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Timely detection of cognitive impairment (CI) is critical for the wellbeing of

elderly individuals. The MyCog assessment employs two validated iPad-based

measures from the NIH Toolbox® for Assessment of Neurological and Behavioral

Function (NIH Toolbox). These measures assess pivotal cognitive domains: Picture

SequenceMemory (PSM) for episodicmemory and Dimensional Change Card Sort

Test (DCCS) for cognitive flexibility. The study involved 86 patients and explored

diverse machine learning models to enhance CI prediction. This encompassed

traditional classifiers and neural-network-based methods. After 100 bootstrap

replications, the Random Forest model stood out, delivering compelling results:

precision at 0.803, recall at 0.758, accuracy at 0.902, F1 at 0.742, and specificity

at 0.951. Notably, the model incorporated a composite score derived from a 2-

parameter higher order item response theory (HOIRT)model that integratedDCCS

and PSM assessments. The study’s pivotal finding underscores the inadequacy of

relying solely on a fixed composite score cuto� point. Instead, it advocates for

machine learning models that incorporate HOIRT-derived scores and encompass

relevant features such as age. Such an approach promises more e�ective

predictive models for CI, thus advancing early detection and intervention among

the elderly.
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MyCog, NIH Toolbox, machine learning, deep learning, IRT, higher order item response
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1 Introduction

Cognitive impairment (CI) is known to be a significant public health concern; it has

profound impact on older adults. Oftentimes, mild CI (MCI) goes undetected, and clinical

detection. Clinicians may solely rely on patients proactively self-reporting concerns when

only a third typically acknowledge any cognitive problems (1–4).

Early detection of CI has many potential benefits for patients and their families.

Early detection may reveal reversible or treatable causes (e.g., depression and vitamin

B12 deficiency) (Office of Disease Prevention and Health Promotion, n.d.). When CI

is present, early detection may allow patients and families time to emotionally adjust

and plan for the future, opportunities for treatments to reduce symptoms, (optimizing
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functional independence and quality of life), and the ability

to address/prevent safety concerns (e.g., driving and home

environment) (5). Our goal was to develop a brief measure (< 10

minutes) for use in primary care settings for the early detection

of CI including dementia (CID). The MyCog assessment uses

adapted versions of two well-validated iPad-based measures from

the NIH Toolbox R© for Assessment of Neurological and Behavioral

Function Cognitive Battery (NIHTB-CB) that address two of the

first domains to show CI: Picture Sequence Memory (PSM) which

assesses episodic memory and Dimensional Change Card Sort Test

(DCCS) measuring cognitive flexibility (6–8). The purpose of this

study was to pilot, refine, and preliminarily validate the MyCog

Assessment to detect CID in a sample of community dwelling

older adults in primary care. In total, 86 participants were recruited

from an existing cohort study and completed a brief, in-person

interview. CI was determined based on a diagnosis of dementia or

CI in their medical record or based on a comprehensive cognitive

battery performed within the past 18months. In addition toMyCog

DCCS and PSM assessments, participants also took three external

assessments from the Mobilke Toolbox: Arrow Matching (ARW),

Sequences (MFS), and Number-Symbol Match (NSM). Mobile

Toolbox assessments are self-administered on smartphones. The

five assessments will be explained in more detail in the next section.

The objective of this study is to identify the optimal derived

scores that can distinguish individuals with and without cognitive

impairment. The study employs a systematic investigation that

evaluates multiple scoring methods within the same study to

identify the most effective predictors for accurately classifying

individuals into their respective clinical groups. Specifically, the

study focuses on defining the two-content area scores and compare

it with five-content area scores. The aim is to gain a deeper

understanding of the underlying scoring of the subtests and to test

the final composite “MyCog” score for its ability to differentiate

between groups. In addition, the study employs machine learning

(ML) models to enhance prediction accuracy. Non-parametric

models are used by ML to improve model accuracy by fitting and

representing the data in a more flexible manner (9). The study

investigates the most important variables or "features" collected by

the MyCog assessment that can predict cognitive status.

Overall, the study aims to provide a comprehensive analysis

of different assessments and the different scoring methods,

and machine learning techniques that can effectively distinguish

between individuals with and without cognitive impairment,

with less assessments. We conducted a study involving 86

clinical patients who underwent NIH Toolbox assessments, PSM

and DCCS, administered via iPad. Additionally, patients self-

administered Mobile Toolbox assessments, specifically ARW,MFS,

and NSM using their smartphones. Different models for the

composite score and different machine learning models with

different feature spaces were examined for the purpose of better

prediction of MCI.

2 Methods

2.1 Real data

In this study, we used data from patients who took the

five assessments: MyCog DCCS and PSM, and Mobile Toolbox

ARW, MFS, and NSM. After cleaning and merging, there were

86 patients with their five cognitive assessment data information

that contains their item responses for the five content area tests

and responses times for three tests: ARW, PSM, and DCCS. Each

patient also has demographic information for age, race, education,

and income. Their impairment status is categorized as 0/1 with 0

indicating normal cognition and 1 indicating CI. Table 1 shows the

demographic and clinical information for the 86 patients. Cognitive

status is also broken out by gender. For example, out of 60 female

patients, there were 46 normal cognition and 14 with CI. For the

education level, Master’s degree, represented by 9, had the most

percentage 32 followed by 23 percentage of Bachelor’s Degree,

represented by 8. Table 2 show the statistics of response times (in

s) for the three content area ARW, DCCS, and PSM for the 86

patients.

2.1.1 Cognitive measures
2.1.1.1 MyCog DCCS

The MyCog DCCS assesses executive function in general

and cognitive flexibility in particular. In this task, two reference

visual images that vary by two dimensions—color and shape—

are presented and remain in the bottom screen. Respondents are

asked to match target visual images that appear individually on the

center screen to one of the two reference visual images according

to color or shape. The task consists of five blocks of trials: (1)

two practice trials for the shape dimension, (2) five (pre-switch)

trials for the shape dimension, (3) two practice trials for the color

dimension, (4) five (post-switch) trials for the color dimension, and

(5) 30 (mixed) trials, in which the target dimension (i.e., color or

shape) were switched in a predetermined random order. Responses

and response times (RTs) were collected on each trial. RTs were

defined as the time elapsed in milliseconds between the onset of

the target visual image and the respondent’s response. Estimated

average testing time is 3 min.

