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Introduction: Convergent evidence has demonstrated a shared rich-club 
reorganization across multiple major psychiatric conditions. However, previous 
studies assessing altered functional couplings between rich-club regions have typically 
focused on the mean time series from entire functional magnetic resonance imaging 
(fMRI) scanning session, neglecting their time-varying properties.

Methods: In this study, we aim to explore the common and/or unique alterations in 
the temporal variability of rich-club organization among schizophrenia (SZ), bipolar 
disorder (BD), and attention deficit/hyperactivity disorder (ADHD). We  employed a 
temporal rich-club (TRC) approach to quantitatively assess the propensity of well-
connected nodes to form simultaneous and stable structures in a temporal network 
derived from resting-state fMRI data of 156 patients with major psychiatric disorders 
(SZ/BD/ADHD = 71/45/40) and 172 healthy controls. We executed the TRC workflow 
at both whole-brain and subnetwork scales across varying network sparsity, sliding 
window strategies, lengths and steps of sliding windows, and durations of TRC 
coefficients.

Results: The SZ and BD groups displayed significantly decreased TRC coefficients 
compared to corresponding HC groups at the whole-brain scale and in most 
subnetworks. In contrast, the ADHD group exhibited reduced TRC coefficients in 
longer durations, as opposed to shorter durations, which markedly differs from the 
SZ and BD groups. These findings reveal both transdiagnostic and illness-specific 
patterns in temporal variability of rich-club organization across SZ, BD, and ADHD.

Discussion: TRC may serve as an effective metric for detecting brain network 
disruptions in particular states, offering novel insights and potential biomarkers 
into the neurobiological basis underpinning the behavioral and cognitive deficits 
observed in these disorders.
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1. Introduction

Mental disorders, characterized by behavioral or mental patterns causing significant distress 
or impairment of personal functioning, affect 1 in 8 people and 1 in 4 family worldwide (1, 2). 
Due to overlapping features, accurate diagnoses of mental disorders, such as schizophrenia (SZ) 
and bipolar disorder (BD), present challenges (3, 4). Similarly, the differential diagnosis of 
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attention deficit hyperactivity disorder (ADHD) and BD remains 
difficult due to shared symptoms and high comorbidity rates (5, 6). 
Understanding the homogeneity and heterogeneity of various mental 
disorders could elucidate their neurobiological underpinnings and 
inform the development of targeted diagnostic and treatment strategies.

Recent advances in functional magnetic resonance imaging 
(fMRI) have highlighted the importance of functional connectivity 
(FC) in the pathophysiology of mental disorders. Abnormalities in FC 
have been observed in patients with mental disorders at regional, 
subnetwork, and whole-brain scales (7–9). Employing graph theory-
based approaches, researchers have identified disturbances in brain 
network topology that serve as valuable classification features for 
distinguishing patients with mental disorders from healthy controls 
(10, 11). Rich-club organization, a core feature of the brain networks, 
has garnered increasing attention in network neuroscience research 
(12, 13) and has provided novel insights into mental disorders (14–
16). This organization refers to a set of brain hub regions with 
disproportionately high number of edges and interconnections, 
facilitating efficient communication between brain regions. Altered 
rich-club organization may indicate disrupted brain function and 
information transmission in specific disease states (17). Moreover, 
rich-club organization can reflect the trade-off between costs and 
benefits in human brain function, indicating the efficiency of brain 
operation (13). However, the topological properties of rich-club 
organization in mental disorders remain underexplored, particularly 
in terms of temporality and simultaneity.

Many previous studies have constructed static functional brain 
networks, aggregating FC data over entire scanning sessions and failing 
to capture the temporal dynamics of rich-club organization (15, 16). Static 
networks may inaccurately represent rich-club organization, as they could 
include edges active at unrelated times rather than simultaneously (18, 
19). Consequently, contemporary research has shifted focus to dynamic 
FC, capturing time-varying patterns in brain connectivity (20–22). 
Despite the identification of time-varying features associated with mental 
disorders, the temporality, simultaneity, and time span of rich-club 
organization interactions remain largely unexplored.

