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Background: Ketamine and psychedelics have abuse liability. They can also 
induce “transformative experiences” where individuals experience enhanced 
states of awareness. This enhanced awareness can lead to changes in preexisting 
behavioral patterns which could be  beneficial in the treatment of substance 
use disorders (SUDs). Preclinical and clinical studies suggest that ketamine and 
psychedelics may alter markers associated with synaptic density, and that these 
changes may underlie effects such as sensitization, conditioned place preference, 
drug self-administration, and verbal memory performance. In this scoping review, 
we  examined studies that measured synaptic markers in animals and humans 
after exposure to ketamine and/or psychedelics.

Methods: A systematic search was conducted following PRISMA guidelines, 
through PubMed, EBSCO, Scopus, and Web of Science, based on a published 
protocol (Open Science Framework, DOI: 10.17605/OSF.IO/43FQ9). Both in vivo 
and in vitro studies were included. Studies on the following synaptic markers were 
included: dendritic structural changes, PSD-95, synapsin-1, synaptophysin-1, 
synaptotagmin-1, and SV2A.

Results: Eighty-four studies were included in the final analyses. Seventy-one 
studies examined synaptic markers following ketamine treatment, nine examined 
psychedelics, and four examined both. Psychedelics included psilocybin/
psilocin, lysergic acid diethylamide, N,N-dimethyltryptamine, 2,5-dimethoxy-4-
iodoamphetamine, and ibogaine/noribogaine. Mixed findings regarding synaptic 
changes in the hippocampus and prefrontal cortex (PFC) have been reported 
when ketamine was administered in a single dose under basal conditions. Similar 
mixed findings were seen under basal conditions in studies that used repeated 
administration of ketamine. However, studies that examined animals during 
stressful conditions found that a single dose of ketamine counteracted stress-
related reductions in synaptic markers in the hippocampus and PFC. Repeated 
administration of ketamine also counteracted stress effects in the hippocampus. 
Psychedelics generally increased synaptic markers, but results were more 
consistently positive for certain agents.

Conclusion: Ketamine and psychedelics can increase synaptic markers under 
certain conditions. Heterogeneous findings may relate to methodological 
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differences, agents administered (or different formulations of the same agent), 
sex, and type of markers. Future studies could address seemingly mixed results 
by using meta-analytical approaches or study designs that more fully consider 
individual differences.

KEYWORDS

synaptic density, SV2A, PSD-95, synapsin-1, synaptophysin-1, synaptotagmin-1, 
dendrite, addiction

Introduction

Approximately 20.4 million people in the United  States met 
diagnostic criteria for substance use disorders (SUDs) in 2021 (1). 
SUDs have been associated with homelessness, incarceration, violence, 
poor health, and premature death (2–6). Although initially rewarding, 
chronic use of alcohol and drugs may lead to progressively restricted, 
habitual, and maladaptive patterns of compulsive seeking and 
administration of substances (7). The difficulty of treating SUDs is 
reflected by the lack of medications with indications from the Food 
and Drug Administration (FDA) for specific types of SUDs (e.g., 
cocaine and cannabis), while others (e.g., opioids, alcohol, and 
tobacco) have high relapse rates despite available FDA-approved 
pharmacotherapies (8–14). Despite their controlled nature and 
possibility—or concerns—of abuse, ketamine, and psychedelics have 
potential therapeutic value in treating SUDs and other 
psychiatric conditions.

The therapeutic potential of ketamine and psychedelics may 
involve neuronal synaptic plasticity arising from dendritic 
connections. Originally characterized in the 19th century, dendritic 
spines are small neuronal protrusions that represent sites of neuronal 
contact (15). Dendrites on pyramidal neurons can be classified as 
basal or apical. Basal dendrites are shorter, denser, and receive input 
from the base of pyramidal cells near the soma, whereas apical 
dendrites are longer, less dense, and emerge from the neuronal apex 
(16). A single apical dendrite emerges from the top/apex of a 
pyramidal neuron and is orientated towards the pial surface. Multiple 
basilar dendrites emanate from the bottom sides of a pyramidal 
neuron and extend laterally. Dendritic spine growth occurs as part of 
synaptic plasticity, which underlies learning phenomena relevant to 
substance use. This process includes consolidation of memory for the 
drug along with drug-associated cues and contexts (17), behavioral 
sensitization (18, 19), conditioned place preference (20, 21), and drug 
self-administration (22, 23). In cannabis use disorder, verbal memory 
performance was also shown to be affected (24).

