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Introduction: The endocannabinoid (eCB) system disruption has been suggested to underpin the development of psychosis, fueling the search for novel, better-tolerated antipsychotic agents that target the eCB system. Among these, palmitoylethanolamide (PEA), an N-acylethanolamine (AE) with neuroprotective, anti-inflammatory, and analgesic properties, has drawn attention for its antipsychotic potential.

Methods: This Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020-compliant systematic review aimed at reappraising all clinical and preclinical studies investigating the biobehavioral role of PEA in psychosis.

Results: Overall, 13 studies were eligible for data extraction (11 human, 2 animal). Observational studies investigating PEA tone in psychosis patients converged on the evidence for increased PEA plasma (6 human) and central nervous system (CNS; 1 human) levels, as a potential early compensatory response to illness and its severity, that seems to be lost in the longer-term (CNS; 1 human), opening to the possibility of exogenously supplementing it to sustain control of the disorder. Consistently, PEA oral supplementation reduced negative psychotic and manic symptoms among psychosis patients, with no serious adverse events (3 human). No PEA changes emerged in either preclinical psychosis model (2 animal) studied.

Discussion: Evidence supports PEA signaling as a potential psychosis biomarker, also indicating a therapeutic role of its supplementation in the disorder.

Systematic review registration: https://doi.org/10.17605/OSF.IO/AFMTK.
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1. Introduction

Psychotic disorders—non-affective (e.g., schizophrenia (SCZ), schizophreniform disorder) and affective psychoses (e.g., bipolar disorder (BPAD), major depressive disorder with psychotic symptoms)—are a heterogeneous group of disabling mental health disturbances (1), sharing common phenomenological, neurobiological, and genetic characteristics (2–5). These conditions generally emerge between late adolescence and early adulthood (6), with a lifetime prevalence exceeding 3% (7–9), and severely affect the patients' and their families' quality of life. The dopaminergic and glutamatergic hypotheses still play a pivotal role in the attempt to describe the neurobiological mechanisms underlying psychosis (10–13), with potential for an integrated model explaining both positive (e.g., delusions, hallucinations) and negative (e.g., restricted emotional expression, avolition) psychotic symptoms (12).

To date, antipsychotic (AP) medications represent the cornerstone treatment for these conditions, although not always devoid of suboptimal clinical response and unpleasant side-effects (14, 15). Therefore, the exploration of other perturbed systems potentially underpinning psychotic disorders has aimed at identifying novel therapeutic targets. The endocannabinoid (eCB) system has been recognized as a mediator of the dopaminergic and glutamatergic systems via the cannabinoid receptor 1 (CB1) in the central nervous system (CNS), and found to be altered in the early phases of the disorder (16–19). Consistently, accumulating evidence has highlighted the therapeutic potential of the eCB system modulation. Particularly, cannabidiol (CBD) has shown promising results for both psychosis and clinical high-risk (CHR) for psychosis state (20–23). Further, reduced diversity of gut microbiota and gut-brain axis metabolic alterations associated have been indicated as having a putative role in the patho-etiological cascade toward psychosis (24). To this end, reduced microbiota diversity has been observed to contribute to common SCZ negative symptoms such as anhedonia and amotivation via eCB-like compound palmitoylethanolamide (PEA) fecal levels, warranting the possibility to target the gut microbiota-eCB axis (25). Finally, growing evidence emphasizes the importance of inflammation and oxidative stress in the stages preceding psychosis onset and throughout illness progression (26, 27).

PEA is an N-acylethanolamine (AE), produced “on demand” by different cell types as a response to actual or potential damage (28, 29). Importantly, PEA has been proven to down-regulate central and peripheral activity of mast cells and non-neuronal cells (e.g., astrocytes, microglia) (30–32) and to exert protective functions against glutamate neuro-toxicity, accounting for its naturally-occurring anti-inflammatory, analgesic, and anticonvulsant properties (33). It directly activates the Peroxisome Proliferator Activated Receptor-α (PPAR-α) and the GPR55, allosterically modulates the Transient Receptor Potential Vanilloid 1 (TRPV1), and indirectly interacts with CB1 and cannabinoid receptor 2 (CB2) (32, 34, 35). Due to the shared pharmacodynamic properties, PEA is considered as the endogenous equivalent of CBD (36, 37). A growing body of literature has confirmed the role of PEA in most neurobiological mechanisms underpinning several neuropsychiatric conditions both in clinical and preclinical settings (38–40).


1.1. Objectives

The effect of PEA over neuroinflammation and glutamate signaling may represent a promising biobehavioral mechanism underlying its clinical utility in psychosis. This systematic review aimed to collect and discuss all available clinical and preclinical data generated by studies investigating the role of PEA in non-affective and affective psychoses. We reviewed all interventional and observational studies, employing either retrospective or prospective methodological approaches with any PEA neuro-biological correlates investigated in psychosis.




2. Materials and methods


2.1. Inclusion and exclusion criteria

All clinical and preclinical evidence about the topic was gathered and systematically reviewed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines (41). Inclusion criteria were defined as follows: 1. analytic, observational, and interventional studies; 2. studies assessing (i) acute or long-term effects of palmitoylethanolamide (PEA) administration over psychosis-related biological underpinnings (e.g., neuroimmune disruption, hypothalamus-pituitary-adrenal axis dysregulation); and behavioral features (e.g., negative psychotic symptoms, manic symptoms); or (ii) PEA and PEA signaling-related molecular marker (e.g., other endocannabinoids/acylethanolamines, PEA-related enzymes) modulation in peripheral tissues (e.g., plasma, serum), or in the central nervous system (e.g. cerebrospinal fluid, brain tissue) in psychosis and related conditions. Exclusion criteria were defined as outlined: 1. studies in which (i) PEA was not the intervention or outcome of interest (e.g., studies evaluating only exogenous cannabinoid administration or assessing endogenous cannabinoid levels); and (ii) PEA bio-behavioral correlates were not investigated with reference to psychosis; and (iii) PEA bio-behavioral correlates were not directly reported on; 2. reviews; 3. systematic reviews; 4. meta-analyses.



