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With the global population undergoing demographic shift towards aging, the 
prevalence of Alzheimer’s disease (AD), a prominent neurodegenerative disorder 
that primarily afflicts individuals aged 65 and above, has increased across various 
geographical regions. This phenomenon is accompanied by a concomitant 
decline in immune functionality and oral hygiene capacity among the elderly, 
precipitating compromised oral functionality and an augmented burden of dental 
plaque. Accordingly, oral afflictions, including dental caries and periodontal 
disease, manifest with frequency among the geriatric population worldwide. 
Recent scientific investigations have unveiled the potential role of oral bacteria 
in instigating both local and systemic chronic inflammation, thereby delineating 
a putative nexus between oral health and the genesis and progression of AD. 
They further proposed the oral microbiome as a potentially modifiable risk 
factor in AD development, although the precise pathological mechanisms and 
degree of association have yet to be  fully elucidated. This review summarizes 
current research on the relationship between oral bacteria and AD, describing 
the epidemiological and pathological mechanisms that may potentially link them. 
The purpose is to enrich early diagnostic approaches by incorporating emerging 
biomarkers, offering novel insights for clinicians in the early detection of AD. 
Additionally, it explores the potential of vaccination strategies and guidance for 
clinical pharmacotherapy. It proposes the development of maintenance measures 
specifically targeting oral health in older adults and advocates for guiding elderly 
patients in adopting healthy lifestyle habits, ultimately aiming to indirectly mitigate 
the progression of AD while promoting oral health in the elderly.

KEYWORDS

Alzheimer’s disease, oral-gut-brain axis, early diagnosis, dental prophylaxis, anti-
bacterial agents, probiotics, vaccine, healthy lifestyle

1 Introduction

The human oral cavity possesses a multifaceted and intricate microbial ecosystem, creating 
a distinctive microenvironment housing the oral microbiome, which stands as the second most 
prevalent microbial community following the gastrointestinal tract (1). The oral microbiome is 
composed of an assemblage of bacteria, fungi, and viruses, encompassing a rich diversity of 
approximately 1,000 bacterial species (2) that can be  classified into six primary phyla: 
Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria, Spirochaetes, and Fusobacteria (3). 
Although the vast majority of these microorganisms are characterized as non-pathogenic, a 
minor subset possesses the capability to assume the role of opportunistic pathogens. Through 
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intricate interactions among themselves and the host, these 
microorganisms function in tandem to maintain the delicate 
ecological balance, thwarting colonization by exogenous pathogens, 
and fostering not only oral but also systemic well-being. Nevertheless, 
disturbances in the dynamic equilibrium of the oral microbiota can 
engender various oral disorders, notably periodontitis (4) and dental 
caries, which ultimately undermine the normal physiological 
functions of the oral cavity. Furthermore, oral bacteria harbor the 
potential to translocate to distant organs, instigating chronic 
inflammatory responses and may potentially play a contributory role 
in the genesis of systemic ailments, such as Alzheimer’s disease.

Alzheimer’s disease (AD) is a chronic neurodegenerative disorder 
characterized by progressive memory impairment and cognitive 
impairment, making it the most prevalent form of dementia among 
the elderly (5). With the global population continuing to age, there has 
been a noticeable increase in the prevalence of AD (6). It is estimated 
that approximately 55 million individuals worldwide are affected by 
dementia, and projections indicate that this number will rise to 78 
million by 2030 (7). Regarding the financial burden, global AD 
treatment costs are anticipated to account for 17.52, 18.71, 20.00, 
20.80, and 20.70% of total expenditures in 2015, 2020, 2030, 2040, and 
2050, respectively (8). These statistics underscore the substantial 
economic and societal burdens associated with AD. Despite extensive 
research efforts and some insight into its pathogenesis, the precise 
etiology of AD remains elusive, and there is currently a lack of effective 
strategies for prevention and treatment. Consequently, AD continues 
to have a high mortality rate, ranking as the seventh leading cause of 
death globally in 2019 (9).

2 The relationship between oral 
microbiota and AD

2.1 Epidemiological relevance

In 1891, Miller, a prominent figure in the realm of oral 
microbiology, introduced the concept of “oral focal infection” (10). 
This paradigm proposed that the oral microbiota possesses the 
capacity to trigger infections in remote anatomical sites, thereby 
contributing to the development of various systemic diseases. Miller’s 
seminal hypothesis served as a cornerstone in establishing the intrinsic 
connection between oral health and general well-being, subsequently 
guiding further investigations in the field of oral microbiology.