This study aims to investigate the transdiagnostic and/or illness-
specific disruptions of time-varying rich-club organization properties 
across SZ, BD, and ADHD. We introduce a novel temporal rich-club 
(TRC) analysis workflow to assess the tendency of well-connected 
nodes to form simultaneous and stable structures in temporal networks. 
Our analysis encompasses whole-brain and subnetwork scales and 
considers various network sparsity levels, sliding window strategies, 
sliding window lengths, sliding window steps, and duration of TRC 
coefficients. We hypothesize that: (1) the novel TRC workflow will 
reveal altered rich-club coefficients in major psychiatric conditions, 
providing a more nuanced and dynamic perspective across the entire 
time series and (2) different major psychiatric conditions may 
be distinguishable based on global or local attributes of TRC coefficients.

2. Materials and methods

2.1. Participants

All participants included in this study were obtained from two 
open-access datasets. Specifically, the patients with SZ and 
corresponding heathy controls (HCs) were collected from the Center 

for Biomedical Research Excellence (COBRE) database.1 The COBRE 
database contains raw anatomical and functional MR data from 74 
patients with SZ and 74 HCs (ages ranging from 18 to 65 in each 
group). In total, 71 patients with SZ and 74 HCs from the dataset were 
used for our subsequent experiments, as the class labels of the other 
three SZ participants were not provided. Similar inclusion criteria can 
be found in some previous studies (9, 23, 24). The BD, ADHD patients 
and the corresponding HCs were collected from the Consortium for 
Neuropsychiatric Phenomics (CNP) database2 (25). After quality 
control, age- and sex- matching, 45 BD patients, 40 ADHD patients 
and 98 HCs were included in subsequent analyses. Detailed 
demographic information can be found in Tables 1, 2.

2.2. Imaging data preprocessing

All fMRI images were preprocessed using Data Processing & 
Analysis for Brain Imaging (DPABI) (26). The preprocessing 
procedure included the removal of the first 10 volumes of functional 
runs due to fMRI signal instability. Slice time correction, head-motion 
correction, and co-registration of T1-weighted MRI images and fMRI 
images were performed for the remaining volumes. Subsequently, all 
fMRI images were normalized to Montreal Neurological Institute 
(MNI) space and re-sampled to 3 3 3× ×  mm voxels. Smooth (4 mm 
FWHM) and band-pass filter (0.01–0.1 Hz) were applied to the images 
transformed to the MNI space.

To construct FC matrices, all brain images were parcellated into 160 
regions by registering images to Dosenbach’s 160 atlas after data 
preprocessing (27). For ease of comparison, a canonical division of brain 
regions into cognitive systems was used (28), dividing the 160 brain 
regions of each participant into six functional subnetworks: visual 
network (VSN), sensory-motor network (SMN), dorsal attention network 
(DAN), ventral attention network (VAN), frontoparietal network (FPN), 
default mode network (DMN), and subcortical network (SBN). 
According to the division scheme in Yan et al. (28), there were 14, 36, 28, 
32, 21, and 22 functional brain regions for DAN, DMN, FPN, SMN, VAN, 
and VSN, respectively. We  mainly analyzed and discussed the TRC 
coefficients in DAN, DMN, FPN, SMN, VAN, and VSN in later sections, 
while the remaining seven brain regions in SBN are not included.

2.3. Construction of FC matrix

This study constructed two types of FC matrices: whole-brain-
scale FC matrix and subnetwork-scale FC matrix. For all matrices, the 

1 http://fcon\_1000.projects.nitrc.org/indi/retro/cobre.html

2 https://openneuro.org/

TABLE 1 Detailed demographic information for COBRE database.

Type SZ HC p-values

Age (years) 38 1 13 9. .± 35 8 11 5. .± 0 27.
a

Gender (males/females) 57 14/ 51 23/ 0 11.
b

aTwo-sample t-test.
bChi-square two-tailed test.
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level of FC between each pair of nodes (brain regions) was computed 
as the Pearson correlation coefficient (PCC) between their averaged 
regional time series. This classical method can be  found in many 
recent studies (7, 16, 24). The sizes of whole-brain-scale FC matrix and 
subnetwork-scale FC matrix are represented as N N×  and M M× , 
respectively, where N  denotes the total number of brain regions of the 
whole brain, and M  denotes the total number of brain regions in a 
specific subnetwork. By setting an absolute or proportional threshold 
(9, 10), if the connection strength (e.g., based on the correlation values 
of bold signals) between two brain regions is higher than the threshold 
(e.g., R > 0 4.  for PCC), then it is considered that there is an edge 
connection between the two brain regions (each edge corresponds to 
a degree).