Robinson and Kolb demonstrated that exposure to several drugs 
of abuse in animals (i.e., amphetamine, cocaine, morphine, nicotine) 
can alter the number of spines and branches of dendrites in the 
nucleus accumbens (NAc) and prefrontal cortex (PFC), sometimes in 
opposite directions (25–28). In addition, animal studies show that 
synaptic markers can change with intoxication vs. withdrawal (21, 29). 
In humans with cocaine use disorder (CUD), our group was the first 
to show lower synaptic markers in the anterior cingulate cortex 
(ACC), ventromedial PFC, and medial orbitofrontal cortex (OFC), 
compared to control subjects without CUD (30). Furthermore, 
individuals with cannabis use disorder were shown to have lower 

synaptic markers in the hippocampus (24). Drug-induced structural 
plasticity may underlie protective adaptations to addiction or promote 
addictive behaviors such as compulsive drug use, craving, and 
vulnerability to relapse despite sustained abstinence (28). Synaptic 
proteins can be quantified in both humans and in animal models, 
offering an indirect measure of both pre-synaptic (e.g., synapsin-1, 
synaptophysin-1, synaptotagmin-1, SV2A) (31–35) and post-synaptic 
[e.g., post-synaptic density protein-95 (PSD-95)] (36) function. 
Synaptic protein markers have been studied in conjunction with 
dendritic structural changes (37–41)—the growth of dendritic spines 
can induce precise, synapse-specific effects which affect behavior (24, 
42–44). Critically, a gap exists in our understanding of how synaptic 
protein densities change with psychedelics and drugs of abuse which 
may facilitate improved treatment of SUDs (12).

Ketamine and psychedelic agents [e.g., psilocybin, lysergic acid 
diethylamide (LSD), and ibogaine] induce structural plasticity and 
offer a promising avenue for improving addiction-related outcomes 
(45). Ketamine and psychedelics have been hypothesized to help 
shift maladaptive behavioral patterns in addictions, possibly because 
they can facilitate “transformative experiences” or “spiritual 
awakenings”. During these transformative experiences individuals 
report enhanced states of awareness that can produce lasting positive 
effects on subjective well-being, social attitude, and perceived 
meaning in life (46–49). Preclinical studies show that these 
psychoactive substances can modify spine density (50–53) or 
synaptic proteins (54–58) in brain structures that are involved in 
cognitive control as well as learning and memory. Despite abuse 
liability, data suggest potential beneficial effects of ketamine and 
psychedelics in the treatment of SUDs caused by alcohol (59–62), 
cocaine (63–67) or opioids (68–70). Ketamine-induced spine growth 
in the PFC appears necessary for its antidepressant effects (71), 
raising the possibility that structural plasticity may represent a 
common mechanism underlying ketamine’s therapeutic effects 
across psychiatric disorders.

Due to the literature suggesting that alterations to synaptic 
markers are associated with SUD outcomes in preclinical models, 
we conducted a scoping review wherein we explored preclinical and 
clinical literature on the association between administration of 
ketamine and/or psychedelics and the subsequent changes to 
synaptic markers.

Methods

This review was performed according to the preferred reporting 
of items for systematic reviews and meta-analysis extension for 
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scoping reviews (PRISMA-ScR) (72), following the framework 
proposed by the Joanna Briggs Institute (73).

Protocol and registration

A protocol was created and published in advance, describing the 
envisioned search strategy, eligibility criteria, study screening and 
selection process, and data extraction. The protocol was registered on 
the Open Science Framework (DOI: 10.17605/OSF.IO/43FQ9) and is 
available online at: https://osf.io/43fq9/.

Eligibility criteria

Both in vitro and in vivo (preclinical and clinical) studies were 
included. In vivo was defined as any study in a living vertebrate 
animal, inclusive of humans, excluding non-vertebrates. In vitro was 
defined as studies of cell lines, organoids, or biological molecules 
outside their normal biological contexts. Studies on the following 
synaptic markers were included: structural dendritic changes (e.g., 
dendritic spine density, arborization), PSD-95, synapsin-1, 
synaptophysin-1, synaptotagmin-1, and SV2A. Inclusion criteria 
were as follows: studies analyzing use of ketamine or psychedelics 
evaluating synaptic markers and published in English. Exclusion 
criteria included lack of synaptic marker analysis, combination 
treatment, animal models not related to stress or addiction (e.g., 
neuronal injury, schizophrenia, dyskinesia), use of immune cells, and 
use of transgenic animals or genetic strains with significant health 
abnormalities that could affect synaptic markers (e.g., thyroid 
dysgenesis) (74). We did not include spine shape classifications in our 
analyses since they are based on arbitrary criteria and prone to bias 
(75). Finally, although there are data on structural neural plasticity 
with non-hallucinogenic psychedelics (e.g., tabernanthalog) (50), the 
present review did not include those here, given their lack of capacity 
to induce altered perception, which is in line with the definition of a 
psychedelic (76).

Information sources and search strategy

The search was performed through PubMed, EBSCO, Scopus, and 
Web of Science up to January 01, 2023. Grey literature was not 
considered. The search strategy encompassed the concepts of “synaptic 
density,” “ketamine,” and “psychedelics,” using the terms psilocybin, 
psilocin, lysergic acid diethylamide, LSD, N,N-Dimethyltryptamine, 
DMT, mescaline, ibogaine, ayahuasca, 2,5-dimethoxy-4-
iodoamphetamine, DOI, ketamine, synaptic density, SV2A, synapsin, 
synaptotagmin, synaptophysin, PSD 95, dendrit*. The search was 
applied and adapted according to required syntax for each database. 
For example, the following search applied to PubMed.

