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social interactions of animal 
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Social interaction is a complex behavior which requires the individual to integrate 
various internal processes, such as social motivation, social recognition, salience, 
reward, and emotional state, as well as external cues informing the individual 
of others’ behavior, emotional state and social rank. This complex phenotype 
is susceptible to disruption in humans affected by neurodevelopmental and 
psychiatric disorders, including autism spectrum disorder (ASD). Multiple pieces 
of convergent evidence collected from studies of humans and rodents suggest 
that the prefrontal cortex (PFC) plays a pivotal role in social interactions, serving 
as a hub for motivation, affiliation, empathy, and social hierarchy. Indeed, 
disruption of the PFC circuitry results in social behavior deficits symptomatic of 
ASD. Here, we review this evidence and describe various ethologically relevant 
social behavior tasks which could be employed with rodent models to study the 
role of the PFC in social interactions. We also discuss the evidence linking the 
PFC to pathologies associated with ASD. Finally, we address specific questions 
regarding mechanisms employed by the PFC circuitry that may result in atypical 
social interactions in rodent models, which future studies should address.
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Introduction

The prefrontal cortex (PFC) is critical for various aspects of mammalian social behavior, 
including social motivation, recognition, and decision-making (1–3). In humans, the medial 
PFC (mPFC) is involved in high-order aspects of social interaction, such as self-referential 
processing, mentalizing, and emotional regulation (4–6). At the same time, deficits in PFC 
function have been implicated in various neuropsychiatric disorders, including autism spectrum 
disorder (ASD). Individuals with ASD exhibit atypical social behavior and deficits in social 
cognition, such as an impaired theory of mind and a lack of social interest (7, 8). Neuroimaging 
studies have revealed altered PFC activity in individuals with ASD during social tasks (9, 10). 
As such, understanding the molecular, cellular, and network mechanisms underlying the role of 
the PFC in social behavior and its dysfunction in ASD may be critical for developing effective 
treatments for individuals diagnosed with this disorder.

Research using animal models has provided significant insight into the neural circuitry 
underlying social behavior, including the role of the PFC in social interactions (11–14). 
Anatomically, the PFC is a complex brain structure with multiple sub-regions, each with a 
distinct function and connectivity pattern (15, 16). In rodents, most studies have focused on the 
mPFC, including the prelimbic and infralimbic regions and their downstream projections to the 
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striatum (17), amygdala (18), hypothalamus (19), hippocampus (20) 
and brainstem (21). These sub-regions were shown to be involved in 
various aspects of social behavior, including social recognition (22), 
social approach (23), and aggression (24, 25). Moreover, studies have 
demonstrated that rodents exhibit complex social behaviors, including 
social hierarchy (26), empathy (27), and territoriality (28), making 
them a valuable model for studying the biological mechanisms 
underlying mammalian social behavior. Accordingly, multiple 
behavioral tasks have been developed to assess rodent social behavior 
and the role of the PFC therein, including the three-chamber, social 
recognition, social habitation/dishabituation, and resident-intruder 
tests (29–32). Such studies have shown that mPFC lesions or 
manipulations can lead to deficits in social behavior in rodents 
(33, 34).

Here, we provide an overview of the role of the PFC in the social 
behavior of animal models and the implications for understanding 
possible mechanisms underlying social deficits in ASD. The review 
discusses anatomical and functional homologies of the PFC in rodents 
and humans, and its role in various aspects of social interactions. 
Additionally, current literature on PFC involvement in social behavior 
deficits that lead to ASD symptoms is highlighted.

Social interactions involve social 
motivation, recognition, and 
decision-making

Social interactions involve complex information-processing tasks 
that can broadly be defined as detecting and interpreting social cues 
and responding appropriately to evolving social contexts (3). By 
nature, social interactions are multi-faceted and require the integration 
of external multi-modal sensory information with internal processes. 
Here, we aim to focus on the following aspects of the process: (1) the 
motivation for social interaction, which is an internal process; (2) 
emotional/empathic reactions in response to social cues; and (3) 
group dynamics, which involve mutual relationship between the 
subject and others (4, 35–37). These aspects are not mutually exclusive 
(38) and together affect behavioral decisions. This is exemplified by 
going out to dinner at a restaurant. This involves interactions with the 
staff, the degree to which heavily relies on the internal motivation of 
the subject to interact. The subject’s satisfaction with the food and the 
staff performance, as well as the subject’s perception of their emotions. 
Will lead the subject to either compliment or complain about the staff. 
Moreover, verbal and emotional communication between the dining 
partners during dinner will depend on whether the environment is 
friendly or professional. Thus, social motivation, emotional perception 
of self and others, group dynamics, and the social context all integrate 
to determine social behavior.