2.2. Search strategy and data extraction

A literature search was performed using electronic databases (PubMed, Scopus, and Web of Science) for any published original study written in English, on 16 January 2023. In order to be as much inclusive as possible, a combination of broad-meaning terms describing and/or concerning PEA (“palmitoylethanolamide,” “palmitylethanolamide,” “N-2-hydroxyethyl-hexadecanamide,” “N-2-hydroxyethyl-palmitate,” “N-palmitoylethanolamine,” “PEA,” and “palmitoyl-ethanolamine”) and psychosis (“schizophreni*,” ‘psychosis,” “psychoses,” “psychotic,” “bipolar,” “mania,” “manic”) was adopted. Reference lists of all selected studies were scrutinized to identify any adjunctive eligible evidence. Data screening and extraction were conducted according to a two-step selection process (conventional double-screening), performed by two researchers (RB and MC) independently from each other. In the instances of conflicting opinions regarding papers' inclusion, a consensus was sought through discussion with a third senior reviewer (MB).



2.3. Risk of bias assessment

In light of the methodological heterogeneity of collected evidence, quality of studies assessment was conducted in accordance to an adapted and suitably flexible set of criteria suggested by the Agency for Healthcare Research and Quality (AHRQ) guidance (42), in line with previous research in the field (38–40). Risk of systematic bias across human studies was ruled out by screening all papers for potential confounding factors (e.g., gender, age, smoking status, level of education). Furthermore, factors possibly accounting for similarities and differences between all studies were assessed, extracting information about study characteristics, including study design (e.g., observational, interventional), defined study population (for human studies: e.g., schizophrenia (SCZ) patients, clinical high-risk (CHR) subjects; for animal studies: e.g., mouse or rat model), age or developmental stage, gender, adequate psychosis model (for animal studies only: e.g., maternal deprivation, methylazoxymethanol acetate (MAM) prenatal exposure), PEA measure (e.g., PEA dosage and administration route, PEA assessment in tissues), adequate PEA evaluation (e.g., time of exposure, single or multiple assessments), defined control group, comparability of subjects (for human studies only), exclusion criteria/adjusting factors (for human studies only), statistical analyses, and declaration of fundings/sponsorship. The full study protocol is available at https://doi.org/10.17605/OSF.IO/AFMTK.




3. Results


3.1. Study selection

Overall, 418 studies were retrieved through the initial data search. After removing duplicates as well as excluding articles owing to article type (e.g., non-systematic reviews, systematic reviews, meta-analyses), titles, abstracts, or full texts of all records were examined against the inclusion and exclusion criteria following a three-step screening process (Figure 1). A final list of thirteen studies was used for systematic analysis in this review, including 11 studies conducted only in human populations and two studies performed in animal models, exploring various aspects of palmitoylethanolamide (PEA) signaling pathway (Table 1). These include (i) in vivo PEA add-on treatment exposure in humans with different types of psychoses (e.g., non-affective psychosis, affective psychosis) or psychotic symptoms (e.g., hallucinations) (3 studies; Table 1); (ii) PEA quantitative blood assessment in humans with psychosis clinical high-risk (CHR) state (1 study; Table 1); (iii) PEA quantitative blood assessment in humans with different types of psychoses (e.g., non-affective psychosis, affective psychosis) at different stages of illness (5 studies; Table 1); (iv) PEA quantitative central nervous system (CNS; e.g., brain tissue, cerebrospinal fluid) assessment in humans with schizophrenia (SCZ; 2 studies; Table 1); (v) PEA quantitative brain tissue assessment in animal models of SCZ (2 studies; Table 1). Additional data on methodological quality of studies conducted in humans and animals are reported in Tables 2, 3. A brief synthesis of the main results is presented below and summarized in Table 1.


[image: Figure 1]
FIGURE 1
 PRISMA flowchart of search strategy for systematic review.



TABLE 1 Summary of clinical and preclinical studies investigating palmitoylethanolamide and its correlations to psychotic disorders.
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TABLE 2 Methodological quality of clinical studies investigating palmitoylethanolamide and its correlations to psychotic disorders.
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TABLE 3 Methodological quality of preclinical studies investigating palmitoylethanolamide and its correlations to psychotic disorders.
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3.2. In vivo palmitoylethanolamide (PEA) add-on treatment exposure in humans with different types of psychoses or psychotic symptoms

Three human studies have addressed this area (Table 1) using similar but not overlapping methodologies in terms of study population [chronic schizophrenia (SCZ) patients (52), bipolar disorder (BPAD) patients with manic symptoms (53), Parkinson's disease (PD) patients (51)], PEA formulation [oral native PEA (52, 53), oral Ultramicronized (um)-PEA (51)], PEA dosage [600 milligrams (mg) daily (51), 600 mg twice/daily (51–53)], and PEA period of exposure [6 weeks (53), 8 weeks (52), 12 months (51)]. Apart from a single study lacking a controlled condition (51), all studies adopted a randomized, double-blind, placebo-controlled design (52, 53). Overall, results indicated a beneficial effect of PEA adjunctive therapy on residual negative and general psychopathological symptoms, but not positive symptoms, of risperidone-treated SCZ patients (52), as well as on manic symptoms of lithium- plus risperidone-treated BPAD patients (53). Coherent data emerged regarding depressive symptomatology, which did not appear to be improved in both SCZ and BPAD patients treated with PEA add-on as compared to placebo (52, 53). A single study addressing the effect of PEA over non-motor symptoms among levodopa-treated PD patients, showed no reduction in the number of subjects presenting with hallucinations and psychosis (51). Noteworthy, PEA was well-tolerated, in the absence of extrapyramidal symptoms or any other relevant side effect across the three studies, and for the entire duration of the compound administration.



