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Introduction: Repetitive transcranial magnetic stimulation (rTMS) is a promising 
intervention for late-life depression (LLD) but may have lower rates of response 
and remission owing to age-related brain changes. In particular, rTMS induced 
electric field strength may be  attenuated by cortical atrophy in the prefrontal 
cortex. To identify clinical characteristics and treatment parameters associated 
with response, we undertook a pilot study of accelerated fMRI-guided intermittent 
theta burst stimulation (iTBS) to the right dorsolateral prefrontal cortex in 25 adults 
aged 50 or greater diagnosed with LLD and qualifying to receive clinical rTMS.

Methods: Participants underwent baseline behavioral assessment, cognitive 
testing, and structural and functional MRI to generate individualized targets and 
perform electric field modeling. Forty-five sessions of iTBS were delivered over 
9  days (1800 pulses per session, 50-min inter-session interval). Assessments and 
testing were repeated after 15 sessions (Visit 2) and 45 sessions (Visit 3). Primary 
outcome measure was the change in depressive symptoms on the Inventory of 
Depressive Symptomatology-30-Clinician (IDS-C-30) from Visit 1 to Visit 3.

Results: Overall there was a significant improvement in IDS score with the treatment 
(Visit 1: 38.6; Visit 2: 31.0; Visit 3: 21.3; mean improvement 45.5%) with 13/25 (52%) 
achieving response and 5/25 (20%) achieving remission (IDS-C-30  <  12). Electric 
field strength and antidepressant effect were positively correlated in a subregion 
of the ventrolateral prefrontal cortex (VLPFC) (Brodmann area 47) and negatively 
correlated in the posterior dorsolateral prefrontal cortex (DLPFC).

Conclusion: Response and remission rates were lower than in recently published 
trials of accelerated fMRI-guided iTBS to the left DLPFC. These results suggest 
that sufficient electric field strength in VLPFC may be a contributor to effective 
rTMS, and that modeling to optimize electric field strength in this area may 
improve response and remission rates. Further studies are needed to clarify the 
relationship of induced electric field strength with antidepressant effects of rTMS 
for LLD.
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1. Introduction

A significant percentage (10–15%) of the aging population 
experiences major depressive disorder, known as late-life depression 
(LLD), with negative impacts on functioning and quality of life (1). 
Mild cases can be addressed with education and counseling, while 
moderate to severe cases of LLD may require antidepressant 
medication or somatic therapies which can cause systemic and 
cognitive side effects (2). In particular, electroconvulsive therapy 
(ECT) is associated with risk of anterograde and retrograde memory 
loss (3), potentially compounding the cognitive deficits associated 
with neurodegenerative conditions, chronic medical conditions, and 
cerebrovascular disease. Efficacious treatments for LLD without risk 
of cognitive impairment are needed.

Repetitive transcranial magnetic stimulation (rTMS) is a 
FDA-approved therapeutic option for treatment-resistant depression 
that may be effective for LLD (4, 5). By generating electric currents in 
cerebral cortex through electromagnetic induction, rTMS is able to 
alter connectivity within and between large-scale brain networks 
involved in emotion regulation (6). When administered using various 
protocols such as 10 Hz, 1 Hz, or intermittent theta burst stimulation 
(iTBS), rTMS has demonstrated rates of up to 70% response and 40% 
remission in naturalistic studies (7, 8).

1.1. Atrophy in late-life depression may 
affect rTMS efficacy

Unfortunately, increased age has been associated with diminished 
rates of response and remission in multiple studies since the initial 
demonstrations of rTMS for depression (5). A 2022 systematic review 
of seven randomized trials and seven uncontrolled trials of rTMS for 
LLD [found significant variability in response rates (6.7–54.3%)] as 
well as parameters utilized (9). Suspected causes of reduced efficacy 
include vascular damage to structural white matter pathways along 
which rTMS effects propagate (10); the presence of common 
comorbidities in late-life depression, such as anxiety disorders (11), 
that are associated with lower remission rates with rTMS (12); and 
age-related cortical atrophy, which may require higher intensities of 
magnetic field strength to achieve adequate penetration. An early 
study of high frequency left dorsolateral prefrontal cortex (DLPFC) 
rTMS in LLD found the antidepressant response rate was greater in 
patients <65 years of age compared to those >65 (56% vs. 23%) (13), 
with the authors concluding that structural brain changes in persons 
with LLD contribute to reduced efficacy. Two more studies found no 
significant effect of rTMS treatment compared to placebo in persons 
with LLD (14, 15). Nahas et al. (16) showed that adjusting stimulation 
parameters for frontal atrophy resulted in an antidepressant effect in 
27% of participants. Jorge et al. (17) performed a randomized sham-
controlled trial of rTMS in persons with vascular depression and 
found that age and frontal gray matter atrophy were negatively 

correlated with response (16). Even in more contemporary studies 
using higher pulse counts, longer treatment durations and greater 
intensities, rTMS efficacy for LLD may be significantly diminished, 
such as in a recent small double-blinded rTMS trial that found 0% 
response in 10 patients receiving left unilateral excitatory stimulation 
alone (18). Heuristics to counteract effects of asymmetric atrophy such 
as adjusting motor threshold-based stimulation intensity according to 
scalp to cortex distance at the prefrontal target have been proposed 
and utilized (19, 20), but do not fully account for the effects of gyral 
thinning and sulcal widening on the induced electric field, and have 
generally not been used above the maximum stimulation intensity of 
120% resting motor threshold.