Social motivation, or the willingness to pursue social interactions, 
is a fundamental aspect of the decision-making process in a social 
context. Such motivation and subsequent rewarding experiences 
require the subject to approach social partners and engage them (35). 
Accordingly, approaching a conspecific is a highly conserved 
phenotype in multiple species (38, 39). This aspect of social behavior 
and cognition emerges early in development, with young infants 
tending to recognize and initiate interactions with their parents (40, 
41). Infants must thus recognize familiar faces for proper decision-
making in their social contexts from a very early age (42, 43). Hence, 

social motivation serves as the developmental and evolutionary 
foundation for complex social behaviors.

The ability to interpret others’ intentions and mental states heavily 
governs social interactions in any social context. Emotional 
comprehension, like evaluating social motivation, recognizing body 
language and facial cues, as well as interpreting implicit and explicit 
biases of others, are essential to any social interaction. This social 
cognition process, termed “theory of mind” (44, 45), heavily influences 
individual social decision-making (46).

Social interactions require effective group dynamics, allowing 
individuals to develop healthy and essential group relationships (47). 
Hierarchical, territorial, cooperative, and interdependent social 
behavior are observed in multiple species. Studies have highlighted the 
role of social hierarchy in individual well-being, leading to better 
availability of resources essential to survival, such as food, space, and 
mating partners (48, 49). Investing in a territorial or hierarchical 
structure is also an essential decision-making process in which 
individuals gauge their metabolic energy before involving themselves 
in conflicts related to group social structure (48). Moreover, the social 
context of a conflict weighs heavily on an individual’s role in the group 
dynamics, with an effective change in this role relying on a correct 
decision-making process.

Social decision-making involves multi-faceted processes, Thus, 
multiple malfunctions can lead to the atypical social behavior 
characterizing multiple neuropsychiatric disorders, such as autism 
spectrum disorder (ASD). Impaired recognition of familiar faces or 
reduced motivation for social interactions have been reported in ASD 
(7, 50). Indeed, infants lacking social interest are likely to develop 
social cognition deficits (51), such as the impaired theory of mind (52, 
53). Maladaptive social decision-making capabilities are prevalent in 
ASD and serve as predictors of overall mortality due to the effects of 
poor interpersonal relationships on mental and physical health (54). 
Neuroimaging studies subsequently revealed the involvement of many 
interconnected brain regions during social decision-making (55). 
Assigning the process to functionally relevant brain entities is critical 
for explaining their roles in the atypical behaviors exhibited by 
individuals diagnosed with ASD.

Evidence for the role of the PFC in 
human social interactions

The PFC has been linked to various aspects of cognition and 
behavior, such as working memory, decision-making, goal-directed 
conduct, and social behavior (32, 56, 57). The PFC presents significant 
yet variable connections to both cortical and sub-cortical areas of the 
brain, including the hippocampus, amygdala, hypothalamus, and 
nucleus accumbens, as well as areas associated with sensory-motor 
functions (18, 58). Many of these areas were shown to be involved in 
social decision-making (59, 60). Thus, the PFC contributes to all 
aspects of social interactions, in collaboration with other cortical and 
sub-cortical regions.

Various regions of the PFC also process distinct aspects of social 
information (57, 61). Regions that process social motivation play 
inherent roles in reward, valence, and affiliation and include the 
orbitofrontal and perigenual anterior cingulate cortices (ventro-
medial prefrontal cortex; vmPFC: BA 10,11,12, 25, and 32; orbito-
frontal cortex; OFC: BA 10 and 11; and anterior cingulate cortex; 

https://doi.org/10.3389/fpsyt.2023.1205199
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Mohapatra and Wagner 10.3389/fpsyt.2023.1205199

Frontiers in Psychiatry 03 frontiersin.org

ACC: BA 25 and 32) (61). Multiple studies have reported a role for the 
vmPFC in social motivation and reward. Humans with vmPFC lesions 
exhibit impairments in emotional recognition and making moral 
decisions (62). They also failed to learn from recent reward history in 
a pro-social game (63). Other studies concluded that the OFC plays a 
role in decision-making based on the valence of the stimuli (64, 65). 
Additionally, the vmPFC is active when subjects feel socially accepted 
and comprehend rewarding social cues (66). Interestingly, specific 
impairments in the tendency of ASD patients to find social stimuli 
incentivizing or motivating are similar to those seen in humans with 
vmPFC lesions (67).