AD and periodontitis exhibit shared risk factors and demonstrate 
notable similarities in their heightened inflammatory profiles, thus 
suggesting a potential bidirectional relationship (11). Furthermore, 
the oral microbiota, serving as the instigating factor for periodontitis, 
emerges as a crucial link between periodontal disease and AD, 
particularly with periodontal pathogens assuming significant roles in 
the mechanisms underlying AD onset (12). The density of oral 
bacteria in the brains of individuals with AD is estimated to 
be approximately sevenfold higher compared to cognitively healthy 
individuals (13). Furthermore, research has demonstrated that 
alterations occur in the oral microbiota of AD patients, and 
periodontal microbiota is relatively sensitive to cognitive changes (14). 
Importantly, this heightened density encompasses elevated levels of 
periodontal pathogens such as Porphyromonas gingivalis and 

Fusobacterium nucleatum (15, 16), in addition to Prevotella intermedia 
(15) and Treponema denticola, commonly found in dental plaque (17). 
Substantial evidence points to an association between alterations in 
the bacterial composition of the oral microbiota, elevated levels of 
inflammatory cytokines, and AD (15). In tandem, the dental and 
periodontal health of AD patients gradually declines as the disease 
progresses, intricately interwoven with their cognitive function (18). 
When the depth of periodontal pockets exceeds 6 mm, the risk of 
developing AD escalates by a remarkable 15-fold (19).

Undesirable oral conditions, encompassing tooth loss and 
inadequate oral hygiene practices, can exert profound effects on the 
composition and diversity of oral bacteria, thereby potentially 
predisposing individuals to cognitive decline (20). Notably, AD 
patients exhibit an increased risk of tooth loss and complete 
edentulism, surpassing the risks observed within the general 
population (21). A prospective cohort study has revealed a 
longitudinal association between the number of teeth present (NTP) 
and hippocampal atrophy, particularly when considering the severity 
of periodontitis, and this underscores the potential link between tooth 
loss and subsequent cognitive decline, which may outweigh the 
influence of age (22). Moreover, the loss of functional teeth and 
impairment of functional occlusal units can further exacerbate 
cognitive impairments in affected individuals (23).

A prospective longitudinal study involving 5,468 participants 
revealed a robust link between infrequent toothbrushing routines and 
the occurrence of AD (24). Furthermore, with advancing age, 
individuals diagnosed with AD often encounter difficulties in 
adequately maintaining their oral hygiene practices (25), resulting in 
a pronounced decline in oral health status (26). Consequently, dental 
professionals are increasingly recognizing the importance of 
identifying and addressing risk factors associated with oral health 
while promoting regular oral care practices.

2.2 Pathological mechanism relevance

Certainly, AD is a multifactorial and intricate condition, driven 
by various factors, with primary hypotheses including the amyloid 
cascade hypothesis (27) and the neuroinflammatory hypothesis (28). 
The neuropathological characteristics associated with these 
hypotheses encompass the abnormal accumulation of extracellular 
amyloid-β (Aβ) and the entanglement of intraneuronal neurofibrillary 
tangles with hyperphosphorylated tau protein. These features 
collectively constitute the complex disease mechanism of 
AD. However, the outcomes of recent drug trials targeting the amyloid 
cascade hypothesis have generated less encouraging findings, casting 
doubts on the effectiveness of treatment strategies associated with this 
hypothesis (29). Consequently, the neuroinflammation hypothesis and 
Tau hyperphosphorylation has garnered attention as a focal point of 
current investigations within the realm of AD research.

The dysregulated composition of the oral microbiota exhibits a 
close association with detrimental oral health outcomes and 
neuroinflammation, thereby initiating neurodegeneration (30, 31). 
Specifically, oral microorganisms produce various virulence factors, 
including gingipains (32), lipopolysaccharides (33), and outer 
membrane vesicles(OMVs) (34), which subsequently mediate chronic 
periodontal inflammation and damage to the periodontal support 
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tissues. It is noteworthy that research has shown that OMVs produced 
by periodontal pathogen Porphyromonas gingivalis may be involved 
in the activation of glial cells, ultimately leading to neuroinflammation 
and impairment of memory function. In addition, not only does 
gingipain plausibly propagate among neurons in a manner reminiscent 
of infectious diseases, resulting in direct damage to Tau proteins, but 
it also activates human proteases associated with Tau proteins, thereby 
contributing to the pathological changes in Tau proteins observed in 
AD (32). Concurrently, diseased periodontal tissues secrete 
pro-inflammatory cytokines such as IL-1, IL-6, TNF-α, chemokines, 
and IL-8, along with bacteria that sustain the state of inflammation. 
These inflammatory mediators can enter circulation through the 
inflamed and dilated capillaries (35), effectively traversing the blood–
brain barrier (BBB) (36) and gaining access to the central nervous 
system. Alternatively, they can disseminate to the brain via cranial 
nerves such as the olfactory nerve (37) and trigeminal nerve (38), 
prompting inflammatory cascades within the brain, ultimately 
culminating in neurodegeneration, brain atrophy, and cognitive 
decline (39). Collectively, these processes suggest a potential 
association with the development and advancement of AD, though 
further research is warranted.

