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Editorial on the Research Topic

Assessments and measures in psychotherapy research: going beyond

self-report data

Introduction

Good clinical decision-making during case conceptualization, treatment selection, and

the adjustment of the therapeutic strategy over the course of treatment can improve the

effectiveness of psychotherapy. To support therapists making such decisions, measurement-

based and data-informed psychological therapy, which relies on prediction algorithms,

can be implemented (1). In recent decades, the statistical methods used to create these

algorithms have improved rapidly, e.g., with the introduction of machine learning (ML)

into psychotherapy research (2). However, these advancedmethods quickly reach their limits

when the data base is insufficient to realize their full potential to predict outcomes and derive

clinical recommendations. Indeed, psychotherapeutic processes are rich on various channels,

including verbal and nonverbal exchanges between patients and therapists, emotional

expressions, somatic-motor activity, and physiological processes. These different modalities

convey important information about patients’ mental states, thoughts, and emotions and

can lead to a more in-depth understanding of psychotherapy processes and outcomes.

However, most measurement-based prediction algorithms have been calculated based on

self-report data. Although they are the cornerstone of psychotherapy research, standardized

subjective self-report measures have critical shortcomings, including limited patient self-

insight, response tendencies, and cognitive biases (e.g., memory bias) (3, 4). To better

support therapists with themost accurate models and recommendations, wemust go beyond

self-report questionnaires. In the following sections, we will summarize assessments and

measures in psychotherapy research that can capture important information about patients

and treatment in addition to and beyond self-report questionnaires, thus providing novel

data for evidence-based and data-informed psychotherapy.
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Video and observer-based data

With advancing technology and digitization, video recordings

can provide more objective information about the patient,

therapist, and treatment non-invasively and with high temporal

resolution. Observationmethods can be applied to video recordings

to capture verbal information and behavior (e.g., therapeutic

interventions) (5), as well as non-verbal cues, such as movement

(e.g., movement-based attunement) (6), gestures, and facial

expressions. Methodological studies evaluating the validity of these

measures are crucial to gain insight into what we are assessing

(7). Three papers in the Research Topic examine video- and

observer-based methods. Maaß et al. validated a brief rating

scale to reliably and applicably assess basic psychotherapeutic

communication skills in clinical training. Diaz et al. applied

an observational coding system measuring relationship-building

behaviors between therapist and clients and modeled affective

dynamics within the dyads. Terhürne et al. introduce a video-

analysis system for automated emotion recognition and examined

associations between system ratings of emotional valence and

arousal and self-reports, change processes, and symptoms.

Audio and text data

Each video recording also provides one or more audio

tracks containing verbal and paraverbal information. Linguistic

expressions in a session reveal patient and therapist thoughts and

emotions and provide information about the dyadic interaction,

which can be extracted and analyzed via natural language

processing. Speech content is transcribed either manually by

human raters or automatically and thus transferred into text

form. These texts can be evaluated by qualitative linguistic

analyses or according to predefined categories such as sentiments

(8). Paraverbal parameters, e.g., speech rate, speech frequency,

and vocal arousal, can be extracted from the audio files to

examine intra- and interpersonal emotion dynamics and other

therapeutic processes (9, 10). Four papers in this Research Topic

analyze verbal or paraverbal features. Broadbent et al. identified

clients at risk of suicide using natural language processing on

data from a text-based crisis encounter and mobile tipline app.

Egozi et al. applied observational measures of attachment and

therapeutic distance to transcripts of video-recorded patient

and therapist narratives about their therapeutic relationship.

Lee et al. examined transcribed session recordings regarding

the use of discourse particles, which indicate the formality

in language, and its association with observer-rated therapist

empathy. Opladen et al. validated fundamental frequency f 0,

which is a commonly used index for emotional activation,

as a marker of arousal, valence, and distress during a body

exposure session.

Physiological data

Considering the close association between psychological

and physical processes, biological and physiological variables

can offer further useful information. Variables such as heart

rate variability (HRV) or electrodermal activity (EDA) allow

an objective and continuous recording of stress or emotional

arousal during the therapy session. Additionally, patient

and therapist co-activate and co-regulate their physiological

responses (11). The availability of smartwatches and other

wearable devices means that these measurements no longer

represent a noticeable intrusion into the therapeutic setting

(12). Three papers in this Research Topic rely mainly on

data from physiological measures. Andorfer et al. assessed

the psychophysiological stress response during a social-

evaluative speaking task via HRV, heart rate, and blood

pressure to evaluate the effectiveness of a mindfulness-based

intervention. Nyman-Salonen et al. provide a narrative review

of opportunities and challenges associated with measuring

embodied variables in psychotherapy, which focuses on the

sympathetic nervous system and body movements. Looking to

the future, Hollandt et al. present the protocol of a pilot study

planning to examine the dyadic synchrony of heart rate, EDA,

and electroencephalogram via wearable devices during two

experimental emotion-processing tasks.

Experimental tasks

The measures discussed above can be collected passively

before, during, and after treatment. Patients do not have to

do anything other than participate in the regular course of

therapy, meaning that these assessments often involve less

effort for patients than self-report questionnaires. However,

additional information about patients can also be obtained via

more active assessment methods such as experimental tasks.

Psychological tasks can, for example, include implicit association

tests as an indirect measure of pathological attitudes and

cognitions or change processes such as outcome expectations

(13). In this Research Topic, one paper applied an experimental

task. Amano et al. assessed reaction times and the ratio of

the number of responses for positive valence in the future

thinking task as potential objective measures of treatment process

and outcome.

Conclusion

This Research Topic highlights the range of possible

assessments and measures in psychotherapy that go beyond

self-reports. The 11 studies aimed at validating these measures

as well as measuring and predicting treatment processes and

outcomes. The next step must involve the multimodal and

multimethod assessment of patient and treatment information.

Some studies included here have already collected measures

from varying channels (e.g., Opladen et al.), and introduce

methods to integrate information from different modalities

(e.g., Nyman-Salonen et al.). With the advancing digitization

and technologization of psychotherapeutic settings, the

implementation of these measures into routine care is becoming

more feasible. Nevertheless, it requires time, resources, and

improved scientific training for practitioners to be able and feel
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confident making clinical decisions supported by these new sources

of data (1).
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