2.1.1.2 MyCog PSM

TheMyCog PSM assesses episodicmemory. In this task, a series

of 12 visual images/pictures depicting independent, non-sequential

activities were presented individually on the center screen, along

with audio description of the picture content, and then placed into

one of twelve box slots. Respondents were instructed to remember

the order in which the pictures were presented and in which

box each was placed (i.e., encoding). Once all the pictures were

presented, they were scrambled to the center of the screen, and the

respondents’ task was to place the pictures in the boxes in the order

of original presentation (i.e., memory recall). Respondents began

with a practice trial which is comprised of four picture images,

followed by a single test trial with twelve picture images. Estimated

average testing time is 5 min.

2.1.1.3 Mobile Toolbox ARW

Mobile Toolbox ARW targets inhibitory control and attention.

It is a 50-item test that measures executive attention, which

encompasses endogenous attentional processes that are under

cognitive control and overlaps considerably with the construct

of executive function. Dual task paradigms such as ARW

have shown impairments in asymptomatic carriers of familial

Alzheimer’s disease and individuals with CRCI. This measure
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TABLE 1 Statistics of the 86 patients.

Category Numerical
value

Data set
value

Count Percent

After
scaling

Impaired 0 Normal

Cognition

67 78

1 Cognitive

Impairment

19 22

Gender 0 F 60(46N,14I) 70

1 M 26(21N,5I) 30

Race 0 Asian 4 5

1 Black 11 13

2 Unreported 1 1

3 White 70 81

Income 0 2 2 2

1 3 3 3

2 4 3 3

3 5 8 9

4 6 10 12

5 7 12 14

6 8 21 24

7 9 26 30

8 D 1 1

Education 4 5 6

6 10 12

7 3 3

8 23 27

9 32 37

10 5 6

11 6 7

777 2 2

requires respondents to indicate the left-right orientation of

a centrally presented stimulus while inhibiting attention to

potentially incongruent stimuli that surround it. Estimated average

testing time is 3 min.

2.1.1.4 Sequences

MFS assesses working memory—ability to recall unrelated

information and cognitively manipulate it to produce a new

output. MFS is a newly developed measure of working memory

with a item bank of 30 different stimuli. Working memory

deficits have been previously shown in the context of cognitive

decline, particularly with Parkinson’s disease and HIV-associated

neurocognitive disorders. MFS requires participants to remember

a string of letters and numbers and manipulate them in order to

put them in an alphabetical and numeric order. Trials begin with

strings of three alphanumeric characters and become increasingly

TABLE 2 Statistics of the item response times for ARW, DCCS, and PSM

(in s).

ARW DCCS PSM

count 86 86 86

mean 47.421 36.049 73

std 11.619 14.909 34

min 31.906 15.301 30

25% 39.207 26.823 52

50% 44.966 33.014 63

75% 52.492 40.248 84

max 94.313 103.959 233

challenging, reaching a maximum difficulty of 10 characters. The

measure ends when a participant answers three subsequent trials

incorrectly. Scores reflect the number of correct trials. Estimated

average time is 5 min.

2.1.1.5 Number-symbol match

This measure is administered using a landscape orientation.

A key with nine symbols paired with digits (1-9) is presented

at the top of the screen. Participants are asked to enter

the number associated with the symbol in a row of items

below. The primary score is the total number of correct

items in 90 seconds. Number-Symbol Match, a 144-item test,

indexes several cognitive functions including perception, encoding,

and retrieval and the transformation of information stored

in active memory and decision-making. Due to the wide

range of abilities influencing task performance, this measure

provides high sensitivity and low specificity for many types

of impairment, including normal age-related decline, dementia,

cancer, and multiple sclerosis. Estimated average testing time is

2 min.

2.1.2 Item and test level psychometrics
Regarding internal consistency, Cronbach’s alpha values for

the five content areas assessed by the tests (DCCS, PSM, ARW,

MFS, and NSM) were as follows: 0.866, 0.828, 0.593, 0.833,

and 1, respectively. Notably, the first three assessments had no

missing values, while the percentage of missing responses for

MFS and NSM increased as the testing progressed. This increase

in missing responses for MFS and NSM may be attributed to

patient fatigue during the testing process or due to the stopping

rules implemented by these tests. We are most interested in using

the two MyCog cognitive measures (DCCS and PSM). Table 3

presents correlations between cognitive test results measures

(DCCS and PSM) and demographic information for the sample

of 86 patients. The correlations between the scores (number

of correct responses) in all five content areas range from 0.2

to 0.6. Table 4 provides a summary of the mean and standard

deviation (SD) scores for the number of correct responses

in the five content areas, categorized by demographic factors.

The statistical summary indicates that there are no significant

performance differences based on gender, race, education, or
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TABLE 3 Relationships between measures and demographics.

Impaired Education Race Income Age Gender PSM DCCS

Impaired 1 -0.087 -0.136 -0.335 0.268 -0.045 -0.334 -0.284

Education -0.087 1 -0.105 -0.012 0.095 0.069 -0.07 0.088

Race -0.136 -0.105 1 0.076 0.125 0.132 0.157 -0.014

Income -0.335 -0.012 0.076 1 -0.132 0.167 0.097 0.109

Age 0.268 0.095 0.125 -0.132 1 0.067 -0.27 -0.174

Gender -0.045 0.069 0.132 0.167 0.067 1 -0.331 0.065

PSM -0.334 -0.07 0.157 0.097 -0.27 -0.331 1 0.268

DCCS -0.284 0.088 -0.014 0.109 -0.174 0.065 0.268 1

TABLE 4 Measure di�erences(mean (SD)) among demographics.