Social interactions that necessitate knowledge of oneself and 
others are consistently associated with activation within the PFC 
(specifically, the medial and dorso-medial prefrontal cortex; dmPFC). 
The mPFC is effectively activated while comprehending self-bias and 
those of others (in line with the theory of mind), beliefs, moral 
decisions, and emotional states while empathizing with others’ pain 
and during cooperation [(4, 68);]. Functional magnetic resonance 
imaging (fMRI) studies showed this region to be  active during 
cooperative tasks among humans, tasks in which ASD patients 
perform poorly due to lower attention to social cues (69–71). Evidence 
of decreased activity and connectivity in the mPFC of ASD patients 
has been reported and are likely to significantly contribute to the 
social and behavioral deficits presented by these individuals. Studies 
also demonstrated that ASD patients lack adaptive control in 
comprehending and adapting their behavior according to an unfair 
social context or their partner’s emotional expressions (72, 73). 
Moreover, the infant mPFC is responsive to social cues, like a parent’s 
face and gaze (74). Furthermore, in contrast to patients who sustained 
damage to their mPFC as adults, patients who sustained damage to 
this region as children demonstrate anti-social behavior and poor 
moral decision-making in adulthood (62). Together, these studies 
point to the mPFC as serving a crucial role in the forming of proper 
social cognition in humans from early development stages.

There have been attempts to define the role of distinct PFC 
sub-regions in separating internal from external social reasoning. The 
mPFC has been reported to be  involved in tasks that involve 
processing of internal states of self and others, such as empathy, self-
reflection, and vicarious moral reasoning (75–77). In contrast, the 
lateral PFC (lPFC) is part of a network activated by externally guided 
information processing in the social domain, such as imitation, 
abstract social reasoning, and internal conflict resolution (78, 79). In 
addition to ASD, there is strong evidence that patients with other 
neuropsychiatric disorders, like schizophrenia (SCZ), display hypo-
activity in the dorsal lPFC during social interactions (80, 81). Recent 
works using transcranial direct current stimulation with SCZ and 
ASD patients described improved social and emotional behavior (82, 
83). Yet, despite the apparent improvement in patient behavior 
following treatment, there was a lack of mechanistic links and specific 
definitions of such interventions for comorbidities like depression and 
anxiety. Thus, the particular sections of the PFC that implicitly and 
explicitly affect individual emotional comprehension remain elusive, 
although solid evidence points toward the mPFC and lPFC.

The third aspect of social interaction, group dynamics, combines 
social motivation and emotional comprehension of the social context. 
fMRI studies found neural correlates of social hierarchy and group 
dynamics to occur in the PFC (84, 85), as well as in sub-cortical 
regions, like the amygdala and ventral striatum, that demarcate 

distress from rewarding social experiences (86, 87). lPFC bias to the 
superior as opposed to the inferior player in a monetary reward task 
was only observed in a social context, i.e., with other players, implying 
that involvement of the lPFC in processing hierarchical information 
is specifically social in nature (88, 89). Patients with dorsal and lateral 
PFC lesions do not understand changes in social hierarchy and fail to 
learn them (67, 90). Thus, activity in the PFC and sub-cortical regions 
coordinates proper behavioral responses when the social hierarchy is 
changing, with such knowledge having to be constantly updated in 
these regions.

In summary, the PFC and its connections to sub-cortical brain 
regions regulate and encode various aspects of human social 
interactions (Figure  1). PFC sub-divisions contribute to social 
motivation, reward, cooperation, and mentalizing of self and others’ 
socio-emotional states. In the following sections, we compare the 
above evidence supporting the role for the PFC in human social 
interactions with what occurs in rodents.

Social interactions in an animal model: 
practical tools for studying ASD social 
deficits

Non-human primates (NHPs) present rich social behaviors, such 
that studies on these models may directly inform on clinical 
interventions for neuropsychiatric disorders such as ASD. Relevant 
studies are, however, restricted by small sample size, lack of effective 
circuit-specific manipulation tools, and the general difficulty and 
slowness of experimentation. Furthermore, limitations in specific 
genetic lines that mimic mutations found in ASD patients hinder 
efforts aimed at mechanistic understanding of modifications in NHP 
social interactions. At the same time, rodent models represent effective 
and valuable systems for addressing specific questions regarding 
biological mechanisms and brain circuits involved in social behavior 
and their alterations by ASD-associated genetic mutations.