2.4. Definition of temporal rich-club effect

Before introducing the temporal rich-club effect, let us review the 
classical rich-club effect. The rich-club effect is defined as the density 
of edges in the subset S k>  of the N k>  nodes with degree larger than k, 

that is, φ k
E

N N
k

k k
( ) =

−( )
>

> >

2

1
, where E k>  is the number of edges 

among S k> . A larger φ k( ) indicates that nodes have a 
disproportionately high number of edges and many edges between 
each other, termed the “rich-club” effect (16, 19, 29).

Many previous brain network studies of fMRI analyze the rich-
club effects in an average manner (i.e., using average values across the 
whole time series or a duration of the time series by dividing sliding 
windows). However, static networks are often aggregated 
representations of the resulting temporal networks (30). Thus, the 
rich-club structures found in such static networks could be formed by 
edges that were active at unrelated times (18). Since the human brain 
is a dynamic system, analyzing the dynamic and temporal properties 
of rich-club organizations may better reflect the complex neuroscience 
mechanisms (e.g., the hub nodes in the rich-club organizations may 
change continuously) during a duration of time or the whole 
time series.

The temporal rich-club (TRC) phenomenon has been observed 
recently by Pedreschi et  al. (19) using different levels of network 
datasets such as the US air transportation network dataset. Given a 
temporal network, the TRC quantifies whether nodes that interact 
with increasing numbers of other nodes tend to interact with each 
other simultaneously and in a stable way (19). To consider temporality, 
Pedreschi et al. (19) propose to define at each time t  the Δ −cohesion 
> ( )k t, ∆ . It represents the number E tk> ( ), ∆  of ties E tk> ( ), ∆  
(between the nodes of S k> ) that remain stable over t t, + ∆) , 
normalized by its maximal possible value N Nk k> > −( )1 2/ . Note that 
> =( )k t, ∆ 1  is the instantaneous density between the nodes of S k> . 
The ∆ =1  in this paper refers to duration equals to one fMRI 
timepoint. Therefore, the TRC coefficient can be easily defined as the 

maximal density of temporal edges observed in a stable way for a 
duration Δ among nodes of aggregated degree larger than k :

 
M k t

t
k, , ∆( ) ≡ ( )>max ∆

where the  M(k, Δ) quantifies whether the static rich-club patterns 
correspond to a structure that actually existed at some instant and is 
formed by links that appeared at unrelated times and not in a 
simultaneous way. A M(k, Δ) increasing with k denotes the TRC 
effects in a simultaneous way for a duration of at least Δ. Given the 
consideration of complex brain dynamic patterns, performing the 
TRC analyses at the regional scale may shed light on the understanding 
of functional temporality of major psychiatric groups.

2.5. Calculation of temporal rich-club 
coefficients

In this study, we performed both whole-brain-scale TRC analyses 
and subnetwork-scale TRC analyses. The whole-brain-scale TRC 
analyses of fMRIs were calculated based on the correlation matrix 
constructed by PCC (i.e., 160 160×  in this study). To investigate the 
dynamic TRC relationships, we divided the BOLD signals of the whole 
time series into different windows (i.e., a duration of bold signals). In 
later sections, we set k as half of the number of brain regions in the 
whole brain or subnetworks for whole-brain-scale and subnetwork-
scale TRC analyses, respectively. As there is no universally appropriate 
window size and step of window shifting for fMRI data, we extensively 
explored adopting both the non-overlapping sliding window and 
overlapped sliding window methods for the TRC analyses with 
different window sizes and sliding steps. For non-overlapping sliding 
window methods, we evaluated the following parameter settings: a. 
window size = 5 TR, sliding step = 5 TR, sparsity threshold R ≥ 0 2. ; b. 
window size = 5 TR, sliding step = 5 TR, sparsity threshold R ≥ 0 4. ; c. 
window size = 5 TR, sliding step = 5 TR, sparsity threshold R ≥ 0 6. ; d. 
window size = 5 TR, sliding step = 5 TR, sparsity threshold R ≥ 0 8. ; e. 
window size = 10 TR, sliding step = 10 TR, sparsity threshold R ≥ 0 2. ; 
f. window size = 10 TR, sliding step = 10 TR, sparsity threshold 
R ≥ 0 4. ; g. window size = 10 TR, sliding step = 10 TR, sparsity 
threshold R ≥ 0 6. ; h. window size = 10 TR, sliding step = 10 TR, 
sparsity threshold R ≥ 0 8. .