PSM DCC ARW MFS NSM

Impaired

0 6 (3) 29 (2) 49 (3) 11 (3) 31 (8)

1 4 (3) 27 (5) 45 (10) 6 (4) 21(8)

Gender

Female 7 (3) 28(3) 48 (4) 10 (4) 31(9)

Male 4 (2) 29(3) 48 (8) 10 (4) 25(9)

Race

Asian 5 (3) 27(5) 49 (2) 10 (4) 30(3)

Black 5 (2) 29(2) 47 (5) 10 (5) 29(9)

White 6 (3) 28(3) 48 (6) 10 (4) 29(9)

Education

4 5 (4) 24(6) 46 (3) 6 (4) 21(7)

6 5 (4) 27(5) 44 (13) 8 (5) 2(10)

7 6 (4) 29(1) 50 (1) 11 (2) 31(9)

8 6 (3) 29(1) 48 (4) 10 (4) 29(10)

9 6 (3) 29(3) 48 (4) 12 (3) 31(9)

10 6 (2) 30(0) 50 (1) 10 (4) 31(4)

11 6 (4) 30(1) 50 (0) 10 (1) 32(5)

777 4 (1) 30(0) 48 (1) 12 (2) 28(2)

Income

2 7 (1) 29(1) 49 (1) 8 (4) 30(8)

3 3 (3) 27(2) 35 (25) 6 (5) 1(10)

4 7 (3) 29(1) 43 (9) 10 (1) 26(6)

5 6 (4) 29(2) 48 (3) 9 (4) 27(11)

6 4 (3) 26(6) 48 (2) 9 (5) 30(8)

7 6 (4) 28(4) 49 (2) 11 (4) 29(10)

8 6 (3) 29(2) 48 (3) 11 (3) 30(9)

income. However, it is noteworthy that the scores consistently

tend to be lower in the impaired group compared to the

normal group.

2.2 Study design

The study design involves analyzing real data with all available

information to identify the best predictors and models for

predicting impairment. The analysis will involve comparing the

prediction accuracy of using two cognitive assessments vs. five

cognitive assessments. Additionally, the study will investigate

whether using only the derived composite scores can accurately

predict impairment (see next section). Finally, machine learning

models will be used to determine if other information can improve

prediction accuracy beyond the cognitive assessment.

An initial unsupervised analysis was performed using the

KMeans clustering algorithm to group the data into distinct

clusters. The elbow method was utilized to determine the optimal

number of clusters, and the resulting clusters were analyzed to

identify patterns and relationships between the patients’ composite

scores, income, age, and clinical impairment status.

The supervised analysis is conducted using clinical labels of

impairment to identify the factors that affect prediction accuracy.

This analysis involves examining the relationships between the

features and labels to determine the most relevant variables for

predicting clinical impairment. The results of this analysis can help

identify potential risk factors and develop diagnostic tools for early

detection and intervention.

2.3 The item response theory models

There were five distinct areas of content, each with varying

numbers of item responses for DCCS, PSM, ARW, MFS, and NSM,

with 30, 12, 50, 30, and 144 item responses, respectively. In order to

calculate the IRT scores, higher order two-parameter item response

theory (HOIRT) was employed (10).

For the combined data across all five content areas, five-

dimensional and two-dimensional HOIRT models were utilized

using Markov chain Monte Carlo [BMIRT, (11)]. For the five-

dimensional HOIRT model (HOIRT-5D), the resulting overall

score and scores for the five dimensions for each of the five content

areas were represented by SSHO, dccs, psm, arw, mfs, and nsm,

respectively. For the two-dimensional HOIRT models (HOIRT-

2D), the resulting overall score and scores of the two dimensions

for each of the two content areas were represented by SSHO2D,

dccs2D, and psm2D.
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2.4 Composite scores

One way of obtaining composite scores is to run a linear

regression for the possible combination of k variables.

Impaired = f (x1, · · · xk), (1)

where the function f is a linear regression function and k is the

number of variables applied. Five linear regressions were run from

the data and the coefficients are listed in Table 5. The probabilities

were derived based on the coefficients in Table 5 and the formula

below:

P = σ (f (x1, · · · xk)) (2)

=
expf (x1 ,···xk)

1+ expf (x1 ,···xk)
(3)

Composite1 is calculated by combining the scores from the five

content areas using classical methods. Specifically, the number of

correct scores were used for the PSM, MFS, and NSM tests. For the

DCCS and ARW tests, accuracy scores were calculated by dividing

the number of correct responses by the response time. These

accuracy scores were then used to calculate the composite score.

Composite2 is a composite score that takes into account

cognitive ability scores and response time measures for ARW,

DCCS, and PSM. It is derived from a linear combination of the

six scores and their response times: ssho, dccs, arw, psm, mfs,

and nsm, and arw-rt, dccs-rt, and psm-rt1. These scores are based

on the five-dimensional score estimates from the HOIRT model,

which includes both overall score estimates and five domain score

estimates using the BMIRT method developed by Yao (11, 12).

Composite3 is the linear combination of the three scores

SSHO2D, dccs2D, and psm2D from the two-dimensional HOIRT

model and age.

Composite4 is the linear combination of the three scores

SSHO2D, dccs2D, and psm2D from the two-dimensional HOIRT

model.

Composite5 is the linear combination of the scores from DCCS

score accuracy (total score divided by the response time) and

number of correct scores for PSM.

2.5 Feature space

In this study, various feature spaces were explored to identify

the best combination of features for predicting clinical impairment

using the data from 86 patients. The feature spaces were designed to

investigate the impact of different variables, such as demographics,

response time, and cognitive assessments, on the prediction of

clinical impairment.

• Feature space F1 contains all five assessment content areas

scores

{SSHO, dccs, psm, arw,mfs, nsm}, three content area response

times {psm − rt, arw − rt, dccs − rt}2, and four demographic

information {race, gender, income, education} This feature

1 Total response times for each of the three tests.

2 Total response times for psm, dccs, and arw.

space has 13 features; it is considered as the baseline because it

contains the most number of related features.

• Feature space F2 dropped the four demographic features from

F1 and contains six assessment scores and three response

times; it has nine features.