From rodents to primates and humans, social interactions and 
their underlying neural processes have been remarkably conserved. 
Nevertheless, the neurobiological mechanisms and brain circuits 
contributing to rodent social interactions remain elusive and have 
been only partially explained to date. The following section highlights 
the anatomical correlates of rodent social interactions that align with 
the human PFC.

Anatomy of the rodent PFC

Historically, anatomical similarities between the human and 
rodent PFC gave rise to multiple controversies (91, 93–96). Studies of 
functional correlates indicated the rodent PFC as being involved in 
non-social behavior, like working memory (97), impulse control (98), 
attention, and goal-directed behavior (99, 100). The rodent prelimbic 
cortex (Figure 1) seems homologous to human BA 32 that is part of 
the dorsal and ventral PFC, including the lateral PFC (96, 101). At the 
same time, the rodent infralimbic cortex is considered to 
be homologous to BA 25, a part of the ventromedial PFC in humans. 
The rodent medial OFC and ACC share homologies with the human 
OFC and dorsomedial PFC, respectively. The granular cortical 
structure of the rodent PFC does not entirely match its human 
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counterpart [see (93) for detailed comparisons]. Unlike the human 
PFC, the rodent PFC receives and projects extensively to other cortical 
and sub-cortical brain regions, specifically, limbic and midline 
thalamic regions that densely innervate the PFC.

Previous efforts indicated the existence of a dichotomy between 
sub-regions of the rodent PFC in processing social interactions (102, 
103). Because of this, it is crucial to employ behavioral paradigms that 
are ethologically appropriate and take advantage of typical rodent 
actions that are involved in social interactions. In the following 
section, we discuss how the rodent PFC regulates social interactions 
in ethologically relevant tasks of social behavior and how specific 
pre-clinical models of ASD may highlight the role of the PFC in such 
pathologies. We also review the extensive literature on rodent PFC 
involvement in numerous social behavior tasks by concentrating on 
three distinct aspects of social interactions and on studies that 
specifically explore these aspects.

The role of the PFC in rodent social 
interactions

Multiple tasks have been developed to gauge rodent social 
motivation (31). It should be noted that the parameters quantified in 
these tasks, such as the time spent near social stimuli, reflect traits that 
are vastly different from those humans employ during social 
interactions (104, 105). Furthermore, rodents predominantly utilize 
the olfactory sensory system during social interactions (106), in 
contrast to predominant dependence of human social interactions on 
visual and auditory cues (107).

Tasks that assess social motivation and 
recognition

Multiple tasks have been developed to assess the recognition of 
conspecifics (social recognition) and the motivation to orient and 
approach them (see (32) for a detailed list of behavior tasks used to 
test rodents). The earliest social recognition task, the social 

habituation/dishabituation test, relied on a series of encounters with 
the same conspecific (social stimulus) and finally, with an unfamiliar 
one (108). Such assays reveal that in general, subjects gradually lose 
the motivation to interact when encountering the same (familiar) 
social stimulus in subsequent trials (the habituation phase), indicative 
of recognition of the familiar stimulus. A subject’s interaction time 
returns to the level of the first trial when exposed to an unfamiliar 
stimulus (dishabituation), thus controlling for changes in general 
social motivation. This task effectively reports on short-term and long-
term memory in rodents, despite exposing confounds of internal state 
and novelty that cannot be controlled (109).

Social discrimination tasks were devised to probe the 
motivation to interact with specific stimuli while using appropriate 
controls that account for the novelty of a stimulus. For example, 
the social novelty preference task considers the time spent 
investigating (i.e., sniffing) a novel stimulus as opposed to a 
familiar cage-mate or a recently encountered conspecific to control 
for aggression due to male pheromones and general social 
motivation (110). These discrimination tasks provide information 
on different behavioral dynamics (111), which cannot be analyzed 
in the habituation/dishabituation task. Another variation of social 
recognition task specifically designed for a monogamous species 
of voles is the partner preference test. These monogamous rodents 
preferably interact with their partner after pair-bonding, relative 
to a stranger (112).