For overlapped sliding windows, we  evaluated the following 
parameter settings (all adopting sparsity threshold R ≥ 0 4. ): a. window 
size = 10 TR, sliding step = 2 TR; b. window size = 10 TR, sliding step 
= 4 TR; c. window size = 20 TR, sliding step = 2 TR; d. window size = 
20 TR, sliding step = 4 TR; e. window size = 40 TR, sliding step = 2 
TR; f. window size = 40 TR, sliding step = 4 TR; g. window size = 80 
TR, sliding step = 2 TR; h. window size = 80 TR, sliding step = 4 
TR. In our initial experiments, we have already validated that the 

TABLE 2 Detailed demographic information for CNP database.

Type ADHD BD HC p-values-1 p-values-2

Age (years) 32 1 10 4. .± 35 2 9 1. .± 33 3 8 3. .± 0 44.
a

0 23.
a

Gender (males/females) 21 19/ 26 19/ 52 46/ 0 95.
b 0 60.

b

aTwo-sample t-test.
bChi-square two-tailed test.The p-values-1 are calculated based on ADHD group vs. HC group, while p-values-2 are calculated based on BD group vs. HC group.
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impact of window size, sliding step and threshold R on TRC (also see 
Figures 1, 2) are significantly smaller relative to the Delta (Δ) itself. 
Therefore, to detect the subtle heterogeneity of these major psychiatric 
groups in stably maintaining the connections between the nodes 
(brain regions) of S k> , we also performed whole-brain-scale TRC 
analyses with the altered duration Delta (Δ) from Delta = 1 to Delta = 
8, based on the non-overlapping sliding window method with window 
size = 10 TR, sliding step = 10 TR, and sparsity threshold R ≥ 0 4. . A 
larger duration Δ denotes the connections are maintained for more 
fMRI timepoints.

Since the results in non-overlapping sliding window strategies and 
overlapped sliding window strategies in whole-brain-scale TRC 
analyses display strong patterns in the consistency of results (see 
Figures  1, 2), the subnetwork-scale TRC analyses were directly 
performed on non-overlapping sliding window strategies (window 
size = 10 TR, sliding step = 10 TR) adopting the sparsity threshold 
from R ≥ 0 2. to R ≥ 0 8. . Our purpose here is mainly to avoid excessive 
display of redundant results. The basic flow of this study is depicted in 

Figure 3. Please note that in scenarios involving multiple comparisons, 
this study uniformly adopts FDR = 0 05.  as the multiple comparison 
correction threshold.

3. Results

3.1. Whole-brain TRC analysis of major 
psychiatric groups vs. HC group using 
non-overlapping sliding window methods

Utilizing a window size of 10 TR, a sliding step of 10 TR, and 
sparsity threshold of R ≥ 0 2. , we constructed group-scale average FC 
matrices for non-overlapping sliding windows for the COBRE (i.e., SZ 
and HC groups) and CNP (ADHD, BD and HC groups) databases (see 
in the Supplementary Figure S1). Based on these sliding windows, 
we  computed whole-brain TRC coefficients for major psychiatric 
groups relative to their corresponding HC groups (Figure 1). Notably, 

FIGURE 1

Whole-brain between-group TRC analyses for major psychiatric groups vs. corresponding HC groups on non-overlapping sliding window methods. 
Each  t in all subgraphs corresponds to a sliding window. The subgraph (A–D) represent the whole-brain TRC coefficients of major psychiatric groups 
vs. HC groups based on the window size = 5 TR and sliding step = 5 TR, while the subgraph (E–H) represent the whole-brain TRC coefficients of 
major psychiatric groups vs. HC groups based on the window size = 10 TR and sliding step = 10 TR. All of the asterisks (*) denote significant between-
group differences in this Δ = 1 based on t-tests.
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differences in whole-brain TRC coefficients between major psychiatric 
groups and HC groups remain consistent for R values ranging from 
0.2 to 0.8. Specifically, SZ and BD groups show significantly reduced 
average whole-brain TRC coefficients compared to their respective 
HC groups in most windows, indicating impaired TRC organizations. 
In contrast, TRC relationships between ADHD and HC groups are 
more complex, with whole-brain TRC coefficients significantly 
differing only in specific sliding windows.