• Feature space F3 dropped the three response

times from F1 and contains 10 features in total

{race, gender, income, education, SSHO, dccs, psm,

arw,mfs, nsm}.

• Feature space F4 has six features and contains the overall score

and five content area scores {SSHO, dccs, psm, arw,mfs, nsm}.

• Feature space F5 contains the four demographic information

{race, gender, income, education}, scores fromHOIRT-2D with

DCCS and PSM {SSHO2D, dccs2D, psm2D}, and two content

area response times {dccs–rt, psm–rt}; it has nine features.

• Feature space F6 dropped the two response times in F5 and

contains seven features in total.

• Feature space F7 contains scores from HOIRT-2D with DCCS

and PSM {SSHO2D, dccs2D, psm2D}; it has three features.

• Feature space F8 has only one feature {Composite1}.

• Feature space F9 has only one feature {Composite2}.

• Feature space F10 has only one feature {Composite3}.

• feature space F11 has two features {age,Composite4}.

• Feature space F12 has only one feature {Composite5}.

• Feature space F13 has three features that used assessment PSM

only: {psm, psm− rt, age}.

• Feature space F14 has three features that used assessment

DCCS only: {dccs, dccs− rt, age}.

• Feature space F15 contains two features {age, SSH2D}.

• Feature space F16 contains five features {age, dccs2D, psm2D},

and {dccs− rt, psm− rt} .

2.6 Machine learning models

The data set of size 86 was split into a training dataset

and a testing dataset with a ratio of 80/20. The training and

testing datasets had 68 and 18 cases, respectively. After splitting

the data, supervised machine learning and deep learning models

were applied and compared. For each of the models and model

classes, we applied a regular grid search to the training dataset

using GridSearchCV in sklearn (13) with a default 5-fold cross-

validation. To limit the risk of data overfitting and bias during

model construction, the training dataset are divided into 5 smaller

analysis (similar to a training set) and validation (testing) sets. After

splitting the training data, 1-fold is used for the validation of the

model and developing the aggregated assessment statistics while

the other 4-folds are used for building the model. For 5-fold cross-

validation, the sample size for each folder/set is approximately 13

or 14. The grid search will evaluate the model on the validation

set (one of the five sets) and record the results for each iteration.

After all five iterations have completed, the results are aggregated

and the best combination of hyperparemeters is selected. Since the

quality and quantity of the training data have a significant impact

on the accuracy and performance of predictive models, we explored

three types of models: hyperplane separation, assembling, and deep

learning. Modeling applied from “sklearn” and “Keras” package

include as follows: (1) hyperplane separation models (SVM, LRG,
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TABLE 5 Coe�cients for the five composite scores.

Composite1 Composite2 Composite3 Composite4 Composite5

Classical HOIRT5D HOIRT2D HOIRT2D Classical

Intercept 1.08 -0.07 -0.0066 0.479 -0.129

SSHO 0.0607 2.413 3.137

arw 0.001 -0.0082

psm -0.004 -0.0231 -0.919 -1.165 -0.316

nsm -0.01 -0.0146

dccs -0.16 -0.0279 -1.381 -1.755 -0.115

mfs -0.03 0.028

arw-rt 0.000012

dccs-rt 0.0000009

psm-rt -0.00149

age 0.0068 0.048

TABLE 6 Confusion matrix.

True Predicted

0 1

0 TN FP

1 FN TP

Tree, and KNN); (2) assembling models (RF and GB); (3) deep

learning models (ANN, FNN, and RNN).

2.6.1 Support vector machine (SVC)
SVC (14) is a supervised machine learning method used for

classification and regression. The parameters used is “rbf,” Radial

Basis Function, for the kernal and four C values for the strength of

the regulation from 1, 10, 50, 100.

2.6.2 Logistic regression (LRG)
LRG (15) is a regression based classification algorithm

that takes into account the probability of an outcome. The

hyperparameters used for tuning this model include a L2 penalty

term, the default solver “lbfgs,” and 20 regularization strength from

0.01 to 5 were implemented.

2.6.3 Decision Tree (Tree)
A supervised learning approach for classification that splits

observations based on an optimal cut-point observed in the data

based on a varying number of features. Seven numbers from 3 to 30

were chosen formax_depth.

2.6.4 K-Nearest neighbors (KNN)
A non-parametric algorithm that relies on classifying cases

based on their proximity or distance.

2.6.5 Random forest (RF)
RF (16) is a supervised ensemble learning method for

classification that combines the results of bootstrapped aggregated

independent decision trees. The ensemble is through bootstrapping

(17). Ten n_estimators, or minimum number observations, ranged

from 10 to 500.

2.6.6 Gradient boosting (GB)
GB (18) is a class of algorithms for classification that uses

tree-based statistical learning techniques. Rather than building

ensemble models from multiple independently derived decision

trees like RF, the Boosting (18) method is additive and

constructs and aggregates decision trees sequentially. We used

GradientBoostingClassifier from sklearn. Three n_estimators values

10, 30, and 50 were used.

2.6.7 Artificial neural network (ANN)
ANN (19, 20) is a neural network that mimics the way nerve

cells work in the human brain.We usedMLPClassifier from sklearn.

Cross run of two layer sizes ([(150, 100, 50), (120, 80, 40)]), two

slover ([“sgd”, “adam”]), two activation ([“tanh”, “relu”]), two alpha

([0.01, 0.3, 1]), and two learning rate ([“constant”, “adaptive”]) were

conducted.

Both tanh and relu are non-linear activation functions3.

2.6.8 Feedforward neural network (FNN)
FNN (21) is an artificial neural network, named feedforward

neural network. We used Sequential imported from keras.models

and five layers with Dense 2000 and activation=’relu’, which

stands for the rectified linear activation unit. The last layer used

“sigmoid” as the activation. The difference between this multi-class

classification model and the other models is that the output value,

which is the scores for each essay, need to be converted or reshaped

3 relu(x)=max(0,x), tanh = (ex − e−x)/(ex + e−x).
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FIGURE 1

Histogram of six composite scores.
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into a matrix format of binary data; it is called one-hot encoding.

