussion symptom cohort

(57) and athletes exposed to repetitive head impacts during sport

(58). The authors speculated that increased GSH reflected a
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compensatory response to ongoing inflammatory processes related

to brain injury. That this finding was only observed in the

DLPFC (and not the ACC) in our cohort is in line with research

observing frontal cortical thinning in blast exposed veterans (59),

decreased activity (60), and white matter damage (61) in the

PFC following mTBI. It is possible the ongoing inflammatory

injury processes related to mTBI exacerbated oxidative stress in

this region.

There are several possible reasons why the current study

did not observe group differences in brain GSH. First, GSH is

present in low concentrations in the brain (62), therefore any

changes related to oxidative damage that might occur in PTSD

might not be reflected in GSH quantifications. Several studies

report alterations in peripheral plasma concentrations of GSH

and GSH related enzymes, however research suggests central GSH

dysfunction differs from peripheral dysfunction (62). It is also

possible that any oxidative damage that might occur in PTSD, is

not sufficient to alter GSH concentrations. GSH is synthesized de

novo in the brain by astrocytes and research has demonstrated

increased GSH synthesis during oxidative stress-related toxicity

in vitro, proposing in vivo synthesis of this antioxidant might

be sufficient to not detect significant changes (14). Perhaps

concentrations of the molecules from which GSH is derived might

reveal group differences in this oxidative stress defense system.

Follow-up investigations should continue to explore the role brain

GSH and other central markers of oxidative stress might have

in PTSD.

4.2. TIMP-2 is positively correlated with
GSH in the ACC

Although we did not detect group differences in GSH between

groups, we observed a positive relationship between GSH in the

ACC and TIMP-2 concentrations in the PTSD group only (TIMP-2

was non-significantly, negatively correlated with GSH in the ACC

in the HC group). Notably, TIMP-2 was marginally lower in PTSD

compared to HC. This group dependent relationship of TIMP-2

and GSH suggests GSH could still be implicated in PTSD. Lower

TIMP-2 has been reported in other psychiatric disorders, including

MDD (63), and schizophrenia (64). Interestingly, TIMP-2 knock

out mice show deficits in fear potentiated startle (31), a relevant

feature of PTSD (65). TIMP-2 is a tissue inhibitor for MMP-2,

another ECM protein. MMP-2 has been shown to have a role

in synaptic plasticity (66) and be upregulated by noradrenaline

(67)—two biological mechanisms implicated in PTSD. ROS can

activate MMPs (including MMP-2) and simultaneously decrease

concentrations of TIMPs (including TIMP-2) and this can

contribute to BBB permeability (68). It is possible that ongoing

oxidative stress in the brain related to PTSD is depleting GSH

concentrations and the lower TIMP-2 is detected in peripheral

circulation due to enhanced BBB permeability. Additionally, MMP-

2 is frequently implicated in cardiac pathologies (69), a common

outcome in those diagnosed with PTSD (70). Therefore, more

research should explore the role TIMP-2 and MMP-2 may have

in PTSD, and how they not only relate to central oxidative stress

processes, but common somatic comorbidities in PTSD as well.

4.3. Relationships with duration of PTSD

We observed duration of PTSD illness (years) was negatively

correlated with MPO and MMP-9 (after controlling for age).

Michels et al. (5) reported a positive correlation between GSH

in the DLPFC and duration of PTSD in their cohort. While we

believe that this is the first study to observe this relationship

in PTSD, MPO has been positively correlated with duration of

bipolar disorder (71), and higher MMP-9 has been reported in

younger youth diagnosed with bipolar disorder compared to older

adults (72). MPO is an enzyme that carries out peroxidative

activities and is released by neutrophils, also reflecting the state

of neutrophils in the innate immune response (73). Research has

also reported increased MPO in MDD (33), neurodegenerative

disorders including Alzheimer’s Disease (74), and preclinical PTSD

(32). It is noteworthy that we observed lower MPO concentrations

in participants who had been suffering from PTSD for longer.

There was no difference in severity of PTSD or symptom scores

between participants diagnosed with PTSD recently or several

years prior. During the innate immune response, neutrophils

respond by releasing a burst of ROS (and MPO); however, research

has suggested chronic stress can compromise this function (75).

Therefore, it is possible the chronic duration of PTSD has resulted

in a similar immune exhaustion in our cohort. MMP-9 is an

ECM protein that has been increasingly implicated in psychiatric

disorders, including PTSD (28). There is a strong line of research

implicating MMP-9 in sleep and memory consolidation processes

and MMP-9 is upregulated during contextual fear learning (76).

Furthermore, treatment with an MMP inhibitor can disrupt fear

reconsolidation (77) and fear memory (78) in preclinical research.

Again, the negative relationship between duration of PTSD and

MMP-9 is important, considering the research discussed above.

Glucocorticoids, including cortisol, can regulate MMP-9 (79),

therefore, it is possible that this negative relationship is related to

chronic cortisol dysregulation in PTSD. MMP-9 is inhibited by

TIMP-1, an MMP tissue inhibitor. TIMP-1 was positively related

with duration of PTSD (before controlling for age). Preclinical

research suggests TIMP-1 is implicated in fear and memory

processes (80), and has shown to have a protective role in

neurodegenerative disorder (81). Further research is required to

understand the role MMPs, TIMPs, and MPO have in the chronic,

progressive nature of PTSD (82).

4.4. Limitations

While this research is an important contribution to

understanding oxidative stress in PTSD, it is not without

limitations. First, we used a manual software (XsOs) to process

(baseline correct and phase) our GSH spectra (manual processing

yielded higher quality spectra than automatic processing software);

we attempted to negate any operator bias by randomizing the

data and having each data point processed three times by the

same research staff member (SEW). Next, while the MEGA-PRESS

sequence was optimized for GSH, the obtained signal is relatively

small and can only be quantified with relatively large error.

However, test re-test %CV of our GSH acquisition was 15%,

which is within range of previous research (83, 84). Research
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(53) also demonstrated MEGA-PRESS is able to accurately

quantify GSH at low physiological concentrations. Next, we

had a small sample size (n = 14) in the DLPFC which made it

difficult to make comparisons between regions (ACC vs. DLPFC)

and dissect the influence of medication, mTBI, and cannabis

on GSH in the region, therefore findings in this region should

be interpreted with caution and merit further investigation.

Additionally, it would have been useful to assess GSH in other

regions implicated in PTSD, including the hippocampus and

amygdala. Finally, while we believe the collection of peripheral

blood markers complimented our central measures, it would have

been informative to measure additional redox proteins directly

implicated in oxidative stress processes, including peripheral

TBARS and MDA concentrations.

4.5. Conclusions and next steps

In summary, the current study did not observe altered brain

GSH concentrations in PTSD. We did however report a non-

significant decrease in TIMP-2 in PTSD and TIMP-2 was positively

correlated with GSH in the ACC in the PTSD group only.

Finally, we observed negative relationships between MPO, MMP-

9 and duration of PTSD illness. Our interesting findings among

the peripheral blood markers warrant further investigation to

understand how, if at all, systemic dysregulation of systems is

implicated in the progression of PTSD over time. Future research

is needed to better understand ongoing central oxidative stress

processes in relation to peripheral mechanisms, and how these

mediators change across the course of disease in people with PTSD.
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