(psilocybin[tiab] OR psilocin[tiab] OR “lysergic acid 
diethylamide”[tiab] OR LSD[tiab] OR N,N-dimethyltryptamine[tiab] 
OR DMT[tiab] OR mescaline[tiab] OR ibogaine[tiab] OR 
ayahuasca[tiab] OR 2,5-Dimethoxy-4-iodoamphetamine[tiab] OR 
DOI[tiab] OR ketamine[tiab]) AND (“synaptic density”[tiab] OR 
SV2A[tiab] OR synapsin[tiab] OR synaptotagmin[tiab] OR 
synaptophysin[tiab] OR “PSD 95”[tiab] OR dendrit*[tiab])

The search with their respective results is presented in 
Supplementary material. Duplicates were removed with aid of 
EndNote 20 (Clarivate Analytics, Philadelphia, Pennsylvania, 
United States). The search was also conducted using the term “synap*” 
instead of “synaptic density.” Even though the number of papers 
retrieved was higher, the number of studies included did not change.

Selection of sources of evidence

For study selection, authors SZ and HO participated in the 
searching and screening of papers. For studies in which the two 
reviewers did not reach agreement, a third reviewer was consulted 
(GA). The screening was performed in two stages. Titles and abstracts 
were screened first, followed by a full-text screening during the second 
stage. If the papers met inclusion criteria in stage one, they were 
moved forward to the stage two. If they did not meet inclusion criteria 
in either stage, they were excluded.

Data charting process and data items

The data were extracted to a table, with the following information: 
author, year of publication, agent, dose, route of administration, 
duration, in vivo or in vitro, animal, line, sex, region, synaptic 
marker(s), method, time between last administration and evaluation, 
main outcomes, model (basal and/or stress) and paradigm 
(administration pre-, mid-, or post-stress) (Supplementary Table S1).

Results

Eighty-four studies were included in the final analysis (Table 1 and 
Figure 1). Seventy-one studies examined synaptic markers following 
ketamine treatment, nine examined psychedelics, and four examined 
both. All were conducted exclusively in animals, except for four 
(77–80).

A complete list of study characteristics is presented in 
Supplementary Table S1.

Ketamine

Ketamine administration in vitro
Fourteen studies have examined ketamine’s effect on synaptic 

markers in vitro, and there was no consistent pattern of outcomes 
observed across these studies. Instead, different results were found for 
synaptic markers based on the dosages used and the evaluation times. 
In rat hippocampal neurons, ketamine (2 μM) did not change spine 
density or colocalization with synapsin-1 after 1 h of treatment, 
whereas it increased colocalization of spines with synapsin-1 
(suggesting increased presynaptic contacts) after 24 h of treatment 
(81). However, another study found synapsin-1 was dose-dependently 
reduced by S-ketamine (3–25 μM) in rat hippocampal neurons (82). 
There is also evidence that ketamine (100 μM) lowered phosphorylated 
synapsin (P-S9-synapsin), without affecting synapsin-1 in mouse PFC 
neurons, suggesting increased presynaptic release potential (83). At 
lower doses, ketamine (0.1–10 μM) increased dendritic arbor 
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complexity, spine density, and synaptic markers [as measured by 
colocalization of PSD-95 and vesicular glutamate transporter 1 
(VGLUT1)] in rat cortical neurons, mouse mesencephalic 
dopaminergic neurons, and human pluripotent stem cell-derived 
dopaminergic neurons (38, 39, 50, 77). Additionally, 4 days of 
ketamine (100 μM) reversed reduction of PSD-95 expression and 
spine density in response to 4 days of dexamethasone exposure in 
primary rat hippocampal cultures (41). By contrast, ketamine 
(100–500 μM) decreased spine density and/or synaptophysin puncta 
per μM of dendrites in both rat cortical and hippocampal neurons as 

well as human striatal projection neurons (79, 80, 84, 85). Finally, in 
rat GABAergic neurons, ketamine reduced the number of dendritic 
branching points at higher doses (10 and 20 μg/mL) when treated for 
1 h, or at much lower doses (0.01, 0.1 and 1 μg/mL) when neurons 
were treated for up to 96 h (86, 87).

Single-dose ketamine administration in vivo
Thirty-two studies have examined effects of administration of a 

single dose of ketamine in vivo. Thirty-one such studies involved 
rodents, and one included monkeys and human subjects. In rodent 

FIGURE 1

Flow diagram showing inclusion and exclusion strategy.

TABLE 1 Summary of included studies.