That is, if the essay score is 8, then the column 8 of the matrix is

1, and the other columns has value 0. Since the maximum score

point for all essays in prompts 1–6 is 12, the matrix has a total of 13

columns.

2.6.9 Recurrent neural network (RNN)
For the RNN process (22), the Keras library was used to create

a Sequential model (23) with a single SimpleRNN layer. This

type of recurrent neural network is designed to process sequential

data and maintain a memory of past inputs. The SimpleRNN

layer used in this process has 200 units and uses the hyperbolic

tangent activation function (“tanh”). After creating the SimpleRNN

layer, three additional Dense layers were added to the model,

each with the “relu” activation function. The final layer of the

model used the “sigmoid” activation function. During the training

process, two epochs were used, with sizes of 64 and 32, respectively.

Additionally, a hyperparameter search was conducted using three

different batch sizes: 5, 12, and 32.

2.7 Evaluation criteria

In machine learning, metrics such as precision, recall or

sensitivity, accuracy, F-score, and specificity are typically computed,

and they are based on a confusionmatrix as shown in Table 6. In the

medical field, recall is important; it measures the rate of accurately

identify positive/impairment patient. Specificity measures the rate

of correctly identifying normal cognition in patients. They are

defined below:

Precision =
TP

FP + TP
(4)

Recall =
TP

FN + TP
(5)

Accuracy =
TP + TN

TP + FN + TN + FP
(6)

Specificity =
TN

TN + FP
(7)

F_Score =
2× Precision× Recall

Precision+ Recall
(8)

Another popular measurement in machine learning is receiver

operating characteristic (ROC), a probability curve; it is often

plotted with true positive rate (TPR) on the y-axis and the false

positive rate (FPR) on the x-axis. AUC, area under the curve,

represents the degree or measure of separability. It tells how much

the model is capable of distinguishing between classes. The higher

the AUC, the better the model is at distinguishing between patients

with the disease and no disease. For example, if AUC is 0.7, it means

there is a 70% chance that the model will be able to distinguish

between impairment and normal.

3 Results

The figure labeled “Figure 1” displays a histogram with colored

bars and labels indicating the impairment status shown by the data.

FIGURE 2

Elbow curve with 10 clusters.

Each histogram represents the distribution one of six composite

scores: SSHO, Composite1, Composite2, Composite3, Composite4,

and Composite5. The histogram provides information on the

frequency of each composite score, with the SSHO score being

one of the six scores plotted. This type of graph is helpful for

identifying patterns in the data, such as the spread of scores

and any potential outliers or anomalies. The color blue is used

to indicate data with a normal impairment status, while the

color orange is used to indicate data with an impaired status.

This can help researchers quickly identify any differences in

the distribution of scores between impaired and non-impaired

groups.

3.1 Unsupervised data analysis

The purpose of the cognitive assessment is to predict

impairment status based on patients’ assessment results without

knowing what their true status are. Therefore, we would like to

investigate the data to see if there are any patterns. Unsupervised

data analysis was conducted on the dataset using the scikit-learn

library’s KMeans clustering algorithm. The algorithm was run with

cluster numbers ranging from 1 to 10, and the sum of squared

distances between each point and its nearest cluster center (known

as inertia) wasminimized. The results are plotted in Figure 2, where

the number of clusters is shown against the Inertia measure. The

plot suggests that the elbow point, where adding more clusters does

not significantly improve the clustering, occurs at three or four

clusters.

Subsequently, cluster analysis was performed with three

clusters, and the patients were labeled as 0, 1, or 2 accordingly.

Figure 3 shows the five composite scores (Composite1 to

Composite5), SSHO, income, and age plotted against the cluster

labels obtained, with the points colored according to their clinical

impairment status.

The unsupervised cluster analysis with three clusters appears

to reveal some patterns although the optimal number of clusters

or the cutoff point for assigning labels is not entirely clear.
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FIGURE 3

Five composite scores, SSHO, income, and age against the three cluster labels.

Nonetheless, the analysis provides some insights into the grouping

of patients based on their composite scores, SSHO, income, and

age, and how they relate to their clinical impairment status. Further

exploration and refinement of the clustering method may be

necessary to gain a better understanding of the underlying structure

of the data.
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FIGURE 4

Heat map of 10 best features.

TABLE 7 Results for all data from RF for 16 feature space.

Feature Precision Recall AUC Fmeasure Specificity QWK

F1 1 1 1 1 1 1

F2 1 1 1 1 1 1

F3 0.988 0.988 0.993 0.988 0.985 0.967

F4 0.977 0.977 0.966 0.977 0.985 0.932

F5 1 1 1 1 1 1

F6 0.988 0.988 0.993 0.988 0.985 0.967

F7 0.977 0.977 0.966 0.977 0.985 0.932

F8 0.965 0.965 0.959 0.965 0.97 0.901

F9 0.93 0.93 0.918 0.93 0.94 0.805

F10 0.953 0.953 0.951 0.953 0.955 0.87

F11 0.965 0.965 0.94 0.965 0.985 0.897

F12 0.942 0.942 0.925 0.942 0.955 0.834

F13 0.988 0.988 0.993 0.988 0.985 0.967

F14 0.965 0.965 0.921 0.965 1 0.893

F15 0.988 0.988 0.974 0.988 1 0.966

F16 0.965 0.965 0.94 0.965 0.985 0.897

3.2 Supervised data analysis

To investigate the factors that affect the prediction of

clinical impairment in this dataset, a supervised analysis

was conducted using the clinical labels of impairment. By

examining the relationships between the features and the

labels, we can gain a better understanding of which variables

are most relevant for predicting clinical impairment. This

type of analysis can be useful for identifying potential risk

factors or developing diagnostic tools to aid in early detection

and intervention.

Feature analysis were conducted to check the best features

among all the variables included in the model. Figure 4

shows two heat maps for the 10 best features. For the first

heatmap, scores from HOIRT5D, demographic information,

and response times were considered. It is observed that the
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FIGURE 5

Confusion matrix for all the data and test data for FNN and RF for feature space F4 and GB and RF for feature space F7.

order of impact of the features are the assessment scores

MFS, NSM, SSHO, ARW, DCCS, PSM, and their response

times, and demographic information income and age.