Furthermore, individuals afflicted with AD possess the capacity 
to transmit their oral and gut microbiota to their non-AD 

counterparts, thereby exerting a cognitive impact on the recipients 
(40). This observation suggests that beyond the disrupted composition 
of the gut microbiota potentially contributing to AD pathogenesis via 
the intricate gut-brain axis (41), the oral microbiota can also influence 
perturbations in gut ecology through the “oral-gut-brain axis,” 
concurrently fostering conditions of neuroinflammation and 
neurodegeneration (38). Nevertheless, in contrast to the gut 
microbiota, the oral microbiota possesses a more direct and 
expeditious route to the brain, as it can readily breach the blood–brain 
barrier and initiate neuroinflammation (32). Animal studies have 
found that inducing periodontitis in mice simultaneously leads to 
progressive cognitive impairments. This phenomenon may 
be  associated with an imbalance in the oral and gut microbiota 
triggered by the periodontal-related saliva microbiome. This 
imbalance, in turn, activates the LPS/TLR4/MyD88/NF-κ B signaling 
pathway, ultimately resulting in the disruption of the intestinal barrier 
and blood–brain barrier (42, 43). Consequently, based on current 
observations, it is tentatively postulated that the oral microbiota might 
potentially play a pivotal role in the initiation and progression of 
AD. This hypothesis arises from its perceived capacity to disseminate 
swiftly via hematogenous and neural routes, potentially facilitating its 
penetration into the cerebral domain. However, further research is 
needed to confirm this association (see Figure 1).

FIGURE 1

The diagram illustrates the mechanism through which periodontitis contributes to AD. Specifically, periodontal pathogens lead to chronic inflammation 
in oral tissues, triggering the influx of inflammatory and bacterial virulence factors into the bloodstream. These substances circulate through the blood, 
nervous system, and the oral-gut-brain axis, eventually causing chronic inflammation in the brain. This ultimately promotes the progression of AD. 
Surrounding the diagram, in a circular manner, are depicted the approaches for early diagnosis (pink area), treatment (green area), and prevention of 
AD (blue area) based on the aforementioned pathological mechanism. Created with BioRender.com.
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3 The potential application of oral 
microbiota in the prevention and 
treatment of AD

3.1 Early diagnosis

Recognizing the irreparable nature of the pathological changes 
attributed to AD, given its irreparable pathological changes, the early 
diagnosis of the disease holds crucial prognostic significance. 
However, Alzheimer’s Disease International (ADI) reports that 
globally, up to 75% of dementia cases go undiagnosed, with this 
number potentially rising to 90% in certain low- and middle-income 
countries, and it maintains a comprehensive early diagnosis strategy 
for AD that involves the synergistic use of cognitive testing, 
confirmatory scans, cerebrospinal fluid (CSF) analysis, and the 
incorporation of emerging biomarkers (7).

Since Klunk and colleagues first demonstrated 15 years ago the use 
of amyloid-β PET tracer Pittsburgh Compound-B (PIB) to directly 
visualize the pathophysiology of AD in the human brain (44), Aβ PET 
(45), and tau PET (46) have also begun to be gradually employed for 
early diagnosis of AD. Despite being available in high-income 
countries, the utility of PET and SPECT screening methods for 
identifying underlying causes of dementia is still limited due to cost 
and accessibility constraints. This implies that many regions globally 
are unable to fully utilize these advanced imaging techniques. 
Therefore, the search for more cost-effective and readily available 
screening methods to aid in early dementia diagnosis becomes crucial 
in achieving equitable distribution of healthcare resources worldwide.

While there is currently insufficient empirical evidence to support 
specific routine blood tests, recent research has demonstrated the 
feasibility of measuring blood biomarkers associated with AD, such as 
amyloid-β (Aβ), tau protein, phosphorylated tau (p-tau), and 
neurofilament light chain (NfL) in plasma (47). Furthermore, studies 
have shown a correlation between periodontitis and cognitive decline, 
potentially linked to overexpression of blood biomarkers for AD, such 
as p-tau and Aβ 1–40 (48).