Ketamine Psychedelics

Agents Racemic ketamine (n = 65), R-ketamine (n = 5), S-ketamine (n = 5) DMT (n = 2), DOI (n = 7), ibogaine/noribogaine (n = 2), LSD 

(n = 3), psilocyn/psilocybin (n = 3)

In vivo or in vitro In vivo (n = 63), in vitro (n = 14) In vivo (n = 8), in vitro (n = 6)

Subjects Rats/rat cells (n = 33), mice/mouse cells (n = 40), humans/human cells 

(n = 4), non-human primates (n = 1)

Rats/rat cells (n = 9), mice/mouse cells (n = 3), pigs (n = 1)

Brain regions Cortical (ACC, dlPFC, FC, IL, mPFC, OFC, PFC, PrL, vmPFC; n = 55), 

hippocampal (CA1, CA3, DG; n = 45), striatal (NAc shell and core, dorsal 

striatum; n = 11)

Cortical (FC, mPFC, IL, PFC, PrL, OFC; n = 11), hippocampal 

(CA1, CA3, DG; n = 4)

Synaptic markers PSD-95 (n = 36), SV2A (n = 1), SYN (n = 20), SYP (n = 3), SYT (n = 1), 

structural dendritic measures (n = 35)

PSD-95 (n = 3), SV2A (n = 1), SYN (n = 1), structural 

dendritic measures (n = 11)

Overall outcome summarya ↑ (≈50%), — (≈27%), ↓ (≈23%) ↑ (≈47%), — (≈40%), ↓ (≈13%)

The total counts differ from 84, because some of the studies used both in vivo and in vitro approaches, and/or investigate more than one agent and/or more than one type of animal. DMT, 
dimethyltryptamine; DOI, 2,5-Dimethoxy-4-Iodoamphetamine; LSD, lysergic acid diethylamide; ↑, increase; —, no change; ↓, decrease; ACC, anterior cingulate cortex; CA1 and CA3, 
hippocampal subregion cornu ammonis; DG, hippocampal subregion dentate gyrus; FC, frontal cortex; NAc, nucleus accumbens; dlPFC, dorsolateral prefrontal cortex; IL, infralimbic; mPFC, 
medial prefrontal cortex; PFC, prefrontal cortex; vmPFC, ventromedial prefrontal cortex; PrL, prelimbic; OFC, orbitofrontal cortex; SYN, synapsin-1; SYP, synaptophysin-1; SYT, 
synaptotagmin-1; SV2A, synaptic vesicle glycoprotein 2A. aApproximate percentages within included studies.
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studies, 0.1–5 mg/kg of ketamine had no effect on PSD-95, synapsin-1, 
dendritic spine density, or branching in the hippocampus or PFC 
(88–93). On the other hand, ketamine (1 mg/kg) increased 
hippocampal PSD-95 and dendritic spine density (94, 95). 
Interestingly, analysis of sex differences showed that ketamine at 5 mg/
kg increased PSD-95 and synapsin-1 in PFC among male, but not 
female rodents, although neither 2.5 or 5 mg/kg changed spine 
density (40).

Studies have examined effects of ketamine on both apical and 
basal dendrite synaptic markers. Ketamine (7.5 mg/kg) increased 
apical spine markers within the hippocampal CA1 region (96). 
Furthermore, ketamine (10 mg/kg) increased apical spine density, 
PSD-95, and synapsin-1 in the mPFC (79, 97–101). Regarding basal 
spines, ketamine (10 mg/kg) increased spine density in the prelimbic 
cortex (99). The same dose of ketamine also increased apical spine 
density in the cerebral cortex (85) and overall spine density in the 
PFC (38).

In other studies, ketamine (10 mg/kg) did not change PSD-95 
levels in the OFC and hippocampus, but it reduced PSD-95 
phosphorylation on Thr-19 in hippocampal membranes, suggesting 
decreased GluA1 receptor internalization (102, 103). Ketamine 
(10 mg/kg) also increased PSD-95 levels and mPFC post-synaptic 
density while decreasing PSD-95 levels and hippocampal post-
synaptic density. Interestingly, analysis of the homogenate showed 
ketamine decreased PSD-95 in the mPFC but had no effect in the 
hippocampus (57). In another study, S-ketamine (10 mg/kg) 
decreased synapsin-1 level in the hippocampus (104). At a higher 
dose, S-ketamine (15 mg/kg) increased hippocampal synapsin-1 
expression, but decreased synaptotagmin-1 expression (105). In 
addition, 15 mg/kg of ketamine increased dendritic spine density 
and arborization in dorsolateral striatal spiny projection neurons 
(106). At 25 and 50 mg/kg of ketamine, PSD-95 mRNA expression 
was reduced in the dorsomedial striatum (107). At 150 mg/kg of 
ketamine, PSD-95 expression was increased in the cerebral 
cortex (108).

Pregnant rodents that received ketamine (intravenous infusion at 
a rate of 40–60 mg/kg/h for 2–3 h, or 200 mg/kg infusion for 3 h) 
produced offspring with reduced dendritic spine density, arborization, 
and branch number as well as reduced PSD-95, synapsin-1, and 
synaptophysin-1 in the hippocampus (109–112). The PFC showed 
increased dendritic spine density, arborization, branch number, and 
PSD-95, but reduced synaptophysin-1 in the offspring of rodents who 
were administered ketamine (mean infusion dose = 144 mg/kg over 
two hours) during pregnancy (113).