3.3. Palmitoylethanolamide quantitative blood assessment in humans with psychosis clinical high-risk state

This systematic reappraisal identified a single human study specifically assessing peripheral blood PEA levels in individuals suffering from CHR state, as compared to healthy controls (HC) (47) (Table 1). PEA levels tended to be elevated in CHR patients, even though just approaching statistical significance. Intriguingly, PEA levels appeared to be significantly higher in those who were both CHR and had been exposed to childhood trauma (CT), compared to individuals having none of the above-mentioned risk factors or one risk factor alone. Furthermore, a significant positive correlation between PEA levels and the severity of CHR state and CT was observed (47).



3.4. Palmitoylethanolamide quantitative blood assessment in humans with different types of psychoses at different stages of illness

Most of the studies retrieved investigated peripheral blood PEA levels in patients with non-affective [e.g., schizophrenia (SCZ) (44, 46, 48, 49) and schizophreniform psychosis (44)] or affective [e.g., bipolar disorder (BPAD) (46, 50)] psychoses at different stages of illness (Table 1). Two studies converged on the evidence of higher PEA levels in SCZ patients than in healthy controls (HC) (46, 48), one of which further suggesting significantly higher PEA plasma concentration in SCZ patients compared to patients meeting criteria for cannabis use disorder (CUD) or dual diagnosis of CUD and SCZ (48). Interestingly, compared to HC, unaffected twin siblings of SCZ patients also showed increased PEA levels, that did not differ from those of patients (46). Remarkably, antipsychotic (AP)-naïve first-episode psychosis (FEP) patients compared to HC showed a tendency to elevated PEA plasma levels and a significantly higher PEA/2-arachidonoylglycerol (2-AG) ratio, with both that subsided an average of 0.6 and 5.1 years after the initiation of AP treatment (49). The modulating effect of AP treatment over acylethanolamines (AEs) levels was also investigated through a double-blind, randomized, parallel-group, controlled clinical trial, showing elevated serum PEA concentration in cannabidiol (CBD)-treated SCZ patients, compared with those treated with the antipsychotic amisulpride (44). Studies measuring PEA levels among BPAD patients showed a less pronounced increase in affected and unaffected siblings of illness-discordant twin couples, when compared to HC (46). Further, a higher PEA plasma concentration was found in BPAD patients having first episode as depression than in those who had their first episode as mania (50) as well as in those who had at least one depressive episode than in patients who had no prior depressive episodes (50). Finally, PEA levels were increased according to the number of depressive episodes and the presence of depressive mood and anxiety, while inversely correlating with the number of hypomanic episodes, the number of hospitalizations, the duration of valproate (VPA) treatment, sexual desire, presence of flight of ideas, delusion, and grandiosity (50).



3.5. Palmitoylethanolamide quantitative central nervous system assessment in humans with schizophrenia

Two studies analyzed PEA levels in the CNS of patients with psychosis (43, 45) (Table 1). In particular, PEA levels were reported to be elevated in the cerebrospinal fluid (CSF) of SCZ and schizophreniform psychosis patients compared with healthy controls (HC) (43). Conversely, a study on postmortem brain samples from subjects diagnosed with SCZ compared to controls indicated lower PEA levels in the cerebellum of antipsychotic (AP)-free patients only (45). No significant differences in PEA brain quantification were detected among all study groups in the other brain areas investigated (45).



3.6. Palmitoylethanolamide quantitative brain tissue assessment in animal models of schizophrenia

In total, two studies evaluated PEA levels in the prefrontal cortex (PFC) (54, 55), hippocampus (HIP) (54), and nucleus accumbens (NAc) (54) of rats exposed to either prenatal methylazoxymethanol acetate (MAM) (54) or perinatal delta-9-tetrahydrocannabinol (THC) (55), which present with many SCZ-relevant biobehavioral deficits at neonatal age (55) and adulthood (54, 55) (Table 1). While modulating endocannabinoids [eCBs; e.g., anandamide (AEA) and 2-acylglycerol (2-AG) (54, 55)] and other acylethanolamines [AEs; e.g., oleoylethanolamide (OEA) (54)], both MAM and THC exposure did not significantly affect PEA levels in all investigated brain areas, as neither did the peripubertal exposure to cannabidiol (CBD) (54, 55), Cannabinoid receptor type 1 (CB1)-antagonist/agonist AM251 (54), and first-generation antipsychotic haloperidol (HAL) (54), compared to control conditions.




4. Discussion

This is the first systematic review of all evidence exploring the biobehavioral correlates of palmitoylethanolamide (PEA) in psychosis across human and animal studies. Unlike previous research in this field (38–40), the greatest majority of records included consisted of human studies. Existing reviews focusing on the role of the major phytocannabinoid cannabidiol (CBD) as a potential treatment for schizophrenia (SCZ) patients (20, 56, 57) gathered still preliminary evidence supporting its antipsychotic (AP) efficacy, while highlighting its advantageous side effect profile and good tolerability. Targeting similar pathways, PEA may be considered as a viable alternative to CBD with implications for many therapeutic areas, due to its established safety and the development of formulations maximizing its bioavailability (33, 37).

Overall, the present review demonstrated that PEA may be involved in different psychotic phenotypes. Also, it found initial evidence that PEA levels may reflect the severity of the disorder as well as the stage of illness. Evidence was obtained from both interventional studies addressing the AP potential of PEA supplementation, and observational studies of PEA tone in peripheral blood and in the central nervous system (CNS) in the context of clinical high-risk (CHR) for psychosis and psychotic disorders at different stages of illness.