Moreover, alterations in pro-inflammatory cytokine levels may 
hold diagnostic value for early identification of AD. Investigations 
conducted on AD patients reveal heightened levels of specific IgG 
antibodies directed against periodontal bacteria, notably exceeding 
those observed in non-AD counterparts, over the decade preceding 
the onset of the disease (49). However, a long-term follow-up study 
was carried out on individuals participating in the National Health 
and Nutrition Examination Survey III (NHANES III) from 1988 to 
2019. The results indicated that the IgG antibody cluster of periodontal 
microbiota could not serve as a predictor for AD mortality (22). 
Additionally, a prospective longitudinal study has indicated that 
elevated levels of TNF-α in the blood plasma, as well as the presence 
of antibodies against periodontal pathogens, may be associated with 
the development or progression of AD, and these factors may 
contribute to improving the clinical diagnosis of AD (50).

AD patients exhibit heightened circulating levels of IL-1β, IL-2, 
IL-6, IL-18, α-1 antichymotrypsin, and C-reactive protein (CRP) 
which may serve as potential biomarkers for the diagnosis of AD (51). 
Notably, elevated CRP and IL-6 concentrations have been associated 
with a 45 and 32% increased risk of multi-etiological dementia, 
respectively, underscoring the potential involvement of inflammation 
in the onset and progression of this intricate form of dementia (52).

3.2 Treatment

3.2.1 Basic periodontal therapy
In the context of AD, elderly individuals often encounter the 

challenge of maintaining proper oral hygiene, leading to an augmented 
colonization of bacteria within the oral cavity (53). Scaling and root 
planning (SRP) represent the gold standard approach for addressing 
periodontitis, encompassing a meticulous procedure designed to 
eradicate both supragingival and subgingival dental plaque and 
calculus. Through targeting and elimination of these sources of 
infection, SRP not only diminishes the abundance of pathogenic 
bacteria and inflammatory mediators in the oral milieu but also 
promotes oral health (54). The implementation of SRP can significantly 
alleviate the burden of detrimental microorganisms and ameliorate 
oral inflammation, potentially endowing noteworthy therapeutic 
benefits for individuals afflicted with AD. Particularly noteworthy, 
individuals who neglect to accord priority to fundamental periodontal 
treatment face a substantially heightened risk of developing AD (55). 
Treating periodontitis has been suggested to potentially improve 
AD-related brain atrophy, with both periodontal treatment and 
subsequent maintenance therapy influencing imaging biomarkers and 
showing promising efficacy in treating AD-related brain atrophy (56). 
Interestingly, in cases of mild AD, the integration of periodontal 
therapy has shown potential for improving oral health indicators, 
enhancing overall quality of life (57) and may also hold promise as a 
possible approach to support cognitive function and promote 
brain health.

Unfortunately, individuals with dementia face increasing 
challenges in accessing essential dental healthcare as their cognitive 
function declines (58). Recent studies have highlighted concerning 
issues surrounding oral care interventions for hospitalized elderly 
patients, citing the high cost associated with dental healthcare and the 
limited health benefits considering their shorter life expectancy (59). 
Therefore, when it comes to treating periodontal disease in patients 
with AD and improving oral hygiene, it is important to consider the 
feasibility and appropriateness of treatment measures. Additionally, 
increasing awareness of health interventions in this area is crucial to 
ensure that elderly patients receive the necessary oral care services 
they require.

3.2.2 Antibiotics
In light of the association between alterations in the oral 

microbiome and AD, the administration of antibiotics has emerged as 
a potential avenue to ameliorate AD symptoms (60, 61). Despite 
achieving a substantial reduction in bacterial populations through 
gingival curettage and subgingival scaling, the primary challenge for 
long-term effectiveness in managing periodontitis lies in controlling 
the regrowth of oral microbiota (62). Notably, tetracycline antibiotics 
such as doxycycline and minocycline have garnered attention due to 
their capability to traverse the blood–brain barrier (BBB) (63) and 
their diverse effects within the central nervous system. These effects 
include the inhibition of matrix metalloproteinases (MMPs), 
scavenging of reactive oxygen species (ROS), anti-apoptotic 
properties, anti-inflammatory effects, inhibition of protein 
aggregation, and preservation of mitochondrial function (64). 
Consequently, these antibiotics have been identified as potential 
therapeutic modalities for AD. However, the dosages of medications 
required to impact and improve cognitive status are much higher 
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compared to standard doses. For instance, minocycline doses ranging 
between 20–100 mg/kg have been proposed to achieve the desired 
neuroprotective effects, which significantly exceeds the dosages 
commonly employed for inflammation and infections (typically 
around 3 mg/kg/day) (65). However, long-term use of such high doses 
of antibiotics can disrupt the gut microbiota, leading to gastrointestinal 
adverse reactions (66), and bacterial resistance. Whether there is a way 
to control both periodontal inflammation and brain inflammation, 
reduce the dosage of minocycline, and therefore mitigate potential 
side effects.