To verify whether the TRC would be a powerful biomarker to identify 
psychiatric disorders, we  performed subject-scale classification 
experiments for each major psychiatric group with their corresponding 
HC group. Table 3 displays all of the quantitative classification metrics 
based on an AdaBoost ensemble classifier (31) with 3-fold cross validation 
protocol (2 folds for training and 1 fold for test in each experiment). This 
protocol has been repeatedly performed for 10 times to obtain the mean 
results. In order to ensure the adequacy of the experiments, we conducted 
comparison experiments for the sparsity threshold for R ranging from 0.2 
to 0.8. According to Table 3, we can easily note that the ability to recognize 

SZ (best ACC = 0.868 ± 0.07) using TRC is significantly stronger 
compared to ADHD (best ACC = 0.709 ± 0.10) or BD (best 
ACC = ±0 735 0 03. . ). Additionally, the classification performance is 
better when R is approaching 0.2 rather than 0.8, which indicates that 
excessive network sparsity should be  avoided when conducting 
TRC-based classification. These findings are consistent with the between-
group difference results presented in Figure 1. However, we should also 
note that compared to the COBRE database, the CNP database has a more 
biased sample distribution, which may be one of the reasons for the worse 
classification results for ADHD and BD.

3.2. Whole-brain TRC analysis of major 
psychiatric groups vs. HC group using 
overlapped sliding window methods

We further assessed TRC coefficients for major psychiatric 
groups relative to HC groups using overlapping sliding window 

FIGURE 2

Whole-brain between-group TRC analyses of major psychiatric groups vs. corresponding HC groups on overlapped sliding window methods. The 
subgraph (A-D) are: (A) window size = 10 TR, sliding step = 2 TR; window size = 10 TR, sliding step = 4 TR; (B) window size = 20 TR, sliding step = 2 
TR; window size = 20 TR, sliding step = 4 TR; (C) window size = 40 TR, sliding step = 2 TR; window size = 40 TR, sliding step = 4 TR; (D) window size = 
80 TR, sliding step = 2 TR; window size = 80 TR, sliding step = 4 TR. All of the asterisks (*) denote significant between-group differences.
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methods, exploring various window sizes (e.g., W = 10, 20, 40, and 
80 s) and sliding steps (e.g., 2s  or 4s ). Correlation matrices were 
constructed based on a sparsity threshold of R = 0 4. , yielding 
comparable results with R = 0 2.  and R = 0 6. . As shown in Figure 2, 
average TRC coefficients for SZ and BD groups were consistently 
lower than those for corresponding HC groups across all sliding 
windows (p < 0.05 in all paired t-tests). This pattern persisted across 
different window sizes (e.g., from WS s=10  to WS s= 80 ) and sliding 
steps (e.g., 2 s or 4 s). Similar to the non-overlapping sliding 
window methods, TRC coefficients in the between-group analysis 

of ADHD group vs. HC groups were complex and varied across 
different sliding windows.

3.3. Whole-brain TRC analysis of major 
psychiatric groups vs. HC group using 
different duration

To examine the homogeneity and heterogeneity of the three 
psychiatric disorders, we calculated TRC coefficients based on different 

FIGURE 3

The whole framework performed in this study, which includes: (A) fMRI data acquisition; (B) fMRI data preprocessing based on Dosenbach’s 160 atlas; 
(C) region-scale timeseries extraction; (D) whole-brain TRC analysis (non-overlapping sliding window); (E) whole-brain TRC analysis (overlapped 
sliding window); (F) subnetwork-scale TRC analysis (non-overlapping sliding window); (G) whole-brain TRC matrices (including non-overlapping & 
overlapped sliding windows); (H) subnetwork TRC matrices (overlapped sliding windows); (I) whole-brain TRC connections; (J) subnetwork TRC 
connections; (K) between-group TRC analyses for whole-brain; and (L) between-group TRC analyses for subnetworks.
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duration (we denote it as Δ in figures). Figure 4 displays TRC coefficients 
for participants with psychiatric disorders relative to their corresponding 
HCs. Larger Δ values represent greater stability in the density of connected 
edges over time. Both SZ and BD groups consistently demonstrated 
smaller whole-brain average TRC coefficients than their corresponding 
HC groups (value of p < 0.05), with these patterns persisting from  Δ = 1 
to Δ = 8. In contrast, significantly smaller whole-brain TRC coefficients 
for the ADHD group compared to HC group were only observed for Δ = 
8 and not for other smaller Δ values. These results suggest the underlying 
mechanisms of ADHD differ from those of SZ and BD, with reduced 
TRC coefficients only evident in longer durations.