The second heat map contains the five composite scores,

and “Composite2” and “Composite1” are the two most

important features.
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FIGURE 6

Specificity, recall, AUC, F, precision, and QWK for all models for all data (first three-row) and test data (last three-row) for feature space F7-F16.

Supervised machine learning was conducted with feature space

listed in the design, and machine learning models were applied.

For feature space that contains not only the assessment scores

but also demographic information “race,” “gender,” “income,”

“education,” and response times, such as F1, F2, F3, F4, F5,

F6, and F7, some models such as GB and RF predicated all 86

patients correctly.

Although the performance a model should be examined by

looking at their results for test data, results for all data are

displayed in Table 7 for model RF for all 14 feature spaces.
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TABLE 8 Results for the test data from ANN for 16 feature space.

Feature Precision Recall AUC Fmeasure Specificity QWK

F1 0.955 0.955 0.833 0.955 1 0.776

F2 0.955 0.955 0.833 0.955 1 0.776

F3 1 1 1 1 1 1

F4 0.955 0.955 0.974 0.955 0.947 0.831

F5 0.955 0.955 0.833 0.955 1 0.776

F6 1 1 1 1 1 1

F7 0.955 0.955 0.974 0.955 0.947 0.831

F8 0.955 0.955 0.974 0.955 0.947 0.831

F9 0.955 0.955 0.833 0.955 1 0.776

F10 1 1 1 1 1 1

F11 0.955 0.955 0.833 0.955 1 0.776

F12 0.864 0.864 0.5 0.864 1 0

F13 0.864 0.864 0.5 0.864 1 0

F14 0.909 0.909 0.667 0.909 1 0.463

F15 1 1 1 1 1 1

F16 0.955 0.955 0.833 0.955 1 0.776

For feature space F1, F3, F5, and F6, all 86 patients were

classified correctly.

Figure 5 shows the confusion matrix for all the data (row-

one) and test data(row-two) for FNN and RF for Feature Space

F4. Row-three and row-four shows the confusion matrix for all

the data and test data for FNN and RF for Feature Space F7.

Feature space F4 used six assessment scores SSHO, dccs, psm,

arw, mfs, nsm, derived from HOIRT-5D from the five cognitive

assessment DCCS, PSM, ARW, MFS, and NSM. Feature space F7

used three assessment scores SSHO2D, dccs2D, psm2D, derived

from HOIRT-2D from only two cognitive assessment DCCS and

PSM. Compared with other feature space F1 and F5 that contains

demographic information and response time, all 86 patients were

correctly classified with RF; there was one case misclassified for F4

and two cases misclassified for F7.

In the analysis of Feature Space F7-F16, the performance

of models with two cognitive assessments (DCCS and PSM)

and composite scores was the primary focus. Figure 6 displays

specificity, recall, AUC, F-measure, precision, and QWK for all

models using the entire dataset (first three rows) and the test dataset

(last three rows) for this feature space. The figure provides a visual

representation of the relative performance of the models.

For the F-measure, which considers both precision and recall,

the best performance on the test data for the ANN model was

observed for F3, F6, F10, and F15. F3 utilized scores from

HOIRT-5D along with demographic information, F6 used scores

from HOIRT-2D and demographic information, F10 employed

Composite3 (including scores from HOIRT-2D and age), and F15

utilized SSHO-2D and age.

When considering the QWK measure, which accounts for the

agreement between predicted and actual labels, the ANN model

showed the best performance for the test data with F3, F6, F10, and

F15. All of these feature spaces included age information.

Examining the F-measure for features F15 and F16 (which

focus on shorter assessments containingDCCS and PSM), the ANN

model exhibited the best performance among the models.

Notably, when utilizing only one content area assessment

(DCCS or PSM), the recall value for the ANN model was

considerably lower for F13 and F14 compared to other feature

spaces that included age.

It’s important to note that the dataset consisted of only 86

participants, and the performance may vary with different datasets.

However, based on the analysis, the inclusion of age in the feature

space was found to be beneficial for prediction.

3.3 Performance of composite scores

Next, we will examine the performance of the composite scores

and how they performed using cut score and machine learning

models. In general, ANN performed the best for most of the

feature spaces, especially for composite scores as the only feature.

Table 8 shows the result for test data from ANN for the 16

feature spaces. For test data, the feature space F2, F6, F10, and

F15 performed perfectly. We checked the performance for all 86

patients from the ANN models and derived the best cut point and

their performance for that cut point for all five composite scores.

Figure 7 had six plots, and each shows the score values against

their predicted impairment from the ANNmodel for all 86 patients

for feature Composite1(F8), Composite2(F9), Composite3(F10),

Composite4(F11), Composite5(F12), and SSHO2D, respectively.

The best cut scores were plotted as the red vertical line, which

was obtained through a computation searching with the minimum

number of mismatched classifications. Table 9 shows the cut score

and the number of mismatched cases for all 86 patients by the linear

cut score for the five composite scores and SSHO2D. The table
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FIGURE 7

Scores against their predicted values(ANN) with Cut Points for the six Composite Scores for All 86 patients.

TABLE 9 Number of misclassified patients for both machine learning model and linear cut for the six composite scores.

Feature Liner cut Machine learning ANN Machine learning (best)

Point Number of mismatch All data Test data All data

F8 0.61 11 11 1 3(RF)

F9 0.626 9 8 1 6(RF)

F10 0.618 12 14 0 4(RF)

F11 0.614 14 12 1 3(RF)

F12 0.925 14 17 1 5(RF)

SSHO2D -0.026 14 12 0 1(RF)
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TABLE 10 Results for all patients.