Consequently, an emerging strategy that involves the synergistic 
utilization of scaling and root planning (SRP) with the integration of 
local drug delivery systems (LDDSs) or sustained-release drug 
delivery techniques (67). Notably, research has demonstrated that 
patients receiving adjunctive treatment of scaling and root planning 
utilizing minocycline hydrochloride microspheres displayed a notable 
reduction in both counts of periodontal pathogens and levels of 
periodontal attachment loss, surpassing the outcomes observed in the 
control group (68). Nanocarriers offer advantages in enhancing drug 
solubility and dissolution rate, improving oral bioavailability, and 
reducing side effects and dosing frequency (69), and they may have a 
potential role in improving cognitive function in AD (70). The 
research findings by Kashi et al. indicate that the use of nanocarriers 
to load minocycline can reduce the minimum inhibitory concentration 
(MIC) and minimum bactericidal concentration (MBC) by half, 
compared to using minocycline alone, thereby reducing the required 
drug dosage (71). Animal studies have demonstrated that minocycline 
loaded into polymer nanoparticles can alleviate neuroinflammation 
in mice with spinal cord injury (72). Combining local drug delivery 
systems and nanocarrier technologies to use antibiotics for treating 
AD symptoms may be a potentially effective therapeutic approach. 
The application of these new technologies holds the potential to 
enhance treatment efficacy and minimize the side effects and 
resistance issues associated with antibiotics. Nevertheless, more 
scientific evidence is needed to support this perspective.

3.2.3 Probiotics
Probiotics, as defined by the World Health Organization (2012), 

pertain to “viable microorganisms that, when administered in 
appropriate quantities, confer health benefits to the host” (73). 
Notably, in 2012, Sugano introduced the concept of “biofilm control,” 
which encompasses the utilization of probiotics and vaccines to 
eradicate pathogenic bacteria (74). As a result, probiotic adjunctive 
therapy has emerged as a prospective method to prevent or treat 
intestinal dysbiosis and optimize the therapeutic effects of AD 
medication by modulating the gut-brain axis (75, 76).

Of note, these probiotic species are also important members of the 
oral-gut-brain axis, playing critical roles in the intricate ecosystem of 
human microbiota. The Lactobacillaceae and Bifidobacteriaceae 
families have gained prominence as extensively investigated probiotic 
species within the realms of dentistry and medicine. These microbial 
families assume critical roles as integral constituents of the human 
oral, gastrointestinal, and urogenital microbiota (77). Additionally, 
select strains of Lactobacillus and Bifidobacterium have exhibited the 
ability to modulate brain function through epigenetic regulatory 
mechanisms (78), which could potentially lead to the attenuation of 
inflammatory processes. Particularly noteworthy is the Lactobacillus 
casei strain ML2018, which has demonstrated the potential to 

counteract the pro-inflammatory effects of lipopolysaccharides and 
mitigate the release of cytotoxic molecules, including nitric oxide (79). 
Intriguingly, animal models have revealed that oral probiotic 
administration might have the potential to restore glucose homeostasis 
in mouse models of AD by potentially exerting influences upon the 
intricate ecosystem of the gut microbiota (80) and potentially 
modulate the microbiota-gut-brain axis and improve memory (81). 
Clinical trials have demonstrated that supplementation with probiotics 
can promote psychological flexibility and reduce stress in healthy 
older adults by modulating the gut microbiota, and may improve 
cognitive function and mood (82).

Furthermore, probiotics have emerged as a promising adjunctive 
therapeutic intervention in the management of periodontal diseases. 
Currently, commercially available Lactobacillus reuteri lozenges have 
been successfully commercialized and effectively utilized as a 
supportive treatment modality in periodontal therapy, yielding 
favorable outcomes (83). These lozenges have demonstrated the 
potential to mitigate the dysbiotic subgingival microbial environment 
after periodontal interventions and effectively modulate the microbial 
composition within the depths of periodontal pockets, including the 
challenging-to-access furcation areas (84). These contributions 
significantly contribute to the long-term preservation of the 
therapeutic efficacy achieved through periodontal therapy. Particularly 
for elderly patients with compromised oral hygiene abilities, the use 
of probiotics offers a user-friendly and low-risk approach. As a 
standalone therapeutic modality, it holds considerable prospects for 
incorporation into oral healthcare practices. Interestingly, data from 
a longitudinal study spanning 60 days showcased that monotherapy 
administration of Lactobacillus reuteri lozenges for periodontitis 
exerts selective antimicrobial activity against pathogenic organisms 
inhabiting the periodontal niche. This leads to significant reductions 
in pocket depth, attachment loss, and plaque accumulation in 
untreated molars with deep periodontal pockets. Notably, it also yields 
remarkable effects in the resolution of fistulas and the maintenance of 
prolonged equilibrium in the subgingival microbial community (85).