3.4. Subnetwork-scale TRC analysis of 
major psychiatric groups vs. HC groups 
using non-overlapping sliding window 
methods

In addition to whole-brain scale TRC analyses, we conducted 
subnetwork-scale TRC analyses to identify unique TRC alteration 
patterns in specific major psychiatric groups at a finer scale. For 
clarity, we illustrated the subnetwork-scale correlation matrices for the 
six subnetworks at non-overlapping window 1 and 14 (based on a 
window size = 10 TR and a sliding step of 10 TR) for the COBRE 
database in Figure 5. The sizes of FC matrices for DAN, DMN, FPN, 
SMN, VAN, and VSN were 14 14× , 36 36× , 28 28× , 32 32× , 21 21× , 
and 22 22× , respectively.

The dynamic change patterns of all subnetwork-scale TRC 
coefficients for COBRE database and CNP database were also displayed 
in Figure 6. To ensure the stability of the subnetwork-scale TRC results, 
we conducted experiments using subnetwork-scale correlation matrices 
with three sparsity thresholds ranging from R = 0 2.  to R = 0 6. . 
Specifically, the SZ group exhibited significantly decreased TRC 
coefficients compared to the HC group for most sliding windows in DAN, 
DMN, SMN, VAN, and VSN, except for FPN; the ADHD group displayed 
fluctuating in TRC coefficients for single sliding windows compared to 
HC group in all subnetworks. However, the BD group showed 

significantly decreased TRC coefficients compared to the HC group for 
most sliding windows in DAN, DMN, FPN, VAN, and VSN, with a few 
exceptions in the SMN. These results indicate that the pathological 
patterns of the SZ group and the BD group are more similar to each other 
than the HC group in terms of subnetwork-scale TRC differences.

We further illustrated the subnetwork-scale mean TRC alterations for 
SZ, ADHD and BD groups in Figure 5, which help to demonstrate the 
overall trends of subnetwork-scale TRC coefficients for major psychiatric 
groups relative to corresponding HC groups. The top three subnetworks 
with the highest TRC coefficients were VSN (0 6406 0 1624. .± ), SMN 
(0 6257 0 1545. .± ), and DAN (0 6208 0 1683. .± ) for the SZ group; VSN 
(0 5709 0 1400. .± ), SMN (0 5201 0 1014. .± ), and VAN (0 5104 0 1061. .±
) for the ADHD group; and VSN (0 5297 0 1210. .± ), SMN 
(0 5129 0 1200. .± ), and VAN (0 4930 0 1037. .± ) for the BD group. 
Results indicate that all major psychiatric groups had significantly higher 
TRC coefficients in VSN and SMN than their corresponding HC groups 
(p < 0 05.  for t-tests). Quantitative comparisons can be  found in 
Figures 5D–F, which reveal that both the SZ and BD groups exhibited 
significantly decreased average TRC coefficients in all six subnetworks 
compared to their corresponding HC groups (value of p < 0.01). However, 
for the ADHD group, only the TRC coefficients of VSN were significantly 
higher relative to HC group (value of p < 0.05).

4. Discussion

In this study, we present a novel TRC analysis approach to uncover 
the altered brain network patterns in ADHD, BD and SZ at both 
whole-brain and subnetwork scales. We  considered various 
parameters such as network sparsity, sliding window strategies, 
window length, window step, and TRC coefficient duration. Our 
findings suggest that TRC coefficients may serve as effective biomarker 
to differentiate major psychiatric groups with similar phenotypes, and 
can complement the dynamic properties absent in existing graph 
theory metrics, particularly in the context of mental disorders.

At the whole-brain scale, we  observed that SZ and BD groups 
displayed significantly decreased average whole-brain TRC coefficients in 

TABLE 3 Subject-scale classification performance of the three major psychiatric groups vs. their corresponding HC groups using TRC with non-
overlapping sliding window methods.