1.2. Current targeting methods do not 
address electric field dose

Recent advances in accessibility of computational finite element 
modeling for use in noninvasive brain stimulation have enabled 
rapid calculation of the predicted induced electric field (|E|) of 
rTMS and correlation of its distribution and intensity with clinical 
and physiological outcomes. This capability provides a means for 
accurately and precisely assessing the effects of generalized and 
local atrophy on efficacy of rTMS in LLD. Electric field modeling 
has been used extensively in studies of the motor system, with 
strong correlations demonstrated between motor cortex |E|, coil-to-
cortex distance, and motor threshold (21–23). There have been 
fewer clear results regarding |E| in the DLPFC for treatment of 
depression. A rTMS modeling study conducted in 121 patients from 
the Human Connectome Project database demonstrated high rates 
of inter-individual variability in |E| and its distribution, as well as 
in networks stimulated when rTMS is delivered to generic targets 
such as F3 (24). In a study of rTMS for smoking cessation by 
Caulfield et  al. (25), |E| in the prefrontal cortex was shown to 
be significantly diminished compared to the motor cortex, with 
higher levels of stimulation needed in the prefrontal cortex (133% 
of motor threshold) to achieve the same |E| obtained in the motor 
cortex at 100% of threshold. A study by Deng et al. (26) of electric 
field strength in the middle, superior, and inferior frontal gyri of the 
DLPFC in 26 depressed patients receiving rTMS at F3 did not find 
a correlation with clinical outcomes. A recent study by Zhang et al. 
(27) of 12 patients receiving 3 weeks of left iTBS/right cTBS for 
depression found that the normal component of the electric field, 
not the tangential component or overall magnitude, was 
significantly correlated with antidepressant response. Finally, a 
comparison study was conducted by Deng et al. (28) between four 
targeting methods (5 cm rule, Beam F3, MRI-guided, and electric 
field-optimization) using pilot data from ten adolescents receiving 
30 daily sessions of 10 Hz rTMS. Significant correlation was 
observed between |E| in the DLPFC and antidepressant response in 
patients receiving a full course of treatment. Of the above methods, 
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the 5 cm rule method yielded the weakest field strength, and the 
Beam F3 method demonstrated significant variability.

To date, computational modeling has not been used to assess the 
relationship of |E| to clinical benefit with rTMS in an aged population. 
Therefore, we proposed and conducted a pilot study of accelerated 
fMRI-guided iTBS for patients with LLD and hypothesized that 
greater |E| measured at the personalized target would be associated 
with greater antidepressant response.

2. Methods

This was an unblinded, single-arm, prospective cohort study of 
accelerated fMRI-targeted iTBS conducted in 25 patients aged 50 and 
older with a diagnosis of major depressive disorder. This protocol was 
reviewed and approved by the UNM Health Sciences Center Human 
Research Review Committee (HRRC #19–531).

2.1. Recruitment

Recruitment took place through the UNM Treatment Resistant 
Depression Clinic, Geriatric Psychiatry Clinic, TMS Service, and ECT 
Service. All participants from the various clinics were referred for 
consideration of rTMS treatment for major depression, having failed 
various therapeutics such as oral antidepressants, esketamine, ECT, or 
traditional rTMS. Participants were screened via phone for inclusion 
and exclusion criteria.

2.2. Inclusion/exclusion criteria

To be  enrolled in the study, participants met the following 
inclusion criteria: 1) ages 50–79, 2) diagnosis of major depressive 
disorder of at least 6 months’ duration preceding study entry, 
confirmed by two independent board-certified psychiatrists according 
to DSM-5 criteria, 3) four or more adequate trials of antidepressants 
in the current episode, and 4) score of 10 or higher on the Quick 
Inventory of Depressive Symptomatology (16 item) (Self-Report) 
(QIDS-SR-16) at time of study entry. Exclusion criteria included: 1) 
history of seizure, 2) history of a major neurocognitive disorder or 
central nervous system disorder diagnosis, 3) implanted ferromagnetic 
material or contraindication to obtaining MRI, 4) pregnancy, 5) 
current incarceration, 6) inability to complete the protocol, 7) medical 
instability resulting in hospitalization or emergency department visit 
within the past month, and 8) psychotropic medication change or 
treatment with electroconvulsive therapy within the month preceding 
study entry.

2.3. Visit 1 assessment

After screening and consent, participants underwent 
demographic survey (age, sex, socioeconomic status, educational 
attainment, ethnicity, race, and handedness); assessment of 
depression history and treatment; mood and anxiety symptom 
assessment with the Inventory of Depressive Symptomatology for 
Clinicians (IDS-C-30, primary outcome measure); Generalized 

Anxiety Disorder-7 (GAD-7); Snaith-Hamilton Assessment of 
Pleasure Seeking for Clinician Administration (SHAPS-C); 
Temporal Experience of Pleasure Scale (TEPS); and the Behavioral 
Inhibition System/Behavioral Approach System Scale (BIS/BAS). 
Select domains of cognition were assessed with the Delis-Kaplan 
Executive Function Scale (DKEFS), Wechsler Adult Intelligence 
Scale (WAIS), and Hopkins Verbal Learning Test-Revised (HVLT). 
These instruments were chosen in line with prior study protocols 
combining imaging and neuromodulation (29, 30).