3.2.4 Biopharmaceuticals
Cathepsin B (CTSB) is a highly potent lysosomal protease that 

plays a crucial role in the pathogenesis of the destructive inflammatory 
cascade orchestrated by lipopolysaccharide (LPS). The disruption of 
the integrity of the blood–brain barrier may has been implicated in 
the etiology of LPS derived from Fusobacterium nucleatum (86). 
Notably, an animal experiment revealed that prolonged exposure to 
LPS in middle-aged mice may induce pathological changes associated 
with AD, with CTSB playing a mediating role in this process (87). This 
implies that CTSB holds promise as a therapeutic target for preventing 
cognitive decline in AD related to periodontitis. Interestingly, studies 
utilizing genetic knockout of the CTSB gene have revealed its capacity 
to mitigate memory loss and neuroinflammation induced by 
Porphyromonas gingivalis infection. Additionally, the administration 
of CTSB inhibitors has been shown to effectively dampen the 
inflammatory response triggered by LPS thereby displaying the 
potential to enhance cognitive function in individuals affected by AD 
(88). In summary, a comprehensive understanding of the intricate 
interplay among CTSB, LPS, and the disruption of the blood–brain 
barrier has shed light on the utilization of CTSB inhibitors and the 
modulation of CTSB gene expression as prospective strategies to 
combat cognitive decline in chronic periodontitis-associated AD.
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Gingipains, as the primary virulence factors synthesized by 
Porphyromonas gingivalis, are cysteine proteases that exert a 
fundamental role in host colonization, tissue degradation, evasion of 
host immune responses, and acquisition of vital nutrients, such as iron 
(89). The administration of systemically delivered gingipain inhibitors 
has emerged as a potent strategy for reducing the population density 
of Porphyromonas gingivalis and mitigating neuroinflammation, 
thereby providing neuroprotection to hippocampal neurons (32). An 
important advantage associated with gingipain inhibitors, in 
comparison to broad-spectrum antibiotics, is their specific targeted 
action against Porphyromonas gingivalis, effectively mitigating the 
imminent risk of antibiotic resistance development.

APOE4 (apolipoprotein E4) is a 34 kDa plasma lipoprotein that 
has recently been found to have a potential association with both AD 
(90) and periodontitis (91). The autopsy report not only presents 
evidence of a positive correlation between APOE4 allele and sporadic 
AD (92), but also observes an association between APOE genotypes 
and β-amyloid deposition in the cerebral cortex, even in elderly 
participants without AD (93). The relationship between periodontitis 
and AD may be explained by the presence of the APOE4 gene. A case-
control study using tooth loss as a surrogate measure for periodontitis 
has shown an association between mild cognitive impairment (MMI) 
and the number of teeth lost in individuals carrying the APOE4 allele 
(94). Furthermore, Porphyromonas gingivalis may enter the brains of 
ApoE−/− mice, leading to complement activation and damage to 
surrounding neurons (95). This neuroinflammatory mechanism 
induced by Porphyromonas gingivalis could potentially generate 
neurotoxic fragments of APOE in AD brains. The detection of 
Porphyromonas gingivalis in the central nervous system suggests a 
potential correlation between the development of AD and genetic 
variations associated with the host immune response, including genes 
such as TREM2 (96), TLR4 (97), CR1 (98), and NLRP3 (99). To devise 
more personalized prevention and treatment strategies, future 
research can concentrate on elucidating internal changes and genetic 
variations occurring within the host.

3.3 Prevention

3.3.1 Oral hygiene maintenance
As AD progresses, the cognitive decline experienced by patients 

adversely affects their ability to uphold oral hygiene practices and 
limits their access to dental care (100), resulting in a notable decline 
in their oral health status (101). Research has indicated that only 13% 
of adults aged 50 and above in Organization for Economic 
Co-operation and Development (OECD) member countries engage 
in weekly oral hygiene practices (102). Thus, healthcare professionals 
assume a crucial role in delivering comprehensive oral education and 
conducting regular follow-up visits to evaluate the oral condition of 
patients, ensuring effective periodontal maintenance (103). The 
implementation of the 5S methodology, comprising sorting (Seiri), 
straightening (Seiton), sweeping (Seiso), standardizing (Seiketsu), and 
sustaining (Shitsuke), is gradually integrated into oral hygiene 
practices (96). This approach assists healthcare providers in enhancing 
hygiene standards and work efficiency while caring for elderly patients 
with AD, which potentially yields improved overall oral health 
outcomes (104).