Ketamine (0.5 mg/kg) administered to monkeys and humans with 
major depression/post-traumatic stress disorder (PTSD) did not 
change SV2A binding 24 h later in the dorsolateral prefrontal cortex 
(dlPFC), ACC, or hippocampus, as measured with 11C-UCB-J 
positron emission tomography (PET) imaging (78). However, a 
post-hoc analysis showed that lower SV2A binding at baseline was 
associated with ketamine-induced increases in SV2A binding in these 
regions in humans.

Repeated ketamine administration in vivo
Eight studies in rodents have examined repeated administration 

of ketamine. At a low dose (0.5 mg/kg; once daily for 11 days) 
hippocampal synapsin-1 expression was increased (54). In the NAc, 
ketamine self-administration (0.5 mg/kg/infusion; 3 days a week) for 

4 weeks had no effect on spine density (114). When sex differences 
were considered, ketamine (2.5 and 5 mg/kg; once a week for 7 weeks) 
was associated with spine density increases among male rodents in the 
NAc shell, but not in the NAc core, whereas among females, only the 
5 mg/kg dose increased spine density in the NAc shell and core (115). 
Additionally, 10 mg/kg of ketamine (once daily for 21 days) increased 
hippocampal synapsin-1 expression among males, but not females 
(116). Finally, ketamine (5–80 mg/kg; daily 5–14 days) decreased 
dendritic spine density, arborization, PSD-95 expression, and/or post-
synaptic density thickness in the hippocampus, dorsal striatum, and/
or vmPFC (117–120).

Ketamine effects in animal models of stress  
in vivo

Eight studies have examined ketamine under chronic 
unpredictable stress (CUS). One study found that CUS did not change 
PSD-95 or synapsin-1 levels in the PFC, and these markers remained 
unchanged following ketamine (1 mg/kg) post-treatment (93). 
However, ketamine pre-treatment (3 mg/kg) or post-treatment 
(10 mg/kg) increased spine density and/or arborization in the PFC and 
hippocampal CA1 among resilient rodents and increased spine 
density in the CA3 among rodents showing anhedonic behavior in the 
sucrose preference test following CUS exposure (75, 121). Additionally, 
post-treatment administration of racemic or S-ketamine (10–20 mg/
kg) reversed CUS-induced deficits in dendritic spine density, PSD-95, 
post-synaptic density thickness, and synapsin-1 in the hippocampus 
and/or PFC (56, 122–125).

Six studies have examined ketamine and chronic corticosterone. 
Two studies did not find ketamine post-treatment (0.1–1 mg/kg) to 
effect PSD-95 or synapsin-1 in the hippocampus and PFC of rodents 
treated chronically with corticosterone (89, 126). By contrast, four 
studies found that ketamine (1–5 mg/kg) pre- and/or post-treatment 
ameliorated corticosterone-reduced dendritic arborization, PSD-95, 
and/or synapsin-1 in the hippocampus (92, 94, 95, 127).

Five studies have examined ketamine with social defeat stress 
(SDS). SDS decreased dendritic spine density and PSD-95  in the 
hippocampal DG and CA3 regions and prelimbic cortex/PFC. These 
effects were reversed by 10 mg/kg ketamine post-treatment with 
racemic as well as R- and S-ketamine formulations (128–132). By 
contrast, no form of ketamine altered increased spine density and 
PSD-95 in the NAc caused by SDS (128, 129, 132).

Four studies have examined ketamine under chronic restraint 
stress (CRS). Pre-treatment with racemic or R-ketamine (5–10 mg/kg) 
reversed CRS-induced PSD-95 deficits in the PFC (91, 133). Ketamine 
post-treatment reversed CRS-induced decreases in synaptophysin-1 in 
the hippocampus and PFC, with sub-anesthetic doses not reported 
(134). However, another study found CRS did not lead to hippocampal 
dendritic spine density decreases and ketamine (10 mg/kg) had no 
effect when given post-treatment daily for 3 days (135).

Four studies have examined ketamine with the novelty-
suppressed feeding test (NSF). Ketamine (0.1–1 mg/kg) 
administered at the end of 24 h of food deprivation did not 
change hippocampal PSD-95 or synapsin-1 (136, 51) or spine 
density (137) in rodents that subsequently underwent NSF 
participation. Contradictory to these results other studies showed 
ketamine (1 mg/kg) administration increased hippocampal 
PSD-95 and synapsin-1 expression (138), as well as dendritic 
spine density in the same paradigm (51).
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Three studies have examined ketamine with foot-shock stress. 
Ketamine (10 mg/kg) post-treatment reversed decreases in PSD-95 
and synapsin-1 in the PFC induced by inescapable foot-shock stress 
(97). In another study, ketamine (10 mg/kg) post-treatment reversed 
decreased PSD-95  in the PFC induced by exposure to foot-shock 
stress conditioning but did not affect increased PSD-95  in the 
amygdala (139). Finally, acute foot-shock stress did not alter dendritic 
spine density in the PFC, and this measure did not change after 
ketamine (10 mg/kg) post-treatment (140).