Some important findings from this systematic review deserve to be highlighted. First, despite its promise, evidence regarding the therapeutic potential of PEA supplementation for psychosis is still limited (51–53) and provides findings about selective efficacy on specific symptoms. In particular, PEA add-on to conventional psychotropic medications did not significantly reduce positive psychotic symptoms (51–53), while ameliorating negative psychotic (52) and acute manic (53) symptoms. Importantly, while not being the focus of this review, results presented here are inconclusive about a potential role of PEA in ameliorating depressive symptoms among psychosis patients (53). Also, in only one study participants were clearly asked to avoid forms of cognitive behavioral therapies during the trial period (52), thus requiring future interventional studies to clearly rule out a potential masking effect of add-on psychotherapy over symptoms.

Second, a line of research investigating endocannabinoids (eCBs) tone in blood among subjects with genetic vulnerability to psychosis (i.e., unaffected twins of SCZ patients) (46), CHR individuals (47), untreated first-episode psychosis (FEP) patients (49), and longer-course SCZ patients (46, 48), converged on the evidence of increased PEA plasma levels as compared to healthy subjects. Also, among CHR patients, the more severe the clinical picture (i.e., greater symptom severity) and the risk profile (i.e., more severe childhood trauma), the higher were the PEA levels (47). Based on PEA-related neurobiological mechanisms, the finding of augmented PEA release across different populations may reflect an endogenous attempt to restore homodynamic balance under disease conditions (28, 29). However, follow-up studies revealed that PEA plasma levels are no longer heightened in AP-treated SCZ patients after 0.6 years of treatment, and further decreased at 5.1 years from baseline (49), potentially suggesting that such biological self-regulation of PEA levels is lost as the diseases progresses. Interestingly, a 2- to 4-week CBD treatment among SCZ patients was associated with higher PEA levels (44) when compared with a 2- to 4-week AP treatment (44), possibly indicating a CBD-specific property in sustaining PEA tone.

Further, differently from SCZ spectrum disorders, PEA plasma level increase was less pronounced in bipolar disorder (BPAD) patients and unaffected twins of BPAD patients, when compared to healthy subjects (46), perhaps accounting for existing phenotypical discrepancies within the affective psychosis group. In fact, PEA plasma levels were greater among BPAD patients having first episode as depression and increased consistently as a function of the lifetime number of depressive episodes (50). Instead, the occurrence of positive psychotic symptoms, manic symptoms, and hypomanic episodes, was correlated with reduced PEA tone (50). Based on evidence that BPAD patients with manic onset have an older age at diagnosis and a longer duration of untreated illness than those with depressive onset (58), and that polarity of episodes over time often reflects polarity at onset (59), such different findings among BPAD patients may suggest a changing pattern in PEA levels over time. In other words, PEA plasma levels would be higher in the first phases of the disorder, while declining because of disease progression, in line with what observed for non-affective psychosis, and thus strengthening the rationale for its supplementation.

Third, CNS PEA levels were found to be augmented in the cerebrospinal fluid (CSF) of young adults with SCZ and schizophreniform disorder (43), whereas reduced in postmortem cerebellar samples of AP-free middle-aged SCZ patients (45), as compared to healthy controls. Similarly, brain PEA levels did not differ between AP-treated middle-aged SCZ patients and healthy controls (45). Again, it can be assumed that PEA levels are elevated in the early stages of psychosis, potentially reflecting an innate compensatory mechanism, before dropping concomitantly to disease progression. With reference to AP treatment, while on one hand it did not appear to increase PEA levels, on the other it is not clear if it prevented a more pronounced longer-term decrease (45).

Only two studies assessed PEA levels in the prefrontal cortex (PFC) of preclinical models of psychosis. They did not show any significant differences as compared to the control condition (54, 55). Further animal studies will need to yield a more robust understanding of the neurobiological mechanisms involving PEA in psychosis.

The findings of this review should be seen considering some strengths and limitations. Despite supporting PEA tone alterations in psychosis and effectiveness of PEA supplementation as a therapeutic strategy, research in this field needs to be expanded, especially to fully comprehend the potential of PEA supplementation as add-on therapy for psychosis across all its symptoms dimensions. Indeed, evidence points toward a beneficial effect of PEA over negative psychotic symptoms and acute manic symptoms, reasonably due to the protective role of the compound against altered neuroinflammation and related mechanisms (28, 29), while PEA effect over positive psychotic symptoms remains to be clarified. Further, future follow-up studies will have to investigate whether PEA effect is sustained in the longer-term. Besides, to date, evidence of PEA effect as monotherapy in the clinical stages preceding full-blown psychosis onset to prevent the risk of progression is totally lacking and is worth of exploration. Finally, PEA levels appear to be altered in psychosis. However, further clarification is needed as to whether PEA tone is altered to a different extent depending on the stage of illness and whether this can be considered a biomarker of psychosis. In line with this, whether any AP treatment may be beneficial through PEA tone modulation requires additional investigation. Biobehavioral comparisons between CBD and PEA are also worth of consideration, especially whether CBD antipsychotic effects are mediated by PEA signaling and similar effects can be obtained directly supplementing PEA. The latter would be inevitably more advantageous, due to its safer profile and shorter biological distance from the therapeutic target.