Tasks that test affective/emotional 
behavior

Some of the earliest proof of emotional cognition appears in 
works where rats (i.e., observers), trained to receive food rewards in 
lever press tasks, reduced the amount of lever pressing as they 
observed another rat (i.e., a demonstrator) being exposed to foot 
shocks. The study reflected the transmission of emotional state 
between observer and demonstrator rats (113). Similarly, mice and 
rats demonstrated the social transmission of pain and analgesia (114, 
115), fear (116, 117) (Figure 2A), and food preference (118).

FIGURE 1

Anatomy of prefrontal cortex in human and mouse the human prefrontal cortex (A) includes Broca areas (BA) 6, 8, 9, and 24 (comprising the anterior 
cingulate, AC), 10, 11, 12, 25, and 32. The colored regions define PFC sub-divisions in humans and the corresponding homologous regions in mice 
(91–93) (B).
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Several tasks indicate that rodents display emotions, 
specifically fear, and thus enable social transmission of emotional 
information. Rodents, moreover, respond to emotional states of 
other individuals. In transfer learning procedures, such as fear 
conditioning by proxy, a rat exposed to a novel tone while in the 
presence of a cage-mate who was previously fear-conditioned to 
that tone will freeze (119) (Figure  2B). In another procedure, 
known as social harm aversion, rats avoid a specific task (like lever 
pressing) if it causes harm to others (120). This behavior is 
affected by the outcome. For instance, positive outcome behavior 
occurs more often than does a decrease in negative outcome-
related behavior (121).

Recent studies have tested the capability of rodents to recognize 
and discriminate emotional states of conspecifics (122). In the positive 
mode of a relevant task, which uses the setup of social discrimination 
tasks, one of two presented social stimuli is associated with deprivation 
of water in the home cage for the preceding 23 h and a quenching of 
thirst for an hour before the experiment. This manipulation of water 
availability in the home cage induces a “relieved” state in the social 
stimulus, drawing more attention from the subject than a control 
stimulus, which remains in neutral conditions (Figure 2C). On the 
other hand, the negative mode of this test probes discrimination of a 
negative emotional state, induced in a social stimulus by foot shocks 
or a short period in a restrainer, as compared to a neutral stimulus. In 

FIGURE 2

Tasks to test affective emotional, empathic and group dynamics in rodents. (A) Social transfer of fear in a rodent observing a demonstrator in pain due 
to acetic acid injection. (B) Social transfer of fear in a rodent observing a demonstrator experiencing foot-shock-induced pain. (C) Affective emotional 
state preference of conspecifics experiencing positive emotions, such as relief from thirst or (D) negative emotions, such as stress due to being 
restrained for a while, over neutral conspecifics. (E) Pro-social empathic behavior of rats freeing a captive conspecific. (F) Semi-natural social box for 
studying rodent group dynamics.
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both positive and negative conditions, the subject mouse prefers 
interacting more with the arousing stimuli.

Tasks that test empathic behavior

An behavioral task in which rats persistently try to free a captive 
conspecific, despite the temptation to instead consume a highly 
palatable food presented in the same arena, demonstrates empathy in 
these animals (123) (Figure 2D). Food-sharing tasks also reveal rats 
to be  pro-social and empathic toward cage-mates. For example, 
Norway rats shared more palatable food with a partner who provided 
them with a piece of banana than with a partner who provided a less 
preferred piece of carrot (124). Rats also displayed pro-social behavior 
by providing food rewards to their cage-mates, even when they did 
not benefit from the decision to share food (125). In a consolation test 
of monogamous voles that quantifies the amount of allogrooming of 
a familiar, as compared to a stranger demonstrator, when the 
demonstrator was exposed to mild foot-shocks as stress, these rodents 
performed allogrooming of their stressed familiar partners so as to 
reduce their stress. The test thus differentiates empathic responses of 
a vicarious nature from general stress-coping behavior (126). In 
summary, these studies open ample avenues to study neural 
mechanisms of emotional recognition and empathy in rodents.

Tasks that test group dynamics behavior

Social hierarchies emerge in mice when they live in densely 
populated conditions, where competition for territory, housing, mates, 
and food plays an essential role in the survival of the individual. 
Introducing pairs of cage-mates from opposing ends of a tube that 
does not allow sufficient space for a mouse to turn around or for both 
mice to pass each other offers one way to measure social dominance 
(127). Alternatively, semi-natural home cages (Figure 2E) that mimic 
large mouse colonies have been used to study dominance and 
hierarchical behavior (128, 129). Affective cooperation and altruistic 
behavior, investigated in rodents using lever pressing tasks, were 
shown to be influenced by the hierarchal stature of an animal in the 
group (130).