Two studies have examined ketamine in tail-suspension and 
open-field tests. Ketamine (0.1 mg/kg) pre-treatment had no effect on 
dendritic spine density, PSD-95, or synapsin-1 in the hippocampus or 
PFC (88, 90).

One study has examined ketamine with chronic intermittent cold 
stress (CIC). Ketamine (10 mg/kg) post-treatment reversed 
CIC-induced increases in PSD-95 levels in the OFC (103).

One study has examined ketamine with social isolation (SI). 
Ketamine (5 mg/kg) post-treatment reversed SI-induced reductions 
in PSD-95, synapsin-1, and dendritic spine density in the PFC of male 
rodents. Ketamine did not affect synaptic markers following SI in the 
PFC of female rodents (40).

One study has examined ketamine with respect to 
lipopolysaccharide administration. R-ketamine (10 mg/kg) post-
treatment reversed lipopolysaccharide reductions in dendritic spine 
density in the prelimbic cortex and hippocampal CA3 and DG 
regions (141).

Psychedelics

Seven studies have examined 2,5-dimethoxy-4-iodoamphetamine 
(DOI); four were conducted in vitro and three in vivo. The in vitro 
studies that administered 1–3 μM of DOI found no effect on spine 
density in cortical neurons or on spine density, PSD-95, or 
synapsin-1 in hippocampal neurons (142–144). At a higher dose of 
DOI (10 μM) in vitro, there were increases in dendritic arbor 
complexity, dendritic branches, spine density, and synaptic markers 
(measured via colocalization of PSD-95 and VGLUT1) in cortical 
neurons (38). In vivo, a single-dose of DOI (2 mg/kg) increased spine 
density in the frontal cortex among rodents with intact 5-HT2A 
receptors, but not among 5-HT2A-receptor-knockout rodents (145). 
However, the same dose of DOI had no effect on liposaccharide-
induced reductions in spine density in the hippocampus or mPFC 
(141). Finally, in vivo treatment with DOI 5 μg/0.5 μL injected directly 
into the left OFC once a week for 3 weeks reduced dendritic spine 
density and PSD-95 (146).

Three studies have examined psilocin/psilocybin. One study was 
conducted in vitro and two in vivo. Psilocin (10 μM) in vitro increased 
dendritic branches and arbor complexity in cortical neurons (38). In 
vivo studies showed that administration of psilocybin, at doses of 0.08 
to 8 mg/kg, increased both PSD-95 and SV2A expression in the PFC 
and increased SV2A in the hippocampus (55, 58).

Three studies have examined LSD. Two studies were conducted in 
vitro and one in vivo. LSD (10 μM) in vitro increased dendritic arbor 
complexity, dendritic branches, spine density, and synaptic markers 
(measured via colocalization of PSD-95 and VGLUT1) in cortical 
neurons (38, 39). Moreover, in vivo administration of LSD (30 μg/kg) 
once daily for 7 days increased spine density in the PFC and reversed 

CRS-induced reductions in spine density in the PFC of rodents when 
CRS was administered mid-stress (147).

Two in vitro studies have examined ibogaine/noribogaine. One 
study reported noribogaine (10 μM) in vitro increased dendritic arbor 
complexity in cortical neurons while ibogaine did not (38). In the 
other, both ibogaine and noribogaine (dose not reported) increased 
dendritic arbor complexity, and ibogaine increased spine density in 
cortical neurons (50).

Two studies have examined DMT. DMT (90 μM) in vitro increased 
dendritic branches and arbor complexity in cortical neurons. In vivo 
DMT (10 mg/kg) also increased dendritic spines in the PFC (38). On 
the other hand, in vivo DMT (1 mg/kg) every 3rd day for 7 weeks 
decreased spine density in the PFC of female but not male 
rodents (148).

A schematic image (Figure  2) illustrates features of included 
studies investigating ketamine and psychedelics.

Discussion

We reviewed in vitro and in vivo studies across species that 
investigated effects of ketamine or psychedelics on synaptic markers. 
Data suggest heterogenous findings when ketamine was administered 
under basal conditions. However, ketamine consistently prevented or 
reversed stress-induced reductions in synaptic markers in the 
hippocampus and/or PFC. Existing studies suggest that some 
psychedelics (e.g., LSD and psilocybin) induce structural plasticity in 
prefrontal cortical dendrites, although further studies are needed.

Structural plasticity effects can vary by brain region, marker, and 
behavioral task for ketamine and psychedelics, in some ways reflecting 
what has been reported for substance use. Studies of substance use 
suggest mixed results relating to synaptic markers depending on 
subregions of the brain investigated, whether drugs are experimentally 
delivered vs. self-administered, and the species being studied (24, 28, 
30, 149, 150). Protein quantification (e.g., PSD-95) (57), dose timing 
(79, 86, 87), and dose-dependent effects (117, 118, 120) may all 
influence synaptic markers. For example, repeated and/or high-dose 
treatment with ketamine leads to persistent depression of 
glutamatergic signaling and prevention of synaptogenesis (84, 107, 
117, 118), unlike single treatment with lower doses which can enhance 
plasticity, particularly when measured with two-photon longitudinal 
imaging [e.g., (97–99, 101)]. Ketamine’s ability to reduce synaptic 
markers at high doses may not be surprising since a meta-analysis 
showed that single-dose ketamine produces dose- and plasma-level-
dependent cognitive impairment (151). Regarding psychedelics, dose 
effects were examined in one study with psilocybin, but no clear dose-
response was observed (55). Too few studies exist per agent to make 
definitive conclusions regarding dose effects of psychedelics.