Considering the impact of cognitive impairments on oral health 
and dental utilization (105), a longitudinal study conducted in China 

unveiled the challenges faced by elderly individuals with dementia in 
maintaining sufficient oral hygiene habits, resulting in suboptimal oral 
health status and an elevated vulnerability to dental caries. These 
difficulties can be  attributed to obstacles encountered during 
toothbrushing (53). In comparison to traditional manual toothbrushes 
and dental floss, the adoption of powered toothbrushes, water flossers, 
or Collis curve brushes has emerged as a promising intervention, 
providing simplified oral care procedures and enhanced plaque 
removal efficacy, thereby promoting improved oral hygiene 
practices (106).

3.3.2 Vaccine
The research findings present evidence that the release of OMVs 

by Porphyromonas gingivalis triggers the activation of the NLRP3 
inflammasome, leading to neuroinflammation, tau phosphorylation, 
and cognitive impairment in mice. This cascade of events has the 
potential to have a latent impact on the progression of AD (107), 
although the exact extent of its influence is still uncertain. Notably, the 
gingival cytoplasmic membrane vesicles possess nanoscale dimensions 
and exhibit remarkable immunogenicity, adaptability, and 
immunocyte uptake, thereby displaying functional intercellular 
interactions. These unique characteristics position them as a 
promising avenue for the development of vaccines and targeted drug 
delivery systems aimed at suppressing the release of bacterial virulence 
factors (108). Currently, extensive research and development efforts 
are underway to formulate vaccines tailored specifically to combat 
periodontal pathogens, particularly Porphyromonas gingivalis (109). 
Anticipated advancements in vaccine development technologies hold 
promise for the creation of an expanded repertoire of vaccines 
targeting a diverse array of periodontal pathogens in the foreseeable 
future. These vaccines have potential in effectively preventing both 
oral diseases induced by oral bacteria and systemic diseases. 
Furthermore, the development of vaccines against periodontal 
pathogens is expected to yield improvements in global oral health, 
thereby exerting a impact on overall human health and well-being.

3.3.3 Healthy lifestyle
Periodontitis and AD bear resemblances in terms of multiple 

shared risk factors, including age, obesity, diabetes, psychological 
stress, smoking, alcohol consumption, and education level. 
Consequently, implementing measures to modify lifestyle habits in 
these domains can serve as an effective strategy in concurrently 
preventing and ameliorating both periodontitis and AD.

Immunosenescence and inflammation are intricately 
interconnected processes that synergistically contribute to the 
pathogenesis of periodontitis and AD (110). Insufficient physical 
activity, imbalanced dietary patterns, and excessive nutrient intake can 
elicit inflammatory responses and oxidative stress, disrupting crucial 
metabolic pathways and ultimately predisposing individuals to obesity 
and diabetes (111). Therefore, promoting a comprehensive diet and 
physically active lifestyle among older individuals is of paramount 
importance to bolster the immune system, mitigate the risks associated 
with obesity and diabetes, and foster a vibrant aging process. 
Additionally, dietary modifications have the potential to exert positive 
effects on both oral and gut microbiota, thereby imparting further 
benefits to overall health.

The Mediterranean-style diet is widely recognized as an exemplary 
anti-inflammatory dietary pattern that confers protective effects 
against age-related risk factors for disease. It is characterized by a 

https://doi.org/10.3389/fpsyt.2023.1291455
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Zhang et al. 10.3389/fpsyt.2023.1291455

Frontiers in Psychiatry 07 frontiersin.org

generous consumption of whole grains, fruits, vegetables, legumes, 
and olive oil while emphasizing moderation in dairy products and 
alcohol, and limiting meat intake (112). Animal studies have 
demonstrated that the primary component of the Mediterranean diet, 
oleic acid, exhibits remarkable anti-inflammatory properties, and also 
contributes to the resolution of inflammation, thereby ameliorating 
tissue damage resulting from the host response to oral bacterial 
ingestion in mice (113). Mild cognitive impairment (MCI) represents 
an early stage of AD pathology and necessitates non-pharmacological 
interventions, including dietary and nutritional modifications. 
Engaging in aerobic exercises and other physical activities has shown 
an inverse correlation with the reduction of AD-related impairments 
(114). For individuals aged 45 and above with MCI progressing 
towards AD, adopting the Mediterranean-style diet and incorporating 
regular 3 to 5 days of medium-to-high-intensity physical exercise per 
week can yield improvements in overall cognitive function among 
MCI patients (115).