What role does the rodent PFC play 
during social interactions?

Animal models support literature implicating the human PFC in 
social motivation, in conjunction with sub-cortical areas, such as the 
nucleus accumbens (NAc) and ventral tegmental area (VTA), which 
mediate the rewarding aspects of social interaction (131, 132). 
Although lesion studies have provided evidence for the crucial role of 
the PFC in social motivation (133, 134), such non-specific 
manipulation may damage nearby regions and axonal projections 
around the lesioned areas. Still, a comprehensive study examining 
murine whole-brain c-Fos expression in a social context revealed that 
social interaction strongly activates the mouse PFC (135).

PFC circuitry is precisely arranged, presenting an array of 
interneurons that inhibit circuit activity, as well as neuromodulator 
inputs that rely on acetylcholine, dopamine and oxytocin. In mice, 

PFC circuitry is characterized by the canonical flow of excitation 
between cortical layers (Figure  3A), such as thalamo-recipient 
pyramidal neurons in layer 3 which send excitatory inputs to layer 2 
pyramidal neurons. These layer 2 cells descend in turn to layer 5 
pyramidal neurons (136). GABAergic interneurons (i.e., parvalbumin 
(PV+) and somatostatin (SST+) neurons) strongly control the 
excitatory drive of long-range and local intercortical-projecting 
pyramidal neurons in the PFC. These PFC interneurons display 
remarkable selectivity for connections with pyramidal neurons. In 
superficial layers, the PV+ and SST+ cells preferentially target layer 2 
cortico-amygdalar and cortico-striatal pyramidal neurons (137, 138), 
whereas deeper in the cortex, the interneurons synapse solely with 
pyramidal neurons that target other pyramidal neurons (136, 139, 
140). Many studies of pre-clinical animal models of ASD have 
reported decreased inhibitory neurotransmission in the PFC (141, 
142), leading to low sociability, vocalization, and reciprocal social 
interactions (143). Excitatory/inhibitory (E/I) balance changes during 
development are linked to a critical period of plasticity in the PFC 
(144, 145). Post-mortem studies in ASD patients (146) extensively 
indicate reduced GABA receptors expression (147–149), increased 
Glutamatergic receptors expression (150, 151), and a low number of 
PV+ neurons in prefrontal cortex (152) which could result in the E/I 
imbalance. ASD patients show decreased gamma oscillation power, 
indicative of fast-spiking neurons firing at lower rates (153, 154). 
Studies in ASD patients showed higher numbers of dendritic spines, 
overall increased within-region connectivity, and a reduction in long-
range connections of the PFC (155–157). Moreover, fMRI studies 
reported hypoactivation of the ACC to social reward in ASD 
compared to typically developing controls (158, 159), which indicate 
that these patient process socially rewarding and motivating cues 
abnormally (160). Therefore, investigating how alterations in the PFC 
circuitry affect social motivation and behavior may be essential for 
exposing the underlying mechanism of social deficits seen in ASD 
(161). Below, we  further review the evidence that modified PFC 
circuitry interferes with social motivation.

Direct intervention in the E/I balance within the PFC circuitry 
profoundly affects the social motivation of adult mice. In seminal 
work, researchers optogenetically manipulated the neural activity of 
specific PFC neuronal populations during reciprocal interaction with 
juvenile conspecifics and in the three-chamber sociability task (162). 
Increasing excitatory activity by stimulating pyramidal neurons 
disrupted social exploration in the unrestricted interaction test and 
social preference in the three-chamber test. These deficits were 
brought down by activating inhibitory PV+ interneurons 
simultaneously with pyramidal cells, emphasizing the crucial role of 
an appropriate E/I ratio in the PFC for proper social motivation 
in mice.

Pre-clinical models of E/I balance and its 
role in social motivation

Multiple synaptic or circuit-level factors establish and tightly 
regulate neuronal E/I balance (163). The balance between excitatory 
and inhibitory synapses in the brain is maintained through a complex 
interplay of several factors. These include the development and 
functioning of these synapses and the signaling pathways and 
mechanisms that regulate their plasticity. Homeostatic synaptic 
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plasticity and intrinsic neuronal excitability also play roles in this 
delicate balance (164). At a higher level, E/I balance is regulated by the 
activity of different circuits, such as local circuits that involve distinct 
types of interneurons. These interneurons play a crucial role in 
regulating the activity of pyramidal neurons and modulating long-
range connections (165, 166).