The type of agent administered (or different formulations of the 
same agent) is another potential confounding factor between studies. 
In general, LSD was the most consistently effective at increasing 
synaptic markers (38, 147, 39), whereas the data for DOI were the least 
robust. The ability of psychedelics to increase levels of synaptic 
markers is believed to be related to activation of 5-HT2A receptors. 
Stimulation of these receptors leads to enhancement of membrane 
excitability, most notably in proximal apical dendrites (152). Further 
support for this hypothesis stems from data showing that the selective 
serotonergic 5-HT2A/2C antagonist ketanserin completely blocked 
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the ability of LSD, DMT, and DOI to promote both neuritogenesis and 
spinogenesis (38). Also, DOI enhancement of spine density was absent 
in 5-HT2A-receptor-knockout animals (145). Interestingly, of 
psychedelics, LSD has the highest affinity for 5-HT2A receptors, 
which may explain its effectiveness at increasing synaptic markers 
(153, 154).

Differences across studies may also be  explained by different 
formulations of ketamine. Blocking N-methyl-D-aspartate (NMDA) 
receptors with ketamine leads to increased release of glutamate, 
increased α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 
(AMPA) activity / receptor expression (155–159), activation of 
mammalian target of rapamycin complex 1 (mTOR1) (41, 54, 102), 
and brain-derived neurotrophic factor (BDNF) (41, 115, 129, 132, 
138). S-ketamine leads to a maximum plasma level concentration 
approximately three-fold greater and a binding affinity for NMDA 
receptors that is approximately five-fold greater than R-ketamine 
(160, 161).

Sex may influence the effects of ketamine and DMT on synaptic 
markers. Intriguingly, many studies wherein ketamine failed to alter 
synaptic markers were conducted solely in females (78, 93, 126, 137, 
142). Among studies that included and compared both sexes, a 
decrease in PFC spine density due to administration of micro-doses 
of DMT was observed only among female rodents (148). Additionally, 
a ketamine-induced increase in synaptic markers was found only 
among male rodents in the hippocampus (116) and PFC (40). 
Moreover, ketamine administration elevated synaptic markers among 
females in the NAc shell and core, whereas males exhibited elevations 
only in the shell (115). Previous studies have shown that levels of male 
and female sex hormones are positively associated with synaptic 
markers, which may in part explain sex differences observed across 
studies (162, 163). Taken together, these studies indicate that the same 
drug exposure can have different effects on synaptic markers in males 
vs. females. Thus, sex should be  taken into consideration in 
future studies.

The type of marker is another important confounding variable in 
determining potential effects of ketamine and/or psychedelics on 

synaptic markers. Not all markers consistently show changes in the 
same direction. In some studies, structural dendritic changes are not 
accompanied by changes in protein markers, and vice-versa (51, 96), 
while other studies show opposite changes in specific protein markers 
(104, 113). It is possible that phosphorylation or colocalization of 
protein markers may be altered without changes to protein expression, 
but not many studies have examined these variables (38, 39, 83, 102). 
In addition, some presynaptic markers have been shown to be altered 
by ketamine, but not by psychedelics, such as synapsin-1 and 
synaptophysin-1 (55, 144). PSD-95 is a post-synaptic marker of 
synaptic density that can be changed by ketamine, but there is less 
evidence for psychedelics (55, 146). PSD-95 regulates synaptic 
expression and transmission of glutamatergic NMDA and AMPA 
receptors, which may be the reason behind the ability of ketamine to 
alter expression of this protein since ketamine works directly via 
activity at the NMDA receptor (164, 165). SV2A is a synaptic vesicle 
protein that regulates release of neurotransmitters via action potentials 
(166) and the only marker that is available to be imaged in vivo with 
PET imaging using the radioligand 11C-UCB-J in humans (167). 
Studies have validated SV2A as an alternate marker (to 
synaptophysin-1) of synaptic density (166). Recent clinical 
translational studies have documented for the first time decreases in 
the synaptic marker, SV2A, among persons with cocaine and cannabis 
use disorder (24, 30). In the studies reviewed herein, psilocybin 
increased SV2A under basal conditions in pigs (58), whereas ketamine 
increased SV2A only among humans with depression/PTSD who had 
low baseline SV2A expression in the hippocampus and PFC (78). 
Another clinical paper showed that among persons with stress-related 
mood and anxiety disorders, SV2A expression in the dlPFC was 
negatively associated with measures of worry and tension/anxiety 
(168). These data are aligned with other findings showing that excess 
glucocorticoids/stress negatively impacts spine density, which can 
be reversed by ketamine (41, 56, 92, 94, 95, 130, 169) and LSD (147). 
Interestingly, across several studies in which stress exposure did not 
lead to changes in synaptic markers, ketamine did not influence 
synaptic markers either (51, 88–90, 93, 126, 135, 140, 136). Future 

FIGURE 2

Schematic overlapping shapes illustrating features (i.e., number of studies, cells studied, species, doses, etc.) for in vitro and in vivo studies investigating 
ketamine and psychedelics.
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studies should examine changes to SV2A alongside other markers to 
better elucidate relationships between them when exposed to 
ketamine and psychedelics.