5. Conclusions

This systematic review provided a first overview of all observational and experimental studies of PEA and its biobehavioral correlates in psychosis. Although in its infancy and still limited, research in this field is primarily carried out on humans and provides evidence for both alterations in PEA signaling, implications for psychosis-related behavioral features, and benefits from PEA supplementation. In particular, PEA may be useful to improve negative psychotic symptoms and manic symptoms. Noteworthy, no serious adverse events were reported across all human studies investigating its administration, further supporting PEA potential effectiveness and elevated safety as a therapeutic intervention in psychosis.
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Leweke et al. Germany To assess PEA, other Quantitative 1. CBD (n=20); 39 eCBs/AEs and related enzymes CBD group > AMI group: 1. PEA levels: Day 14, Day 28 > Baseline;
(44) eCBs/AEs, and related assessment in 2. AMI (n=19) serum levels (LC/MS, FAAH assay) 2. AEA levels: Day 14, Day 28 > Baseline;
enzymes levels in humans 3. OEA levels: Day 14 > Baseline; Day 28 vs. Baseline, NS
CBD-treated SCZ
patients
Muguruza Spain To assess postmortem Quantitative 1. AP-F (n=11); 38 eCBs/AEs brain tissue levels 1. Effect on eCBs/AEs levels: (a) 2-AG levels: SCZ, 1; brain region;
etal. (45) PEA and other eCBs/AEs assessment in 2. AP-T (n=8); (LC/MS) SCZ x brain region interaction, NS; (b) AEA levels: SCZ, |; brain
levels in SCZ patients humans 3. CTRL (n=19) region, NS; SCZ x brain region interaction, NS; (c) DHEA levels: SCZ,
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levels: SCZ, }; brain region; SCZ x brain region interaction, N; (f)
OEA levels: SCZ, NS; brain region; SCZ x brain region interaction,
NS; 2. PEA brain tissue levels: (a) CB: SCZ < CTRL; AP-F < CTRL;
AP-T vs. CTRL, NS; AP-T vs. AP-E NS; (b) HIP, (c) PFC: all
comparisons, NS; 3. LEA brain tissue levels: (a) CB: SCZ < CTRL;
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CTRL; other comparisons, NS; 4. DHEA brain tissue levels: (a) CB:
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comparisons, NS; 6. 2-AG brain tissue levels: (a) CB: all comparisons,
NS; (b) HIP: SCZ > CTRL; AP-F > CTRL; other comparisons, NS; (c)
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brain tissue levels: all comparisons, NS; 8. 2-AG/PEA ratio: (a) CB, (b)
PFC: SCZ > CTRL; (c) HIP: SCZ vs. CTRL, NS; 9. 2-AG/other AEs
ratio: SCZ > CTRL (all brain regions; all comparisons)

Koethe et al. United States | To assess PEA and other | Quantitative 1.SCZ discordant 80 CBs/AEs plasma levels (LC/MS) 1. PEA plasma levels: SCZ, noSCZ > HC; SCZ vs. noSCZ, NS; BPAD,
(46) eCBS/AEs levels in SCZ | assessmentin | twin pairs: (a) noBPAD > HC (NS after Bonferroni’s correction); BPAD vs. noBPAD,
and BPAD discordant humans SCZ (n=25); (b) NS; SCZ-transit vs. SCZ-non transit, NS; SCZ discordant > BPAD
twin patients n0SCZ (n=25); discordant; 2. AEA plasma levels: SCZ, noSCZ > HC; SCZ vs.
2.BPAD n0SCZ, NS; BPAD, noBPAD > HC; BPAD vs. noBPAD, NS;
discordant twin SCZ-transit < SCZ-non transit; 3. 2-AG plasma levels: SCZ vs.
pairs: (a) BPAD 1n0SCZ vs. HC, NS; BPAD vs. noBPAD vs. HC, NS; SCZ-transit <
(n=7); (b) SCZ-non transit; 4. OEA plasma levels: SCZ vs. noSCZ vs. HC, NS;
noBPAD (n=7); BPAD vs. noBPAD vs. HC, NS; SCZ-transit vs. SCZ-non transit, NS
3. HC twins
(n=16)
Appiah-Kusi United Kingdom| To assess PEA and other | Quantitative 1. HC (n=58); 91 €CBs/AEs plasma levels (LC/MS) 1. Group differences on AEs/eCBs plasma levels: (a) PEA: CHR > HC
etal. (47) eCBS/AEs levels in assessmentin | 2.CHR (n=33) (trend effect); (b) OFA, (c) AEA, (d) 2-AG: CHR > HC;
CT-exposed CHR humans 2. (a) CT effect: 4 PEA, AEA, 2-AG levels; (b) CHR effect: + AEA,
patients 2-AG levels; (c) CHR x CT interaction: 1 PEA levels; 1 AEA levels

(trend effect); 3. Effects of 2 vs. 1 RF on AEs/eCBs plasma levels: (a)
PEA, (b) AEA, (c) OEA, (d) 2-AG: 2RF > 1RF; 4. Effects of RF
number on AEs/eCBs plasma levels: (a) PEA, (b) AEA, (c) OEA, (d)
2-AG: noRF < IRF < 2RF; 5. 1 PEA levels:  total CAARMS score;
total CTQ score; 6. 1 AEA levels: 1 total CAARMS score (trend effect)

Ibarra-Lecue Spain To assess PEA and other Quantitative 1. CUD (n=26); 114 1. eCBs/AEs plasma levels 1. CBIR protein expression: (a) CUD main effect; (b) SCZ main
etal. (48) eCBs/AEs levels in assessment in 2.HCI (n=24); (HPLC/MS); 2. CBIR protein effect; (c) CUD x SCZ interaction; (d) % from control: CUD, SCZ,
DUAL patients humans 3.8CZ (n=22); expression in PLTs (Western blot); | DUAL < HC; 2. eCBs/AEs plasma levels: (a) SCZ main effect: PEA,
4.HC2 (n=19) 3. Inflammatory response OEA; (b) CUD main effect: PEA, AEA, DEA, LEA, NADA; (c) SCZ x
5.DUAL (n=13); measurements (ELISA) CUD interaction: PEA, AEA, DEA, OEA; (d) PEA plasma levels
6. HC3 (n=10) (ng/ml): SCZ > DUAL; SCZ > HC > CUD; other comparisons, NS;