In the context of genetic risk factors for ASD, multiple studies 
have examined the E/I balance and its disruption in the 
PFC. Malfunctions of alpha-amino-3-hydroxy-5-methyl-4-isoxazole 
propionic acid (AMPA), N-methyl-D-aspartate (NMDA), and 
metabotropic glutamate receptors were found to affect the E/I balance 
in parallel to social behavior. For instance, Gandal et al. (167) showed 
that mice expressing low levels of the NMDA receptor NR1 subunit in 
the PFC display low social motivation, decreased ultrasonic 
vocalizations, and abnormal gamma synchrony. Studies using genetic 
pre-clinical models linked reduced interneuronal markers in 
pre-frontal regions to imbalances in the E/I ratio due to a low level or 
lack of inhibitory control of pyramidal neuron excitability (168, 169). 
The maladaptive developmental trajectory of inhibitory interneurons 
and their role in later dysfunction of the PFC circuit have been widely 
studied (152, 170–172). While the impact of these deficits is global and 
affects multiple nodes of the social decision-making network that 
involves social motivation, the PFC is particularly susceptible. For 
instance, Shank3-deficient mice have been shown to lack social 
motivation and exhibit specific deficits in PFC circuitry, such as 
reduced NMDA-based excitatory post-synaptic currents (EPSCs) and 
a low number of F-actin filaments. These were rescued upon 

depolymerization of the actin filaments following systemic or focal 
treatment (173). Recent work involving circuit-specific mutation of 
Shank3 in PFC-to-basolateral amygdala-projecting neurons 
recapitulated social motivation deficits and synaptic hypoactivity 
(174). In addition, chemogenetic activation of pyramidal neurons in 
the PFC of these mice rescued social interactions in the three-chamber 
task, as well as NMDA receptor-dependent EPSCs (175). Thus, PFC 
circuit dysfunction, especially of excitatory neurons projecting to the 
amygdala, directs social motivation deficits, at least in Shank3-
deficient mice. However, mutations of the NMDA receptor NR1 
subunit in the PFC and hippocampus of adult mice did not decrease 
social novelty preference and sociability in the three-chamber task 
(176). Taken together, the development and early childhood 
susceptibility of interneurons may play a significant role in the PFC 
circuit and E/I balance abnormalities (Figure 3B) seen in ASD models 
(177, 178).

In addition to excitatory glutamatergic and inhibitory GABAergic 
activity, many neuromodulators alter PFC activity. Specific lesions of 
cholinergic projections into the PFC reduced rat social interactions in 
an open field arena (179). Distinct cholinergic inputs from the basal 
forebrain seemed to regulate different aspects of social interactions, 
namely social motivation and memory (180). Moreover, cholinergic 
signaling through nicotinic receptors in the PFC promoted the 
exploration of novel social stimuli (133). Oxytocin increased pair 
bonding and pro-social behavior (181–183) through contributions 
from sub-cortical regions and perhaps via their projections to the PFC 
(39). Social recognition memory is regulated by oxytocin-mediated 