Composite3 SSHO2D Composite5 F16 Age Gender Income Edu Race

Impaired Score RF Score Linear Score Linear

Pd Pd Pd

0 0.597 0 0.229 0 0.92 0 0 77 F 8 9 W

0 0.513 0 0.899 0 0.639 0 0 78 F 9 11 W

0 0.564 0 0.473 0 0.791 0 0 80 M 7 8 W

0 0.562 0 0.51 0 0.611 0 0 75 F 9 8 W

0 0.546 0 0.703 0 0.798 0 0 75 F 4 6 W

0 0.507 0 0.897 0 0.358 0 0 67 F 5 8 W

0 0.618 0 -0.117 1 0.862 0 0 75 F 6 9 A

0 0.561 0 0.776 0 0.882 0 0 88 F 7 * B

0 0.519 0 0.567 0 0.834 0 0 67 F 8 6 W

0 0.557 0 0.523 0 0.582 0 0 79 M 9 11 W

0 0.56 0 0.769 0 0.831 0 0 86 F 8 8 W

0 0.53 0 0.698 0 0.765 0 0 71 M 9 9 W

0 0.606 0 0.027 0 0.898 0 0 77 F 6 8 W

0 0.487 0 1.017 0 0.466 0 0 70 M 8 8 W

0 0.597 0 0.14 0 0.875 0 0 79 F 8 9 W

0 0.585 0 0.157 0 0.624 0 0 74 F 8 4 W

0 0.596 0 0.036 0 0.855 0 0 69 F 9 9 B

0 0.605 0 0.125 0 0.86 0 1 84 M 9 9 W

0 0.618 0 0.125 0 0.92 0 0 83 M 9 8 W

0 0.551 0 0.347 0 0.843 0 0 68 F 6 7 W

0 0.572 0 0.377 0 0.603 0 0 74 F 9 9 W

0 0.604 0 0.256 0 0.88 0 0 87 F D 9 W

0 0.6 0 0.281 0 0.933 1 0 81 M 8 9 W

0 0.575 0 0.331 0 0.859 0 0 77 M 8 9 W

0 0.617 0 0.135 0 0.956 1 0 90 M 8 11 W

0 0.601 0 0.144 0 0.9 0 0 78 M 7 6 W

0 0.607 0 0.017 0 0.914 0 0 75 F 9 9 W

0 0.583 0 0.415 0 0.856 0 0 83 F 4 8 B

1 0.56 1 0.386 0 0.843 0 1 68 F 8 8 A

1 0.581 1 0.365 0 0.891 0 1 83 M 9 10 W

1 0.553 1 0.612 0 0.57 0 1 78 F 6 4 W

1 0.566 1 0.53 0 0.808 0 1 76 M 7 9 W

1 0.581 1 0.446 0 0.835 0 1 86 F 2 8 W

1 0.52 1 1.028 0 0.539 0 1 76 F 9 10 A

1 0.56 1 0.617 0 0.776 0 1 85 F 8 9 W

1 0.548 1 0.421 0 0.664 0 1 67 F 3 7 B

1 0.681 1 -0.737 1 0.958 1 1 80 F 6 6 W

1 0.644 1 0.022 0 0.963 1 0 93 F 5 4 W

1 0.619 0 -0.045 1 0.957 1 0 84 F 6 8 W

(Continued)
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TABLE 10 (Continued)

Composite3 SSHO2D Composite5 F16 Age Gender Income Edu Race

Impaired Score RF Score Linear Score Linear

Pd Pd Pd

1 0.567 1 0.503 0 0.896 0 1 78 F 6 6 B

1 0.63 1 0.007 0 0.943 1 1 90 F 3 8 W

1 0.603 1 0.187 0 0.778 0 1 79 F 8 8 W

1 0.584 1 0.173 0 0.9 0 1 72 M 9 8 W

1 0.646 1 -0.327 1 0.847 0 1 81 F 5 4 W

1 0.633 1 -0.072 1 0.944 1 1 84 F 5 8 B

1 0.664 1 -0.57 1 0.946 1 1 75 M 7 4 W

1 0.63 1 -0.185 1 0.927 1 1 72 M 3 6 W

∗indicate the value is missing.

shows the misclassified number in machine learning for ANN for

both test data and all 86 data and also results for all 86 patients for

RF models.

Tables 10, 11 lists the 86 patients with their assessment

scores, ethnic information, clinical diagnosis information, and their

predicted labels from model RF F10 (Composite3), SSHO2D with

linear cut, Composte5 with linear cut, and RF F16 with features

containing dccs2D, psm2D, age, and their response times.

It is clear that linear cuts for predicting impairment is fall

compared to machine learning models. The misclassification rate

for all linear cut for the composite scores are higher than those

from machine learning models. For ANN with feature space F15

that contains SSHO2D and age, the prediction is perfect.

3.4 Bootstrap and replications

To account for the potential instability of the results due to a

small sample size, the original dataset of 86 patients underwent

100 rounds of bootstrapping, where the same sample size was

maintained and the training process was repeated each time. Means

and standard deviations were calculated from these replication

processes, and the results are displayed in Table 12 for the RF

and ANN models for some selected features. Figure 8 shows the

number of count for precision, recall, accuracy, F-measure, and

specificity from 100 Bootstrap for RF model for features containing

{age, SSHO2D} with their average values of 0.803, 0.758, 0.902,

0.742, and 0.951, respectively. Figure 9 shows the number of

count for precision, recall, accuracy, F-measure, and specificity

from 100 Bootstrap for ANN model for features containing

{age, dccs2D, psm2D, dccs − rt, psm − rt} with their average values

of 0.824, 0.706, 0.899, 0.733, and 0.955, respectively.

For the ANN model, which was trained on a feature set

consisting of SSHO2D, age, income, race, 30-DCCSrt, and psm-

rt, a total of 20 rounds of bootstrap resampling were performed

on the dataset. Precision, recall, accuracy, F1, and specificity were

computed for themodel and had values of 0.833, 0.748, 0.944, 0.777,

and 0.983, respectively. The results provide evidence that including

item-level response times and demographic information as features

improved the model’s prediction performance, particularly with

regard to recall.

The study also assessed the impact of reducing the number

of content areas assessed on the model’s performance. When

the feature space contained demographic information and the

total item response times, the recall value reduced from 0.772

to 0.728 when moving from five content areas to two content

areas. Similarly, when the feature space contained demographic

information and the overall score from HOIRT, the recall value

reduced from 0.762 to 0.674 when moving from five content areas

to two content areas.