(¢) AEA plasma levels (ng/ml): SCZ > DUAL, CUD, HC; other
comparisons, NS; (f) DEA plasma levels (ng/ml): SCZ > DUAL,
CUD; other comparisons, NS; (g) OEA plasma levels (ng/ml): SCZ,
CUD, HC > DUAL; other comparisons, NS; (h) NADA plasma levels
(ng/ml): DUAL > HG; other comparisons, NS; (i) 2-AG, (I) 1-AG, (m)
LEA plasma levels (ng/ml): all comparisons, NS; 3. IL-6 plasma levels
(pg/ml): SCZ > DUAL, CUD, HC; other comparisons, NS

Parksepp et al. Estonia To assess PEA and other Quantitative 1. FEP (n=54); 112 eCBs/AEs serum levels (HPLC/MS, 1. eCBs/AEs serum levels: (a) PEA, (b) AEA, (c) LEA, (d) OEA: FEPb

(49) eCBS/AEs levels in FEP | assessmentin | 2. HC (n1=58) flow injection analysis tandem MS) | > HC (trend effect); FEP(0.6-year) vs. HC, NS; FEP(5.1-year) vs. HC,
patients humans NS; (¢) 2-AG: FEPb < HC (trend effect); FEP(0.6-year) vs. HC, NS;

FEP(5.1-year) > HC;

2. (eCBs/AEs)/2-AG ratio levels: (a) PEA/2-AG: FEPb > HC;
FEP(0.6-year) vs. HC, NS; FEP(5.1-year) < HC (trend effect); (b)
AEA/2-AG, (c) OEA/2-AG: FEPb > HC; FEP(0.6-year) vs. HC, NS;
FEP(5.1-year) vs. HC, NS; (d) LEA/2-AG: FEPb > HC; FEP(0.6-year)
vs. HC, NS; FEP(5.1-year) < HC; 3. (eCBs/AEs)/AEA ratio levels: ()
PEA/AEA, (b) OEA/AEA: FEPb vs. HC, NS; FEP(0.6-year) vs. HC, NS;
FEP(5.1-year) vs. HC, NS; (c) LEA/AEA: FEPb vs. HC, NS;
FEP(0.6-year) vs. HC, NS; FEP(5.1-year) < HC

Topuz et al. Turkey To assess PEA and other Quantitative 1. Past depressive 79 eCBs/AEs serum levels (LC/MS) 1. eCBs/AEs serum levels: (a) AEA: NoPastDEP vs. PastDEP, NS;
(50) eCBs/AEs levelsin BPAD | assessment in episode: (a) Manic/hypomanic vs. Depressive, NS; (b) PEA: NoPastDEP <
patients humans NoPastDEP PastDEP; Manic/hypomanic < Depressive; (c) OEA: NoPastDEP <

(n=37); (b) PastDEP; Manic/hypomanic vs. Depressive, NS; (d) AEA: NoPastDEP
PastDEP (n=42); vs. PastDEP, NS; Manic/hypomanic vs. Depressive, NS; 2. Correlations
2. First episode between illness course and eCBs/AEs serum levels: (a) PEA: 4 number
type: () of depressive episodes, 1; 1 number of hypomanic episodes, J; 1
Manic/hypomanic number of hospitalizations, |; 1 duration of VPA usage, |; other
(n=52); (b) correlations, NS; (b) AEA: 1 duration of VPA usage, 1; other
Depressive correlations, NS; (c) OEA: 1 age of onset, 15 + number of depressive
(n=27) episodes, 1; other correlations, NS; (d) 2-AG: + number of depressive

episodes, 1; other correlations, NS; 3. Relation of symptoms and
eCBs/AEs serum levels: (a) PEA: presence of depressive mood, 1;
presence of increased sexual desire, J; presence of anxiety, ;
presence of flight of ideas, |; presence of delusion, |; presence of
grandiosity, |; presence of other symptoms, NS; (b) AEA: presence of
flight of ideas, |; presence of increased motor activity, |; presence of
Schneiderian symptoms, 4; presence of other symptoms, NS; (c)
OEA: presence of depressive mood, 4; presence of anxiety, 1;
presence of other symptoms, NS; (d) 2-AG: presence of euphoria, 4;
presence of other symptoms, NS; 4. Relation of medical history and
eCBs/AEs serum levels: (a) PEA: presence of another disease, | ; any
other medical history, NS; (b) AEA: all medical history, NS; (c) OEA:
all medical history, NS; (d) 2-AG: presence of diabetes mellitus, |;
presence of another disease, |; any other medical history, NS

Brotini etal. Italy To assess PEA add-on In vivo PD patients 30 nM-EDL assessment Effect on hallucinations and psychosis (nM-EDL scores): post-PEA vs.
(51) effects on psychotic treatment in (MDS-UPDRS) pre-PEA, NS
symptoms in PD patients | humans
Salehi et al. ITran To assess PEA add-on Invivo 1. PEA (n=25); 2. 50 1. Symptoms assessment (PANSS, 1. Effect on PANSS negative: time, | ; time X treatment interaction,
(52) effects on negative treatment in PLB (n=25) HDRS); 2. Adverse events 1; 2. Effect on PANSS positive: time, |; time X treatment interaction,
symptoms in SCZ humans assessment (ESRS, open-ended NS; 3. Effect on PANSS general: time, |; time x treatment
patients questions, comprehensive side interaction, §; 4. Effect on PANSS total: time, |; time x treatment
effect checklist) interaction, }; 5. Effect on HDRS: time x treatment interaction, NS; 6.