FIGURE 3

Prefrontal circuit’s specific components and their role in social interaction. (A) PFC circuitry and neuronal cell types driving inter and intra cortical 
excitatory drive. Specifically, the interneurons PV+ and SST+ inhibitory control over layer 2 (L2) as well as layer 5 (L5) pyramidal neurons. (B) Pyramidal 
neurons firing rate in PFC is modulated by PV+ and SST+ inhibition to the cell body and apical dendrites, respectively. Higher firing rate of the 
pyramidal neurons correspond to increased social motivation in mice. While the SST+ neurons are reported to be modulated through oxytocin and 
corticotrophin releasing hormone, specifically during social motivation and novelty preference behavior in rodents. While cholinergic projections into 
pyramidal neurons regulate social motivation and memory through nicotinic acetylcholine receptors. Further, low NMDA NR1 in PV+ neurons reduce 
social investigation. Excitatory synapses are specifically affected by structural protein Shank3 deficiency along with disruption actin formation, which 
cause low social motivation. Similarly, reduced excitatory post-synaptic currents due to low NMDA and AMPA receptors cause significant imbalance in 
prefrontal circuit E/I imbalance.
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modulation of prefrontal cortex plasticity, which is impaired when 
juvenile rats eat a high-fat diet (184). Moreover, oxytocin receptor 
(OTr)-expressing SST+ neurons in the murine PFC present 
sex-specific responses to oxytocin (185). These neurons regulate 
female motivation to interact with males during the estrus phase, yet 
do not affect interactions with other females. In another study, chronic 
activation of pyramidal neurons of rat PFC reduced social motivation 
to interact with novel stimuli in a three-chamber task (186). These 
motivation deficits were ameliorated by systemic OTr agonist 
injections. Recently, Riad et al. (187) showed that corticotrophin-
releasing hormone (CRH)-expressing neurons inhibit OTr-positive 
neurons and layer 2/3 in the mPFC when stimulated in vitro at low 
frequency. When activated chemo-genetically, these CRH neurons 
increase novelty preference in male but not female mice. Moreover, a 
recent study showed that PFC infralimbic CRH+ neurons that project 
to the lateral septum modulate social novelty preference (188). In 
summary, more detailed studies on the effects of PFC neuromodulators 
are required to reveal the intricate mechanisms through which they 
modulate E/I balance and circuitry in this brain region and regulate 
its activity during specific social behaviors (Figure 3B).

Does the PFC regulate social and 
affective emotional state recognition 
in rodents?

Social recognition and memory of socially relevant events are 
essential to social interactions. Early social recognition is impaired in 
children with ASD (189, 190). A study in rats reported that lesions in 
the ACC reduced social recognition, while OFC lesions did not affect 
this behavior (134). Activation of pyramidal neurons in Cntnap2 
knockout mice [corresponding to a pre-clinical model of cortical 
dysplasia focal epilepsy syndrome, a type of ASD (191)] balanced the 
E/I ratio and alleviated deficits in social recognition of novel juveniles 
(192). Mice that lack Fgf17, a signaling molecule essential for rostral 
forebrain development (193), show difficulties in social recognition 
and low c-Fos activity in the PFC during exploration of opposite sex 
conspecifics (194).

As discussed above, NMDA receptor hypo-function is a 
characteristic feature of many ASD mouse models. These deficits in 
glutamatergic synaptic activity also cause a loss of social recognition 
and memory. Moreover, acute systemic administration of the NMDA 
receptor antagonist MK801 reduces recognition of novel juvenile 
stimulus (195). Specifically, mice with NR1 subunit-deficient 
GABAergic neurons in the PFC do not distinguish a novel stimulus 
over a familiar one in a short-term social memory test (196). 
Collectively, PFC NMDA receptor synaptic activity contributes to 
social recognition and memory.

Works on empathy behavior in rats, which preferred to rescue a 
restrained conspecific over getting more food rewards, indicated a 
role of ACC projections to the Nac shell in regulating such behavior 
(197). Works from the Hong group (198) showed that dmPFC 
neuronal activity is related to the sex of the conspecific during social 
exploration. Furthermore, recent works exploring recognition of 
emotionally affected conspecifics indicated multi-faceted regulation 
by the PFC (122, 199). In addition, in mice fear-conditioned to avoid 
specific social stimuli, SST+ neurons inhibited PV+ neurons in the 
mPFC, thus causing disinhibition of excitatory projections from the 

region. These results suggest that the PFC regulates social fear 
conditioning or affective avoidance by increasing the excitatory drive 
in the circuit (200).

Conclusion

We are rapidly enhancing our understanding of the neural 
mechanisms underlying social interactions. Here, we considered an 
ever-growing body of evidence showing that the prefrontal cortex is a 
hub in this process. Social interactions involve multiple processes, like 
decision-making, valence, and perception of the emotions of self and 
others. It is thus no wonder that such high-order and complex social 
behavior is affected by disorders like ASD and other 
neuropsychological comorbidities. We  accordingly addressed 
evidence that the prefrontal circuitry is susceptible to synaptic, 
cellular, and molecular modifications in ASD. Such modifications 
bring about a myriad of social deficits, despite the majority of the 
current literature only reporting on deficits in sociability, social 
recognition, and vocalization. We suggest that studying social deficits 
through tasks that address affective emotions, empathic behavior, and 
even group dynamics will enrich our understanding of the causes of 
ASD in rodent models. Taken together with studies of the mechanisms 
and roles of various neuromodulators and transmitters in the PFC 
during social interactions, such explorations can better guide 
interventions of clinical value.
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