Groups ACC SEN SPE PPV NPV

SZ vs. HC (R = 0.2) 0 868 0 07. .± 0 872 0 09. .± 0 960 0 05. .± 0 883 0 03. .± 0 790 0 07. .±

SZ vs. HC (R = 0.4) 0 859 0 04. .± 0 835. ± 0.07 0 956 0 04. .± 0 876 0 09. .± 0 777 0 03. .±

SZ vs. HC (R = 0.6) 0 844 0 01. .± 0 822 0 04. .± 0 947 0 03. .± 0 850 0 10. .± 0 762 0 11. .±

SZ vs. HC (R = 0.8) 0 824 0 10. .± 0 806 0 13. .± 0 928 0 10. .± 0 875 0 17. .± 0 753 0 05. .±

ADHD vs. HC (R = 0.2) 0 709 0 10. .± 0 695 0 28. .± 0 810 0 22. .± 0 767 0 22. .± 0 730 0 18. .±

ADHD vs. HC (R = 0.4) 0 701 0 09. .± 0 688. ± 0.22 0 783 0 32. .± 0 742 0 35. .± 0 718 0 25. .±

ADHD vs. HC (R = 0.6) 0 682 0 13. .± 0 665 0 34. .± 0 754 0 39. .± 0 722 0 48. .± 0 689 0 49. .±

ADHD vs. HC (R = 0.8) 0 643 0 35. .± 0 632 0 49. .± 0 701 0 29. .± 0 673 0 50. .± 0 630 0 38. .±

BD vs. HC (R = 0.2) 0 735 0 03. .± 0 724 0 08. .± 0 877 0 11. .± 0 852 0 08. .± 0 767 0 05. .±

BD vs. HC (R = 0.4) 0 718 0 08. .± 0 712 0 09. .± 0 838 0 12. .± 0 832 0 12. .± 0 758 0 02. .±

BD vs. HC (R = 0.6) 0 691 0 12. .± 0 681 0 12. .± 0 810 0 23. .± 0 797 0 45. .± 0 736 0 34. .±

BD vs. HC (R = 0.8) 0 676 0 49. .± 0 622 0 69. .± 0 754 0 47. .± 0 760 0 83. .± 0 624 0 61. .±

ACC, accuracy; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value. All of the values are denoted by Mean with SD.
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comparison to their corresponding HC groups across most windows, 
reflecting impaired TRC organizations. These findings were consistent 
across different network sparsity levels, sliding window strategies, window 
lengths, window steps, and TRC coefficient durations. In contrast, the 
ADHD group exhibited reduced TRC coefficients primarily in longer 
durations, indicating a fundamentally different TRC mechanism 
compared to SZ and BD groups (32). The results of subject-scale 
classification experiments indicate that TRC can serve as an important 
biomarker to distinguish psychiatric patients from the corresponding 
HCs. However, when the sample distribution is biased (e.g., ADHD and 
BD subjects in CNP database), the classification performance may 
significantly degrade. Collectively, the above results suggest that the three 
major psychiatric disorders are characterized by a diminished capacity for 
dynamic information processing, reflecting distinct cognitive processes.

At the subnetwork scale, we  found that the SZ group exhibited 
significantly decreased TRC coefficients compared to the HC group 
across most sliding windows in DAN, DMN, SMN, VAN, and VSN, with 
the exception of FPN. This suggests that the SZ group’s brain network is 
less interconnected in a simultaneous and stable manner, indicating 
instability and fragility. The BD group, on the other hand, displayed 
significantly decreased TRC coefficients compared to the HC group 
across most sliding windows in DAN, DMN, FPN, VAN, and VSN, with 
a few exceptions in SMN. The presence of highly connected TRCs implies 
efficient information integration across various brain regions; therefore, 
significantly decreased TRC coefficients in BD individuals may critically 
impair the exchange of information between subnetworks and the 
coordination of cognitive processes (33, 34). Our results highlight the 
potential of subnetwork-scale TRC coefficients in FPN and SMN as useful 
biomarkers to differentiate SZ from the BD groups. Moreover, 
subnetwork-scale TRC coefficients for the ADHD group were also 
distinguishable, displaying significantly increased TRC coefficients in 
VSN compared to the HC group, a marked contrast to the decreased 

subnetwork-scale TRC coefficients observed in most subnetworks for SZ 
and BD groups.