Effect on ESRS global score: time, NS; time x treatment interaction, NS;
7. Frequency of adverse events (drowsiness, dizziness, tremor,
increased appetite, nervousness, restlessness, skin rash, blurred vision,
fatigue, diarrhea, dry mouth, sore throat, tachycardia): PEA vs. PLB,

NS
Abedini et al. Iran To assess PEA add-on Invivo 1. PEA (n=32); 2. 63 1. Symptoms assessment (YMRS, 1. Effect on psychometric measures: (a) YMRS: time x treatment
(53) effects on acute mania in treatment in PLB (n=31) HDRS); 2. Adverse events interaction; (b) ESRS: time x treatment interaction, NS; 2. YMRS
BPAD patients humans assessment (ESRS, open-ended global score: (a) Baseline, (b) Week 2, (c) Week 4: PEA vs. PLB, NS;
questions, comprehensive side (d) Week 6: PEA < PLB; 3. YMRS score changes: (a) From Baseline to
effect checklist) Week 2: PEA vs. PLB, NS; (b) From Baseline to Week 4, (c) From

Baseline to Week 6: PEA > PLB; 4. HDRS global score: (a) Baseline:
PEA vs. PLB, NS; (b) Week 6: PEA > PLB; 5. HDRS score changes:
From Baseline to Week 6: PEA vs. PLB, NS; 6. ESRS global score: (a)
Baseline, (b) Week 1, (c) Week 2, (d) Week 4, (¢) Week 6: PEA vs. PLB,
NS; 7. ESRS score changes: all comparisons, NS; 8. Frequency of
adverse events (drowsiness, dizziness, increased appetite, skin rash,
diarrhea, dry mouth, sore throat, tachycardia): PEA vs. PLB, NS

Stark et al. (54) Czech To assess PEA and other Quantitative 1. CTRL+VHI 12-15 per eCBs/AEs brain levels 1. Effects of peripubertal treatment (PND 19-39) on social interactions
Republic/Italy eCBs/AEs brain levels assessment in 2. CTRL+CBD10; group (LC-APCI/MS) (SI test) from PND 100: (a) effect on time: MAM; treatment; MAM x
following CBD, CBIR animals 3. CTRL+CBD30; treatment interaction; (b) time: MAM+VHI < CTRL+VHI;
antagonist/inverse 4.CTRL+AM251; MAM+CBD30 > MAM+VHI; CTRL+AM251 < CTRL+VHI;
agonist, and HAL in 5. CTRL+HAL; MAM+AM251 > MAM+VHI; CTRL+VHI > CTRL+HAL; other
MAM rats 6. MAM+VHI comparisons, NS; (c) effect on number of social interactions: MAM,
7. MAM+CBD10; NS; treatment, NS; MAM x treatment interaction, NS; (d) number of
8. MAM+CBD30; interactions: all comparisons, NS; 2. Effects of peripubertal treatment
9. MAM+AM251; (PND 19-39) on exploratory activity (NORT, OFT) from PND 100: (a)
10. MAM+HAL effect on DI: MAM; treatment, NS; MAM x treatment interaction; (b)

DI: MAM+VHI < CTRL+VHI; MAM+CBD30 > MAM+VHI;
other comparisons, NS; (c) effect on total exploration time: MAM, NS;
treatment, NS; MAM x treatment interaction, NS; (d) total exploration
time: all comparisons, NS; (e) effect on number of crossings: MAM,
NS; treatment, NS; MAM x treatment interaction, NS; (f) number of
crossings: all comparisons, NS; (g) effect on number of rearings: MAM,
NS; treatment, NS; MAM x treatment interaction, NS; (h) number of
crossings: all comparisons, NS; 3. Effects of peripubertal treatment
(PND 19-39) on PFC CBIR expression from PND 100: (a) effect on
mRNA expression: MAM, NS; treatment, NS; MAM x treatment
interaction; (b) % mRNA methylation: MAM+VHI < CTRL+VHI;
MAM+CBD30 > MAM+VHI; CTRL+AM251 > CTRL+VHI;
CTRL+HAL > CTRL+VHI; MAM+HAL > MAM+VHI; other
comparisons, NS; (c) mRNA fold change: MAM+VHI >
CTRL+VHI; MAM+CBD30 < MAM+VHI; MAM+AM251 <
MAM+VHI; other comparisons, NS; (d) protein expression level:
MAM+VHI > CTRL+VHI; CTRL+CBD30 < CTRL+VHI;
MAM+CBD30 < MAM+VHI; MAM+AM251 > CTRL+VHI;
MAM+HAL > CTRL4VHI; other comparisons, NS; 4. Effects of
peripubertal treatment (PND 19-39) on PFC eCBs/AEs expression
from PND 100: (a) effect on PEA levels: MAM, NS; treatment, NS;
MAM x treatment interaction, NS; (b) PEA levels: all comparisons, NS;
(c) effect on 2-AG levels: MAM; treatment; MAM x treatment
interaction; (d) 2-AG levels: MAM+CBD30 < MAM+VHI;
CTRL+AM251 > CTRL+VHL; MAM+AM251 < MAM+VHI;
CTRLAHAL > CTRLAVHI; other comparisons, N; (¢) effect on
AEA levels: MAM; treatment, NS; MAM x treatment interaction; ()
AEA levels: CTRL4+CBD30 > CTRL+VHI; other comparisons, NS;
(g) effect on OEA levels: MAM, NS; treatment, NS; MAM x treatment
interaction, NS; (b) OEA levels: all comparisons, NS

Di Bartolomeo | Czech To assess PEA and other | Quantitative 1. CTRLAVHI; 320 pergroup | eCBs/AEs brain levels (LC/MS) 1. Effects of pTHC on neonatal behavior: (a) righting (PND 1-2), (b)

etal. (55) Republic/ltaly | eCBs/AEs brain levels assessmentin | 2. CTRL+CBD; dliff aversion (PND 2-8), (c) forelimb placing (PND 3-9), (d)
following CBD in pTHC | animals 3. pTHC+VHI; forelimb grasping (PND 2-4), (¢) bar holding (PND 5), (f) negative
rats 4. pTHC+CBD geotaxis (PND 3-4), (g) nest time: pTHC+VHI < CTRL+VHI; (h)

nest exploration: pTHC+VHI vs. CTRL+VHI, NS 2. Effects of pTHC
on PEC eCBs/AEs expression at PND 10: (a) PEA, (b) AEA, () OEA
levels: pTHC+VHI vs. CTRL+VHI, NS; (d) 2-AG levels: pTHC+VHI
< CTRLAVHI; (¢) Magl, (f) Faah mRNA expression: pTHC+VHI >
CTRL+VHI; (g) Cnrl, (h) Trpvl, (i) other ¢CBs/AEs enzymes mRNA
expression: pTHC-+VHI vs. CTRL+VHI, N§;