2.4. MRI

At the baseline visit, participants underwent structural and 
resting-state functional magnetic resonance imaging (MRI) on a 3 T 
Siemens Prisma scanner. High-resolution T1- and T2-weighted 
structural images and two 6-min runs of resting-state functional MRI 
(rsfMRI) were obtained. For structural scans: repetition time 
(TR) = 2,530 milliseconds (ms), echo time (TE) = 1.64, 3.5, 5.36, 7.22, 
9.08 ms, Inversion time (TI) = 1,200 ms, flip angle = 7.0°, slices = 192, 
field of view = 256, matrix 256 × 256, voxel size = 1.0 × 1.0 × 1.0 
millimeter (mm). For resting-state scans: TR = 480 ms (multiband 
acceleration factor of 8), TE = 29 ms, flip angle (FA) = 75°, slices = 192, 
voxel size = 2.0 × 2.0 × 2.0 mm. The T1 was preprocessed by parcellating 
with Freesurfer 6.0.0 and then aligned to rsfMRI data (31). The rsfMRI 
was preprocessed using AFNI’s recommended pipeline (example 11) 
afni_proc.py with AFNI 20.2.18 (32). The first four volumes of each 
run were dropped and each run was aligned and despiked, slice time 
corrected, distortion corrected, warped to Montreal Neurological 
Institute (MNI) space, blurred with a 4 mm full width at half 
maximum (FWHM) Gaussian kernel, and scaled to a mean of 100. 
Nuisance signals were regressed and outlying volumes censored, and 
the runs were concatenated.

2.5. Targeting

Resting-state fMRI analysis and determination of neuronavigation 
targets were based on the published method of Ning et al. (33). The 
use of resting-state fMRI to identify targets within the DLPFC is built 
on a growing body of lesion and imaging work demonstrating the 
SgCC as a critical region mediating depressive symptomatology (34, 
35). fMRI studies particularly by Fox et al. (36, 37) have shown that 
the degree of intrinsic anticorrelated activity between the DLPFC and 
SgCC at the target is a predictor of response to rTMS. More recent 
studies have demonstrated that distance of the stimulated target from 
the maximum anticorrelated target correlates with response to 
treatment (36, 38, 39). Our seed region was defined using the 
Brainnetome atlas region corresponding to the SgCC (187, 188), and 
the bounding search region within the DLPFC in each hemisphere 
was created from Brainnetome regions (15, 16, 19, 20, 21, 22) making 
up Brodmann areas 9 and 46 (40). Functional connectivity was 
measured by correlating time-series data from the pre-processed 
resting-state fMRI data for the seed region with each voxel in the 
search regions. A mask was created with the maximum anticorrelated 
voxel in the search region. Structural T1 images and the functional 
mask were then exported to the Localite neuronavigation system for 
registration during stimulation sessions.
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2.6. Stimulation

The 25 participants each received a total of 45 sessions (five 
sessions/day, nine weekdays) of iTBS to the cortical target with a 
MagPro X100 equipped with a Cool-B70 coil (Magventure Inc., 
Alpharetta, GA). The right DLPFC was chosen as the initial target 
region given its potential efficacy for depressive and anxious symptoms 
(41, 42), and based on earlier work showing that iTBS to this area can 
improve cases of depression that do not respond to iTBS to the left 
DLPFC (43). Co-registration of the MRI data in the Localite 
neuronavigation system was performed with head landmarks at the 
nasion and bilateral tragus. The mask with the functional target was 
overlaid on the structural images and projected orthogonally to the 
nearest scalp surface for coil positioning. Coil rotation at the scalp 
projection was specified as 45° from midline, with the coil handle 
pointing posteriorly. Coil tilt was maintained tangential to the plumb 
line from scalp projection to brain target. Deviation from target 
during iTBS was monitored and the coil repositioned for any 
displacements greater than three millimeters. In each session, 1800 
pulses were delivered in 60 trains of 10 triplet bursts (pulse frequency 
50 Hz, burst frequency 5 Hz), 2 s train duration, and 8 s intertrain 
interval in accordance with recently published accelerated iTBS 
protocols by Cole et al. (44). Pulses were delivered at 120% of resting 
motor threshold (RMT), defined as the minimum amount of energy 
to obtain five out of 10 motor evoked potentials with peak to peak 
amplitude of at least 50 uV in the abductor pollicis brevis muscle on 
electromyography, in accordance with parameters from the iTBS 
noninferiority study by Blumberger et al. (45). If patients could not 
tolerate 120% of RMT due to scalp discomfort, the highest tolerable 
stimulation intensity up to 120% RMT was delivered. Each iTBS 
session was separated by 50 min, based on prior work demonstrating 
this time frame as the optimal recovery time between sessions for 
accelerated protocols (46).

2.7. Visit 2 and 3 assessments

After 15 sessions participants repeated all behavioral assessments 
as this corresponds to the timeframe for mid-course evaluation in a 
typical clinical rTMS course. They then received 30 more sessions. If 
there was minimal improvement (<10%) noted in IDS-C-30 score at 
Visit 2 or development of intolerable side effects, the participant was 
switched to stimulation of the left hemisphere for the remainder of 
treatment, in line with clinical practice. The day following completion 
of the 45th session, participants repeated behavioral assessments and 
cognitive testing (Visit 3). At 1 month and 2 months following the 
protocol, the subjects were contacted by phone and assessed with the 
IDS-C-30.

2.8. Statistical analysis

Means and standard deviations for demographics and baseline 
behavioral and cognitive measures were calculated in SPSS Statistics 
26 (IBM; Armonk, NY). Repeated-measures analyzes of variance and 
effect sizes expressed as partial eta squared (ηp

2) were calculated for 
Visit 1, 2, and 3 behavioral and cognitive outcomes using R v. 4.1.3 (R 
Foundation; Vienna, Austria).