Limitations

The present review has several strengths and limitations. It is the 
first to systematically examine changes to synaptic markers following 
administration of ketamine and psychedelics. Another strength is the 
inclusion of both in vivo and in vitro studies. Examining animals in 
vivo allows access to outcomes based on multiple components of the 
living organism, whereas measuring effects by in vitro assays may aid 
to better control for potentially confounding variables (170). We did 
not see a consistency within species between in vivo and in vitro 
studies when the treatment was comparable, but we cannot exclude 
this possibility since most studies utilized rodents. The inclusion of 
multiple synaptic markers (protein and structural) is another strength 
because it provides more comprehensive characterization of their 
associations with administration of ketamine or psychedelics. 
Although the inclusiveness of multiple markers and methodologies is 
a strength, at the same time, particular factors of each marker (i.e., 
level of detectability, etc.) may explain heterogenous findings. In 
particular, studies that have used two-photon longitudinal imaging to 
examine structural dendritic changes have repeatedly shown increases 
in synaptic density in response to single-dose administration of 
ketamine in vivo (97–99, 101); however, studies that have used other 
methods to measure dendritic branching or measured protein 
synaptic markers have shown mixed results, perhaps relating to the 
complex relationship between proteins, synaptic density, and dendritic 
architecture. Even though the pattern in which single administration 
of ketamine/psychedelics results in enhancement of synaptic markers 
(when measured with two-photon longitudinal imaging) is not well 
represented in the current results (Supplementary Table S1), this may 
in part reflect our inclusion/exclusion criteria. For instance, multiple 
studies using two-photon longitudinal imaging have shown increased 
synaptic markers using ketamine/psychedelics, but these were not 
included because they used transgenic animals, which were excluded 
in the present review (52, 71, 171, 172). A further limitation is that 
some of the markers reviewed herein are indirect estimates of synaptic 
density (166, 173, 174) and may only reflect synaptic density 
alterations to the extent that the gap between different amounts of 
these proteins within synapses and the actual (i.e., direct) number of 
synapses is small. Another limitation is that studies reviewed are not 
in the context of exposure to non-ketamine/non-psychedelic drugs of 
abuse (i.e., cocaine, opioids, etc.). Thus, the current findings cannot 
be generalized to such circumstances. There were also few studies 
directly comparing psychedelic drugs, which limits conclusions about 
their effects on synaptic markers. Pertaining to regions of interest, 
most studies have examined ketamine or psychedelic effects on 
synaptic density or proteins in the hippocampus and/or PFC. Other 
brain areas such as the striatum, NAc, and OFC may be implicated, 
but further research is needed to investigate. Finally, associations 
between microarchitecture, function, cognition, and behavior are not 
exclusive to quantification of dendrites or spines but also the 
morphology of each spine. Strong synaptic connections are formed by 
spines with large heads, which are stable and express large numbers of 
glutamatergic AMPA receptors, whereas weak, unstable synaptic 
connections are formed by spines with small heads (175). Here, we did 

not examine this outcome, which may limit our interpretation of 
dendritic structural changes.

Conclusion

In the present systematic scoping review, we examined potential 
effects of ketamine and psychedelics on synaptic markers under basal 
conditions and stress. The results indicate that, when administered 
once or repeatedly under basal conditions, ketamine produces mixed 
results in the hippocampus and PFC, regions implicated in the effects 
of drugs of abuse. The results for psychedelics also show that they can 
enhance synaptic markers under basal conditions and reverse deficits 
associated with stress, but the numbers of studies per agent is low. 
Some of the null or negative findings relating to ketamine and/or 
psychedelic effects on synaptic markers may be due to methodological 
differences, agents administered (or different formulation of the same 
agent), sex, and/or types of markers. Results also suggest that ketamine 
may produce more robust results when administered before or after 
stress to prevent or reverse deficits in synaptic markers in the 
hippocampus and PFC. Decreased synaptic markers in the 
hippocampus and PFC may be related to reduced tendencies/abilities 
to regulate emotion and behavior (176–178), while increases in the 
striatum may signal increased drug-seeking behavior and behavioral 
sensitization (19, 22, 179). “Normalization” of dysregulated levels of 
synaptic markers in some of these brain regions may underlie potential 
benefits of ketamine and psychedelics in the treatment of SUDs. 
Further research is required to elucidate relationships between 
changes to synaptic markers after administration of ketamine or 
psychedelics and improvements in SUD outcomes.
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