3. Effects of pTHC on PFC Drd2 gene expression at PND 10:
PTHC+VHI > CTRL+VHI (trend effect); 4. Effects of peripubertal
CBD (PND 19-39) on adult behavior: (a) number of crossings, (b)
number of rearings (OFT): all compatisons, NS; (c) S time:
pTHC+VHI < CTRL+VHI; pTHC+CBD < pTHC+VHI; (d) ST
number of interactions: all comparisons, NS; (e) discrimination index
(NORT): pTHC+VHI < CTRL+VHI; pTHC+CBD > pTHC+VHI;
(f) time (NORT): all comparisons, NS;

5. Effects of peripubertal CBD (PND 19-39) on PEC genes expression
from PND 100: (a) %DNA methylation Cnr1 gene: all comparisons,
NS; (b) %DNA methylation Drd2 gene: pTHC+VHI < CTRL+VHI;
CTRL4CBD < CTRL+VHI; pTHC+CBD > pTHC+VHI; other
comparisons, NS; (c) Cnr1 relative gene expression: pTHC+VHI >
CTRL+VHI; other comparisons, NS; (d) Drd2 relative gene
expression: pTHC-+VHI > CTRL+VHI; pTHC+CBD >
CTRL+CBD; (¢) Cnrl protein expression level: all comparisons, NS;
(f) Drd2 protein expression level: pTHC+VHI > CTRL+VHI; other
comparisons, NS; 6. Effects of peripubertal CBD (PND 19-39) on PEC
eCBs/AEs expression from PND 100: (a) PEA levels: CTRL+VHI vs.
pTHC+VHI vs. pTHC+CBD, NS; (b) 2-AG levels: pTHC+VHI <
CTRL+VHI; pTHC+CBD < CTRL+VHI; pTHCHCBD vs.
pTHC+VHI, NS; (c) AEA levels: pTHC+VHI > CTRL+VHI;
pTHC+VHI vs. pTHC+CBD, NS; pTHC+CBD vs. CTRL+VHI, NS;
(d) OEA levels: all comparisons, NS

<, Lower/less than; >, Greater/more than; 1, Increase; {, Decrease; 2-AG, 2-Arachidonoylglycerol; AEA, Anandamide; AEs, Acylethanolamines; AM251, CBI antagonist/inverse agonist; AMI, Amisulpride; AP-E, Antipsychotic-free patients; AP-T, Antipsychotic-
treated patients; BPAD, Bipolar Affective Disorder; CAARMS, Comprehensive Assessment of At-Risk Mental State; CB, Cerebellum; CBIR, Cannabinoid receptor type 1; CBD, Cannabidiol; CBD10, Cannabidiol (10 mg/kg/day); CBD30, Cannabidiol (30 mg/kg/day);
CHR, Clinical High-Risk; Cnr1, Cannabinoid CBI receptor gene; CSE, Cerebrospinal fluid; CT, Childhood trauma; CTQ, Childhood Trauma Questionnaire; CTRL, Control group; CUD, Cannabis Use Disorder; DEA, Docosatetraenylethanolamide; DHEA, N-
docosahexacnoylethanolamine; DI, Discrimination index; DNA, Deoxyribonucleic acid; Drd2, Dopamine D2 receptor gene; DUAL, Dual diagnosis; eCBs, Endocannabinoids; ELISA, Enzyme linked immunosorbent assay; ESRS, Extrapyramidal Symptom Rating
Scale; FAAH/Faah, Fatty Acid Amide Hydrolase; FEP, First-episode psychosis; FEPb, First-episode psychosis (baseline); GC/MS, Gas Chromatography-Mass Spectrometry; HAL, Haloperidol; HC, Healthy controls; HDRS, Hamilton Depression Rating Scale; HIP,
Hippocampus; HPLC, High Pressure Liquid Chromatography; HPLC/MS, High Pressure Liquid Chromatography-Mass Spectrometry; IL-6, Interleukin 6; LC/MS, Liquid Chromatography-Mass Spectrometry; LC-APCI/MS, Liquid Chromatography-Atmospheric
Pressure Chemical onization-Mass Spectrometry; LEA, Dihomo-linolenoylethanolamine; Magl, Monoacylglycerol lipase; MAM, Methylazoxymethanol acetate; MDS-UPDRS, MDS-Unified Parkinson's Disease Rating Scale; mRNA, Messenger ribonucleic acids n,
Sub-sample size; NADA, N-Arachidonoyldopamine; ng/ml, Nanograms per milliliter; nM-EDL, Non-Motor Aspects of Experiences of Daily Living; NoPastDEP, No prior depressive episodes; NORT, Novel object recognition test; noBPAD, healthy twins of BPAD
patients; noSCZ, healthy twins of SCZ patients; NS, Not significant; OEA, Oleoylethanolamide; OFT, Open-field test; PANSS, Positive and Negative Syndrome Scale; PastDER, At least one prior depressive episode; PD, Parkinson’s Disease; PEA, Palmitoylethanolamides
PEC, Prefrontal cortex; PLB, Placebo; PLTs, Platelets; PND, Postnatal day; pTHC, Perinatal THC; RE, Risk factors SCZ, Schizophrenia; S, Social interaction; THC, Delta-9-tetrahydrocannabinols Trpv1, Transient receptor potential vanilloid 1 genes VI, Vehicles VPA,
Valproic Acid; vs., Compared to; YMRS, Young Mania Rating Scale. Bold font emphasizes statistically significant results.
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