2.9. Electric field modeling

Using the T1 and T2 weighted images within Simulation of 
Non-Invasive Brain Stimulation (SimNIBS) (47) a segmented 
10-tissue head model was created and a simulated coil placed at the 
personalized target of each participant. The modeled coil orientation 
was defined as tangential to the scalp and rotated 45° from midline 
with the coil handle pointing posteriorly. A model based on a quasi-
static approximation of Maxwell’s equations was then solved for the 
vectorwise induced electric field (E), which is then scaled by the actual 
intensity of the individual stimulation delivered (% of maximum 
device output). To simplify calculations and the emphasis of 
directionality of the electric field, the magnitude of the induced 
electric field was calculated(|E|). This induced electric field measure 
was averaged in each parcellated region across the whole brain using 
the Human Connectome Project multimodal atlas parcellation (48) 
(HCP-MMP) for each subject to create regional induced electric field 
measures. Electric field analysis was restricted to areas that received 
significant field magnitude [defined as any area above half of the 
maximum brain average field (|Emax|/2) or above half of the maximum 
induced standard deviation (|Emax,sd|/2)], based on the entire cohort’s 
|E|. This restricted the analysis to 11 regions in the HCP-MMP atlas. 
Due to segmentation issues only 23 of 25 participants’ electric fields 
were included in the analysis.

3. Results

3.1. Baseline characteristics

Baseline characteristics of the study population are displayed in 
Table 1. The participants were predominantly female (22 of 25, 88%) 
and Caucasian (23 of 25, 92%), consistent with composition of the 
referring clinics. Comorbid psychiatric diagnoses (e.g., generalized 
anxiety disorder, GAD; posttraumatic stress disorder, PTSD) were 
present in 44% of participants. Treatment resistance was high, with 
participants on average having trialed nine medications prior to study 
entry, and 32% having previously trialed ECT.

3.2. Side effects

The most common reported side effects were scalp discomfort 
(68%), headache (48%), fatigue (40%), and sleep disruption 
(36%). All 25 participants completed all assessments for Visits 1, 
2, and 3, and no participants discontinued involvement in the 
study. The average intensity of stimulation tolerated was 114.9% 
of RMT, with five subjects not able to tolerate the full dose of 
120% of RMT.

3.3. Depression

Table  2 contains means and standard deviations for each 
behavioral and cognitive measure as well as p values and effect sizes. 
Assumptions of normality and sphericity were met for the primary 
outcome measure of depressive symptoms, the IDS-C-30, and most 
behavioral and cognitive secondary outcome measures. For certain 
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secondary outcome measures such as the GAD-7, Letter Fluency, and 
Color Word Score where assumptions of sphericity were not met, 
Greenhouse–Geisser correction was applied to the repeated measures 
ANOVA results. Mean depression scores for the entire cohort as 
measured by the IDS-C-30 improved significantly from Visit 1 to Visit 
3 (Visit 1: 38.6 +/− 9.31; Visit 2: 31.0 +/− 10.2; Visit 3: 21.3 +/− 10.4; 
F(2,48) = 62.88, p = < 0.0001, ηp

2 = 0.72) (Figure 1). Clinical response, 
defined as > = 50% improvement in depression score, was achieved in 
13 out of 25 subjects (52%) by Visit 3, and remission, defined as 
IDS-C-30 = < 12, was achieved in 5 out of 25 subjects (20%). Post-hoc 
t-tests with Bonferroni correction confirmed significant decreases in 
depression scores between Visit 1 and 2 (t(24) = 5.90, p < 0.0001), Visit 
1 and 3 (t(24) = 9.64, p < 0.00001), and Visit 2 and 3 (t(24) = 6.41, 
p < 0.00001). An exploratory analysis of long-term effects was 
undertaken with follow-up IDS-C-30 assessment via phone call to all 
participants at 1 month and 2 months after treatment. Two participants 
were not able to be reached for 1 month assessment; at three-month 
follow-up, five participants were not able to be reached; these were the 
only missing data points in the cohort. Mean IDS-C-30 scores and 

standard deviations at one-month follow-up were 22.4 +/− 15.0. At 
three-month follow-up, mean IDS-C-30 score and standard deviation 
were 25.5 +/− 12.3.

3.4. Switching

A total of six patients switched to left hemisphere treatment 
during the protocol due to lack of at least 10% improvement in the 
IDS-C-30 at Visit 2. Of the subjects that switched, by Visit 3 none met 
criteria for remission, two met criteria for response, two met criteria 
for partial response (25–50% improvement), and two patients did not 
respond (Visit 1: 38.8 +/− 9.24; Visit 2: 38.7 +/− 9.69; Visit 3: 26.0 
+/− 9.72).

3.5. Anxiety

Generalized anxiety symptoms as measured by the GAD-7 
declined significantly from Visit 1 to Visit 3 (F(1.57, 37.6) = 12.74, 
p < 0.001, ηp

2 = 0.35) (Figure 2). Behavioral inhibition as measured by 
the BIS/BAS demonstrated improvement with treatment 
(F(2,48) = 11.9; p < 0.0001; ηp

2 = 0.33) (Figure 3).

3.6. Anhedonia

There were significant improvements observed in anhedonia 
symptoms from Visit 1 to Visit 3 as measured by the TEPS 
(F(2,48) = 7.85, p = 0.001, ηp

2 = 0.25) and the SHAPS-C (F(2,48) = 10.47, 
p < 0.001, ηp

2 = 0.3) (Figure 2). Behavioral approach as measured by the 
BIS/BAS also demonstrated significant changes, with increases in 
Reward Responsivity (F(2,48) = 7.21; p = 0.002; ηp

2 = 0.23) and Drive 
(F(2,48) = 4.51; p = 0.016; ηp

2 = 0.16) (Figure  3). After Bonferroni 
correction for multiple comparisons, the findings for the Drive 
subscale were no longer significant.