Our findings align well with previous studies investigating FC in 
these disorders. For instance, prior SZ studies reported decreased FCs in 
brain regions primarily located in the DAN (35), FPN (36, 37), and SMN 
(38); BD studies found aberrant FCs in the DMN (39), FPN (40), and 
VAN (41); and ADHD studies identified hyperactivity in the VSN (32, 
42). If the previous research results are compared to “pictures,” the results 
of this study are more like the “videos” corresponding to these pictures, 
which may own more information. For example, in the “picture” 
direction, both the SZ and BD groups displayed significantly decreased 
average TRC coefficients in all of the six subnetworks than their 
corresponding HC groups (see Figures 5D–F), but the dynamic change 
patterns (in the “video” direction) of TRC coefficients are different for SZ 
and BD groups: SZ group showed persistently decreased TRC coefficients 
in SMN and VSN, while the BD group showed persistently decreased 
TRC coefficients only in VSN (see Figures 5A,B). Also, in the “picture” 
direction, ADHD group showed significantly increased average TRC 
coefficients in VSN (see Figure  5E), but as for the dynamic change 
patterns (in the “video” direction), the ADHD group was usually 
indistinguishable from the HC group (see Figure 5B). All these evidences 
have shown the complementarity of TRC results to previous studies. 
Compared to these previous results, our study offers a more dynamic and 
informative perspective on brain network alterations in mental disorders. 
The complementarity of TRC results to previous research is evident in 
both static and dynamic patterns.

Altered subnetwork-scale TRC coefficients may accurately reflect 
disorder-specific impairments in neural circuit mechanisms. For example, 
previous studies has shown that decreased connections in VSN are 
common features in both SZ and BD groups, and that individuals with 
BD may compensate for disrupted VSN connectivity while those with SZ 
do not (43). Our results show that mean TRC gaps between BD and HC 

FIGURE 4

Whole-brain between-group TRC coefficients of subjects with mental disorders vs. corresponding HC subjects with different duration Δs. All of the 
asterisks (*) denote significant between-group differences.
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groups are 0 028 0 018. .± , which are significantly smaller than mean TRC 
gaps between SZ and HC groups (0 051 0 028. .± ). Obviously, smaller 
TRC gaps are easier to be compensated. Similar patterns can also be found 
in the SMN of SZ group and BD group. Results in Figures 5A–C show that 
all SZ, ADHD and BD groups have the highest TRCs in VSN, which 
points out the neural circuit bias of visual processing ability in mental 
disorders (32, 43). Our findings support previous observations and reveal 
complementary information on the dynamic and static aspects of 
subnetwork-scale TRCs, underscoring the importance of including both 
in analyses of mental disorders.

Despite its contributions, this study has certain limitations that 
should be considered when interpreting the results. First, although the 

TRC analysis workflow has been performed at both whole-brain and 
subnetwork scales across different parameter settings, there are many 
properties of TRC still under explore. For example, in future study, the 
TRC analysis could be further applied to regional scale to display the hub 
distribution patterns (e.g., hub nodes and feeder nodes). Second, due to 
the limited data, we fail to correlate TRC with some clinical or cognitive 
scales, thus impairing the clinical interpretability. Third, the TRC analysis 
workflow employed in this study was mainly based on the linear 
correlation that one brain region may influence another, ignoring the 
inherently nonlinear properties of fMRI signals, future studies may 
benefit from examining the differences in non-linear relationships among 
rich-club regions.

FIGURE 5

The sorts of subnetwork-scale mean TRCs for major psychiatric groups (A–C) and the corresponding between-group quantitative comparison results 
(D–F). All of the asterisks (*) denote significant between-group differences.
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5. Conclusion

We present the TRC analysis workflow as a comprehensive method 
to uncover altered rich-club patterns in major psychiatric conditions at 
both whole-brain and subnetwork levels. Our results reveal that SZ and 
BD groups exhibit significantly decreased TRC coefficients compared to 
their corresponding HC groups at the whole-brain scale and in most 
subnetworks. Conversely, the ADHD group exhibits reduced TRC 
coefficients in longer durations, rather than shorter duration, which 
significantly differs from the SZ and BD groups. Our findings highlight 
the potential of TRC coefficients as effective biomarkers to distinguish 
between psychiatric groups with similar phenotypes, and emphasize the 
importance of considering both static and dynamic aspects of 
subnetwork-scale TRCs in the study of mental disorders.
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