Stress emerges as a risk factor in the etiology of depression, 
although the direct causal link between stress and AD as a risk factor 
remains to be  definitively established. Nevertheless, clinical 
investigations have revealed a remarkable finding: individuals suffering 
from depression face a significantly heightened risk, exceeding 
threefold, of developing AD (116). The impact of stress is mediated 
through the activation of apoptotic mechanisms in the astrocytes of the 
hippocampus and prefrontal cortex, thereby may exacerbating the 
shared pathological characteristics of depression and AD (117). 
Furthermore, the intricate interplay between stress and the diversity of 
the microbiome may exert a regulatory influence on stress responses 
and anxiolytic effects, ultimately shaping the potential progression of 
AD. Enlightening research suggests that the administration of 
probiotics and short-chain fatty acids (SCFAs) may promote cognitive 
restitution and enhance neuropsychiatric well-being by suppressing 
stress-induced cortisol release in chronically distressing socio-
psychological environments (118). Simultaneously, the impact of 
potentially addictive substances, such as tobacco, alcohol, and/or 
anesthetics, may influence both host reactions and the microbiome, 
thereby possibly impinging upon the trajectory of AD (119).

The extensive utilization of music for relaxation and stress 
reduction purposes is widely recognized. By stimulating both the 
sensory and cognitive centers of the brain, music has the potential to 
enhance attention, and concentration, and foster creativity. 
Consequently, the application of music therapy in the context of AD 
has garnered t attention from researchers and practitioners. A growing 
body of evidence supports the effectiveness of music therapy in 
mitigating behavioral disturbances, anxiety, and agitation among 
individuals with AD (120). Additionally, classical music has been 
observed to stimulate salivary secretion and facilitate the production 
of salivary nitrite, with potential implications for modulating oral 
function (121). Salivary nitrite, derived from nitrate, can undergo 
further reduction to nitric oxide (NO) and other nitrogen oxides 
within the bloodstream and tissues (122). Salivary nitrite exerts 
gastroprotective effects, while the combination of nitrite-rich human 
gastric fluid and saliva has been shown to inhibit the proliferation of 
Escherichia coli and Candida albicans (123). Interestingly, patients 
with periodontal disease exhibit notably higher concentrations of total 
nitrate and nitrite in their saliva, suggesting a potential link to the 
host’s defense mechanisms and providing an additional layer of 
protection against these infectious conditions (124). Although further 

investigation is needed to elucidate individual variations in treatment 
response and underlying mechanisms, music therapy represents a 
cost-effective and non-pharmacological intervention that holds 
promise in enhancing the psychophysical well-being of individuals 
with AD and exerting favorable influences on oral health.

4 Conclusion

There may be  a potential reciprocal relationship between oral 
dysbiosis and AD. The recognition of oral bacteria as a novel perspective 
for enhancing AD provides new therapeutic avenues for oral healthcare 
professionals. For the purpose of prevention, healthcare practitioners can 
consider reinforcing oral health education among older adults and 
promoting regular oral examinations. It is worth noting that there is a 
tendency to overlook oral healthcare in this age group, and the associated 
costs can sometimes be  discouraging for patients. However, it is 
important to address these challenges and find ways to raise awareness 
and facilitate access to affordable oral healthcare services. For treatment, 
a combination of routine periodontal therapy and adjunctive use of 
antibiotics and probiotics could be considered. Non-pharmacological 
interventions, which may include adopting a healthy diet and lifestyle, 
have been suggested to potentially enhance cognitive function, 
neurological and mental well-being, and overall quality of life among AD 
patients. Despite the immense potential and promising prospects of 
harnessing oral bacteria for AD prevention and treatment, several 
unresolved challenges persist. Particularly, refining methods for early 
detection of AD through emerging blood biomarkers remains 
incomplete. Moreover, further investigation is warranted to determine 
the optimal dosage of antibiotics and probiotics, as well as potential side 
effects. The utilization of oral bacterial vaccines offers a promising 
approach to AD treatment, but necessitating substantial research and 
development endeavors are necessary to pave the way for effective AD 
prevention and management. In the future, further long-term, high-
quality scientific research and rigorous clinical trials are needed to 
validate its effectiveness and safety, thus providing more effective means 
for the prevention and treatment of AD.
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