3.7. Cognition

There were no significant changes in any of the cognitive domains 
tested, including short term memory (HVLT-R), attention (WAIS), 
and executive function (DKEFS) from Visit 1 to Visit 3 (see Table 2).

3.8. Target distribution

The DLPFC target search region in Figure  4A and spatial 
distribution of the right DLPFC targets as well as their associated 
efficacy at Visit 2 and Visit 3 are displayed in Figures 4C,D. Also 
portrayed in Figure 4B are the cortical position of scalp location F4, 
as well as the right anterolateral anticorrelated network connectivity 
target identified by Siddiqi et al. via aggregative analysis of multiple 
imaging and brain stimulation data sets (35, 49). Degree of 
anticorrelation of the DLPFC targets with the SgCC was not 
significantly associated with change on the IDS-C-30 (r = −0.002; 
p = 0.28); however, anticorrelation between the DLPFC targets and 
SgCC showed a moderate positive correlation with increasing age 

TABLE 1 Demographic and clinical characteristics of the study 
population (N  =  25).

Variable Value

Age, years 65 ± 7

Sex

  Male 3 (12)

  Female 22 (88)

Education (years) 6.5 ± 1.4

BMI 29.6 ± 7.3

Ethnicity

  Non-Hispanic 23 (92)

  Hispanic 2 (8)

Race

  Caucasian 23 (92)

  Other 2 (8)

Comorbid psychiatric diagnoses

  None 14 (56)

  GAD 9 (36)

  PTSD 6 (24)

  Other 2 (8)

Episode duration (months) 202.0 ± 196.5

Lifetime duration (years) 42.7 ± 15.7

History of ECT

  Yes 8 (32)

  No 17 (68)

Test of premorbid function scaled score 108.5 ± 21.7

Family history

  Yes 21(84)

  No 4(16)

Number of failed antidepressant trials 9.3 ± 6.0

Values are number (%) or mean ± standard deviation.
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(r = 0.39, p = 0.05), i.e., anticorrelation magnitude decreased as 
age increased.

3.9. Electric field distribution

The average induced electric field for all participants was 
distributed broadly across the right frontal lobe, with regions of 
greatest |E| found in the middle frontal gyrus and inferior frontal 
gyrus (Figure 5A). |E| at the target (|Etarget|) for each patient was not 
significantly associated (p > 0.1) with change in IDS score, nor was 
|Etarget| correlated with the simulated electric field magnitude at the 
motor cortex (scalp location C3). In whole-brain analysis, negative 
correlations were observed between |E| and change in IDS-C-30 
between Visit 1 and 2 and Visit 1 and 3 (i.e., higher field magnitude 
associated with greater reduction in IDS score and antidepressant 
benefit) in anterior and lateral regions, i.e., Brodmann areas 10, 47, 
and 45 (Figures 5B,C). Positive correlation between |E| and change in 
IDS-C-30 (i.e., higher field magnitude associated with less reduction 

or even increase in IDS score) was observed in posterior dorsolateral, 
dorsomedial, and motor regions. Of all areas meeting criteria for 
inclusion in electric field analysis, only posterior rostral Brodmann 
area 47 (p47r; Figure 5D) was significantly associated with change in 
IDS-C-30 score. The degree of correlation was moderate between |E| 
in p47r and change in IDS-C-30 from Visit 1 to 2 (r = −0.41, p = 0.05). 
In participants who received all 45 stimulation sessions to the right 
hemisphere, the degree of correlation was strong between |E| in p47r 
and change in IDS-C-30 from Visit 1 to 3 (r = −0.56, p = 0.02) 
(Figure 6). After controlling for false discovery rate, pfdr = 0.12.

4. Discussion

In this open-label, single-arm pilot study, accelerated fMRI-
guided iTBS significantly improved depressive and anxious 
symptoms in 25 patients with LLD. The protocol itself was well-
tolerated, with no participants discontinuing treatments early. The 
most common side effects were scalp discomfort, mild headache, 

TABLE 2 Means and standard deviations (in parentheses) for primary and secondary behavioral outcome variables and cognitive assessments at Visits 1, 
2, and 3.

Visit 1 Visit 2 Visit 3 F df p ηp
2

IDS-C-30a 38.64 (9.31) 30.96 (10.2) 21.28 (10.41) 62.88 2,48 <0.0001 0.72

GAD-7 9.72 (5.46) 9.00 (4.81) 5.6 (4.81) 12.74 1.57,37.6 <0.001 0.35

TEPS 60.44 (11.23) 65.52 (11.37) 68.16 (11.10) 7.85 2,48 0.001 0.25

SHAPS-C 38.8 (9.05) 34.80 (8.31) 32.32 (8.91) 10.47 2,48 <0.001 0.3

BAS drive 8.80 (2.81) 10.20 (2.47) 10.00 (2.24) 4.51 2,48 0.016 0.16

BAS fun seeking 8.80 (2.55) 9.48 (2.31) 9.24 (2.42) 1.95 2,46 0.15 0.07

BAS reward resp 14.80 (2.12) 15.44 (1.64) 16.32 (1.93) 7.21 2,48 0.002 0.23

BIS 24.20 (3.15) 23.88 (3.87) 22.52 (3.50) 11.9 2,46 <0.0001 0.33

DKEFS

Letter fluency total correct scaled score 12.17 (3.57) 12.6 (3.27) 12.52 (3.45) 2.19 1.6,36.7 0.14 0.087

Category fluency total correct scaled score 11.35 (3.34) 11.36 (3.11) 11.24 (4.14) 0.07 2,44 0.935 0.003

Category switching total correct scaled score 11.39 (3.64) 12.00 (3.42) 12.46 (3.28) 1.49 2,42 0.24 0.066

Category switching accuracy scaled score 11.04 (3.70) 11.80 (3.16) 12.04 (3.16) 1.26 2,42 0.29 0.057

Color-word condition 1 color scaled score 8.96 (3.83) 9.12 (2.99) 9.60 (3.20) 2.23 2,44 0.12 0.092

Color-word condition 2 word scaled score 9.48 (3.19) 9.12 (2.44) 9.04 (2.75) 0.22 2,44 0.81 0.01

Color-word condition 3 inhibition scaled score 9.70 (3.90) 10.12 (2.98) 10.20 (3.48) 0.84 1.44,31.76 0.41 0.037

Color-word condition 4 inhibition switch scaled score 10.18 (3.26) 10.28 (2.94) 10.60 (3.11) 0.54 1.45,30.45 0.53 0.025

Color-word composite scaled score 9.48 (3.38) 9.28 (2.51) 9.64 (2.72) 1.04 1.55,34.11 0.35 0.045

HVLT

Total recall correct T score 46.63 (13.37) 49.40 (8.35) 47.84 (11.34) 0.90 2,46 0.41 0.038

Delayed recall correct T score 48.17 (11.50) 49.60 (9.17) 49.00 (10.57) 0.21 2,46 0.81 0.009

Retention T score 52.71 (13.22) 50.04 (9.97) 51.00 (10.68) 0.40 2,46 0.67 0.017

Recognition discrimination index T score 47.63 (7.92) 46.44 (9.95) 46.60 (10.79) 0.35 2,46 0.71 0.015

WAIS

Digit span scaled score 11.76 (2.61) 11.33 (2.35) 12.18 (2.35) 0.96 2,18 0.40 0.097

aIndicates primary outcome measure.
IDS-C-30, Inventory of Depressive Symptoms-30-Clinician; GAD-7, Generalized Anxiety Disorder-7; TEPS, Temporal Experience of Pleasure Scale; SHAPS-C, Snaith-Hamilton Pleasure 
Scale-Clinician; BAS, Behavioral Approach System; BIS, Behavioral Inhibition System; DKEFS, Delis-Kaplan Executive Function System; HVLT, Hopkins Verbal Learning Test; WAIS, 
Wechsler Adult Intelligence Scale.
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sleep disruption, and fatigue. There were no serious adverse events 
and no significant changes on any of the cognitive measures 
obtained, indicating that accelerated iTBS at clinical stimulation 
intensities (110–120%) is a safe form of neuromodulation even in 
a population at increased risk of cognitive side effects. A very large 
effect was observed in the primary outcome measure, the IDS-C-
30, with a mean 17-point reduction in depressive symptoms 
observed by the end of 45 iTBS sessions over 9 days, equating to a 
52% response rate and 20% remission rate. Large effects on 
generalized anxiety levels and anhedonia symptoms were also 
demonstrated in the cohort. Our results highlight the rapidity of 
clinical benefit seen with accelerated protocols (44), in which 
response and remission can be achieved in 10 days or less compared 
to six to eight weeks with traditional once-daily clinical rTMS.

4.1. Utility of right iTBS for depression

This is the first rTMS study for LLD to target the right DLPFC 
with iTBS, an excitatory paradigm, and the first to use individualized 
fMRI guidance to the right DLPFC. The response rate of 52% is 
comparable to those described in uncontrolled non-accelerated 
studies of rTMS to the left DLPFC in general adult populations (7, 8), 
adding to the growing evidence base supporting targeting the right 
DLPFC with iTBS as an effective alternative strategy for treating 
depression (43, 50). These positive results run counter to a long-
standing theory of hemispheric asymmetry of emotion regulation in 
the rTMS literature which posits that neuromodulation of the right 
DLPFC should be inhibitory in nature (i.e., 1 Hz) to be effective for 
depression (51). Recent work synthesizing results from multiple 
imaging and neuromodulation cohorts supports a conceptualization 
of the hemispheres as having relatively symmetric anticorrelated 
nodes in the DLPFC with similar relationships to depressive symptoms 
and treatment response to rTMS (35). Based on our clinical 
experience, up to 50% of patients will fail to respond to left DLPFC 
stimulation alone, highlighting the need for an accelerated iTBS 
protocol in the right hemisphere with an acceptable rate of benefit.

4.2. Clinical and stimulation factors 
influencing efficacy

Our remission rate of 20% was lower than described by Cole et al. 
(44) in the SAINT protocol study delivering accelerated fMRI-guided 
iTBS to the left DLPFC. They achieved 84% remission in an 
uncontrolled single-arm design and 79% remission in the active group 
in a subsequent double-blind trial (52). We  believe our lower 
remission rate reflects several potential factors that may have relevance 
for wider use of accelerated protocols. First, the SAINT protocol 

FIGURE 1

Box-whisker plot of IDS-C-30 scores at study Visits 1, 2, and 3. 
Center box lines indicate medians, red squares indicate means. 
Shaded box areas indicate 25th–75th percentile values. Bars indicate 
1.5x interquartile range.

FIGURE 2

Top: box-whisker plots of GAD-7, TEPS, SHAPS-C at study Visits 1, 2, and 3. Center box lines indicate medians, red squares indicate means. Shaded box 
areas indicate 25th–75th percentile values. Bars indicate 1.5x interquartile range.
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delivered 50 sessions of iTBS in 5 days at 90% of motor threshold, 
whereas our protocol was 45 sessions over 9 days at 120% of motor 
threshold; the number, pace of acceleration, and dose of treatments 

may have had effects on the overall rate of clinical response, and not 
simply on the rapidity of improvement. Second, the SAINT protocol 
enrolled a younger population of adults (average age 45 vs. 65 in our 

FIGURE 3

Box-whisker plots of BIS/BAS subscale scores at study Visits 1, 2, and 3. Center box lines indicate medians, red squares indicate means. Shaded box 
areas indicate 25th–75th percentile values. Bars indicate 1.5x interquartile range.

FIGURE 4

(A) Bounding search region within the DLPFC for targets maximally anticorrelated with the SgCC. (B) Cortical locations of scalp target F4 (X  +  47 Y  +  34 
Z  +  38) (red), depression network connectivity target from Siddiqi et al. (35) (X  +  48 Y  +  38 Z  +  23) (blue), and posterior Brodmann area 47 (X  +  46 Y  +  43 
Z-3) (green). (C) Change in IDS-C-30 from Visit 1 to Visit 2 achieved at each target. (D) Change in IDS-C-30 from Visit 1 to Visit 3 for participants 
receiving all 45 sessions to the right DLFPC.
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study), with lower average number of medication trials (5 vs. 9) and 
fewer ECT-experienced patients (0% vs. 32%). There was a high 
degree of comorbidity in our cohort, with 44% of participants with a 
secondary psychiatric condition, especially anxiety disorders. Each of 
these factors has been independently associated with lower rates of 
response and remission (7, 16, 17). Third, our protocol targeted the 
right DLPFC with iTBS, a less studied paradigm for depression than 
left iTBS, 10 Hz, or right 1 Hz inhibitory approaches. While right 
DLPFC iTBS has been shown to have benefit for patients who fail to 

respond to left side stimulation (43, 50), its approximate effect size for 
depression is not yet established, thus it is a possibility that iTBS to the 
right DLPFC is overall less efficacious for depression compared to the 
left DLPFC.

A fourth factor that may have contributed to lower response and 
remission rates is the accuracy of the functional targeting method 
used in our study. The maximum anticorrelated target in the DLPFC 
is theorized to be  the subregion through which rTMS may most 
robustly modulate SgCC activity, which has been extensively linked to 

FIGURE 5

(A) Map of average induced electric field magnitude |E| (in V/m) for 23 patients. (B) Map of standard deviation of |E| (in V/m), indicating areas with high 
degree of variability. (C) Map of correlation between |E| and change in IDS-C-30 from Visit 1 to Visit 2 in brain regions included for analysis. Cool colors 
indicate areas of negative correlation, warm areas indicate areas of positive correlation. (D) Map of correlation between |E| and change in IDS-C-30 
from Visit 1 to Visit 3 in participants receiving all 45 sessions to the right DLFPC. (E) HCP-MMP regions included for electric field analysis. (F) Posterior 
rostral Brodmann area 47 (p47r).
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depressive symptomatology (34, 36). Several algorithms for targeting 
have been published, with varying degrees of incorporation of 
normative data sets and varying findings with regard to stability of 
targets (33, 44, 53). The voxel-based method utilized in this study has 
been critiqued for the level of variability in its generated targets, with 
clustering and network connectivity analyzes currently being more 
favored (33, 53). It is possible that using one of these alternative 
methods may have obtained better outcomes. However, there has not 
been a head-to-head trial of one fMRI-based targeting method versus 
another, nor has there been a definitive controlled trial of fMRI-based 
targeting versus scalp-based targeting. In addition, a recently 
published network connectivity target for depression in the right 
hemisphere obtained from multiple imaging and neuromodulation 
datasets (35, 49) (Figure 4B) fell within our target bounding region 
(Figure 4A) and near the center of the average induced electric field 
(Figure  5A), suggesting that while our targets may have been 
distributed diffusely through the bounding region, they were likely not 
inaccurate in general. The fMRI targeting pipeline used in our pilot 
study was selected based on its feasibility of implementation using 
published information; its use of freely available software; its basis on 
each patient’s scan results and not group averages to compute the 
maximum anticorrelated node within the specified bounding region; 
and its ability to generate targets within 24 h of image acquisition. That 
there are multiple available targeting methods for fMRI-guided rTMS 
with different strengths and weaknesses highlights the need for studies 
comparing clinical efficacy of these methods.

4.3. Antidepressant effects in VLPFC

Of importance to the discussion of efficacy is our demonstration 
that |E| magnitude associates with clinical outcome for rTMS, the first 
such study in the right hemisphere. Greater |E| magnitude in anterior 
dorsolateral and ventrolateral regions was associated with greater 
antidepressant effect and was mirrored by the finding that greater |E| 
in posterior DLPFC was associated with less benefit. This anterior–
posterior gradient agrees with theoretical work (35, 38) that posits an 

anterolateral anticorrelated node adjacent to correlated regions, with 
clinical benefit increasing the closer the target is to the anticorrelated 
node. We  believe our findings provide evidence indicating that 
delivery of sufficient |E| to the functionally anticorrelated target is 
necessary for clinical response.

In addition, we note that the most impactful electric field effects 
on antidepressant outcome were not found in the targeted DLPFC, but 
in Brodmann area 47 (BA 47), a region categorized as ventrolateral 
prefrontal cortex (VLPFC), inferior frontal gyrus (IFG), and pars 
orbitalis. BA 47 has been implicated in language processing (54), 
emotion perception and regulation (55), social cognition (56), and 
resilience (57), and functions as a key node in a ventral emotion 
regulation network (58). Reduced gray matter volume and altered 
connectivity of the VLPFC have been implicated in suicidality in late-
life depression (59). As a target for neuromodulation, it has been 
suggested the VLPFC may have more direct white matter connections 
to the SgCC and thus may be a more effective target for modulating 
SgCC activity (60) compared to the DLPFC (61, 62). Sydnore et al. 
(63) found that in-scanner rTMS to the VLPFC demonstrated 
engagement with both the SgCC and the amygdala, with direct white 
matter connections through the uncinate fasciculus. Likewise, Wu 
et  al. (60) recently reported that positron emission tomography 
imaging in 19 patients receiving accelerated iTBS to the left DLPFC 
demonstrated that baseline hypometabolism in the left IFG was 
associated with clinical improvement, and that more anterolateral 
targeting results in significant electric field strength in the IFG. As 
stimulation targets for rTMS have moved more anteriorly and laterally 
over time, the VLPFC/IFG region may be increasingly exposed to 
induced electric fields, and may contribute to the increasing efficacy 
that has been seen with later targets (64).

4.4. Importance of electric field modeling 
in LLD

Our findings highlight the emerging importance of electric field 
modeling for rTMS for LLD, especially for ensuring adequate dose. 

FIGURE 6

Left: correlation plot of magnitude |E| (x-axis) in region p47r with change in IDS-C-30 score (y-axis) between Visit 1 and Visit 2 for all participants 
(N  =  23) (r  =  −0.41, p  =  0.05). Red dots indicate the six participants who switched from right side to left side stimulation for Visit 2 to Visit 3. Right: 
correlation plot of |E| (x-axis) in region p47r with change in IDS-C-30 score between Visit 1 and Visit 3 for participants receiving all 45 sessions to the 
right DLFPC (N  =  17) (r  =  −0.56, p  =  0.02).

https://doi.org/10.3389/fpsyt.2023.1215093
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Quinn et al. 10.3389/fpsyt.2023.1215093

Frontiers in Psychiatry 11 frontiersin.org

The induced electric field from each magnetic pulse engages axon 
bodies of neurons in gyral crowns and creates lasting physiological 
effects based on duration, frequency, and field strength (65). If field 
strength is inadequate, as is seen with rTMS at less than 80% RMT, 
there may be  insufficient neuronal tissue stimulated to create 
neuroplastic network effects. Likewise, if the strength is excessive, it 
may lead to adverse effects such as seizure. While a dose–response 
relationship between electric field magnitude and clinical efficacy has 
not yet been established, our data suggests that in BA 47, 30 V/m was 
the threshold below which non-response tended to occur. As only a 
minority of participants received field intensities at or above this 
threshold, insufficient dosing may be a further explanation for the 
lower response/remission rate observed in our study. Placement of the 
coil closer to this region would increase the dose, as would utilizing 
electric field modeling to optimize for scalp to cortex distance, coil 
orientation and local anatomic effects on distribution and strength of 
|E| given specific gyral and sulcal patterns (25, 66, 67). Especially in 
LLD, where a large proportion of patients may have significant 
prefrontal atrophy, electric field modeling may enable delivery of 
prefrontal stimulation at doses of |E| that more closely resemble the 
electric field intensities obtained at motor cortex during threshold 
determination, and maximize clinical efficacy while maintaining 
safety limits related to cortical excitability.

Electric field modeling also enables more precise steering of 
|E| to deliver stimulation to the intended target alone. If a coil is 
not located optimally over the target, the induced field may still 
“find” the target nearby and achieve the desired clinical effect if 
greater |E| with broader distribution is used. This may explain the 
benefits seen with deep rTMS for LLD, which is delivered with a 
H-coil that achieves both deeper and broader stimulation over 
both hemispheres and may stimulate VLPFC in addition to 
DLPFC (68). However, increased |E| and distribution may have 
negative implications for focality and anti-therapeutic stimulation 
of surrounding areas (47). Although generally considered more 
focal than deep TMS, the spatial distribution of |E| with a figure-8 
coil over the DLPFC still extends to adjacent cortex regions and 
can unintentionally stimulate nodes that participate in different 
networks (67). In our study this tradeoff was observed: while 
peripheral |E| in the neighboring VLPFC was more beneficial for 
depression outcome, greater field distribution in the posterior 
DLPFC was less beneficial, confirming what has been posited by 
connectivity targeting analyzes regarding an anterior–posterior 
gradient of effect. We believe this argues for use of modeling to 
ensure |E| is directed not only toward the therapeutic target but 
also away from non-therapeutic or anti-therapeutic regions.

5. Limitations

Limitations of this study include its small size, the lack of a sham 
control group, and a study population skewed toward female 
Caucasian patients. We did not adjust stimulation intensity for coil to 
cortex distance in the prefrontal lobe to account for possible frontal 
lobe atrophy, as all stimulations were intended to be delivered at the 
maximum allowable safe dose of 120% of RMT. Further work using 
electric field modeling will likely justify dosing at higher intensities 
without compromising safety.

6. Conclusion

In this open-label, single-arm trial, accelerated fMRI-guided 
iTBS to the right DLPFC was feasible and effective for treating 
late-life depression, although not as effective as recent trials of 
accelerated fMRI-guided TMS to the left DLPFC, possibly due to 
hemispheric lateralization, age-related effects, treatment 
resistance, target selection methods, or inadequate dosing. 
Induced electric field intensity in posterior BA 47 was correlated 
with antidepressant response, suggesting the importance of 
generating sufficient electric field strength in anterolateral zones 
to achieve clinical benefit. Further study of the spatial distribution 
and magnitude of the induced electric field at the cortical and 
subcortical level are needed to determine optimal dosing and 
delivery of rTMS for LLD.
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