To facilitate the seamless integration of the machine learning

scoring model into the system and due to the challenges

associated with collecting demographic information such as gender,

education, income, or race, our last model were designed to

focus on features that include age, the number of correct scores

for PSM and DCCS, as well as their total response times:

“age,′′ “psm,′′ “DCCS,′′ “dccs_rt,′′ and “psm_rt′′. This approach was

chosen for the sake of simplicity and practicality, aiming to

ensure a smooth implementation of the machine learning scoring

model while mitigating the complexities associated with collecting

demographic data. The results for ANN and GB, along with

the AUC (area under the curve) and confusion metrics, are

visually presented in Figure 10. The top row of the plot displays

the learning curve for the optimal ANN model with specific

configurations: solver =′ sgd′, activation =′ tanh′, alpha =

0.01, hidden_layer_sizes = (150, 100, 50), and max_iter = 1000.

Notably, the training and validation scores closely converge,

suggesting the model’s effectiveness (24).

4 Discussion

The current study utilized clinical data from 86 patients who

completed five cognitive assessments. Unsupervised cluster analysis

was performed to identify patterns and classify patients based on

features. Composite scores were computed using both scores from

higher order two-parameter item response theory (HOIRT) models
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TABLE 11 Results for all patients.

Composite3 SSHO2D Composite5 F16 Age Gender Income Edu Race

Impaired Score RF Score near Score Linear

Pd Pd Pd

0 0.522 1 0.734 0 0.756 0 0 70 F 8 9 B

0 0.478 0 1.382 0 0.344 0 0 79 F 9 9 W

0 0.539 0 0.799 0 0.693 0 0 70 F 8 9 W

0 0.534 0 0.667 0 0.737 0 0 68 F 8 9 B

0 0.543 0 0.751 0 0.761 0 0 77 M 6 10 W

0 0.546 0 0.679 0 0.731 0 0 80 F 7 8 W

0 0.57 1 0.632 0 0.874 0 0 80 M 9 9 B

0 0.51 0 0.907 0 0.545 0 0 70 M 9 9 W

0 0.546 0 0.659 0 0.79 0 0 74 F 8 8 W

0 0.53 0 0.847 0 0.713 0 0 72 F 9 8 W

0 0.454 0 1.399 0 0.262 0 0 71 F 7 9 W

0 0.51 0 0.914 0 0.605 0 0 75 F 6 9 W

0 0.548 1 0.668 0 0.831 0 0 73 F 7 11 W

0 0.552 0 0.527 0 0.882 0 0 75 M 9 9 W

0 0.473 0 1.362 0 0.311 0 0 76 F 8 9 W

0 0.544 0 1.017 0 0.693 0 0 83 F 2 6 W

0 0.508 0 1.029 0 0.515 0 0 74 F 9 9 W

0 0.465 0 1.393 0 0.291 0 0 74 F 5 8 W

0 0.584 0 0.317 0 0.581 0 0 83 F 9 9 W

0 0.503 0 1.03 0 0.339 0 0 78 F 9 8 W

0 0.538 0 0.696 0 0.455 0 0 75 F 4 6 W

0 0.462 0 1.207 0 0.255 0 0 70 F 7 6 W

0 0.53 0 0.617 0 0.747 0 0 69 M 5 6 W

0 0.535 0 0.756 0 0.769 0 0 78 F 9 9 W

0 0.486 0 1.195 0 0.389 0 0 70 F 8 9 W

0 0.537 0 0.833 0 0.769 0 0 78 F 8 10 W

0 0.51 0 0.784 0 0.672 0 0 68 F 7 9 B

0 0.523 0 0.682 0 0.536 0 0 69 F 8 8 W

0 0.544 0 0.563 0 0.817 0 0 71 M 9 9 W

0 0.484 0 1.147 0 0.237 0 0 68 F 7 8 W

0 0.494 0 1.015 0 0.478 0 0 71 F 9 9 B

0 0.546 0 0.564 0 0.824 0 0 72 M 7 * W

0 0.565 0 0.616 0 0.863 0 0 78 M 9 10 W

0 0.544 0 0.477 0 0.876 0 0 74 M 6 8 A

0 0.459 0 1.46 0 0.226 0 0 67 F 9 11 W

0 0.506 0 0.986 0 0.581 0 0 73 F 5 9 W

0 0.524 0 1.002 0 0.672 0 0 81 M 5 9 U

0 0.479 0 1.13 0 0.389 0 0 70 F 8 7 W

0 0.548 0 0.584 0 0.879 0 0 81 M 9 11 W

∗indicate the value is missing.
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TABLE 12 The means and standard deviations of 100 replications for test data for RF and ANN with feature space F15 and F16.

RF ANN

Measure {SSHO2D, age} {dccs2D, psm2D} {SSHO2D, age} {dccs2D, psm2D}

{age, rt} {age, rt}

Mean SD Mean SD Mean SD Mean SD

Precision 0.803 0.246 0.794 0.295 0.83 0.226 0.824 0.253

Recall 0.758 0.272 0.671 0.313 0.718 0.262 0.706 0.261

Accuracy 0.902 0.079 0.903 0.07 0.9 0.077 0.899 0.078

Fmeasure 0.742 0.223 0.694 0.269 0.738 0.212 0.733 0.226

Specificity 0.951 0.067 0.961 0.057 0.956 0.056 0.955 0.065

and classical number of correct score models. Five possible linear

combinations of scores were derived to investigate the potential

application of composite scores in predicting impairment.

Supervised machine learning was employed to predict

impairment for the 86 patients using various machine learning

models and feature spaces. RF and GB tended to perform the best

for feature spaces F1-F4, which contained more features such as

the six assessment scores, “race,” “gender,” “income,” “education”,

and response times. All 86 patients were correctly classified using

these machine learning models with those feature spaces.

The optimal cut point for each of the six composite scores

was determined by minimizing the number of mismatched patients

out of the 86 patients. The number of mismatched cases was 11,

9, 12, 14, 14, and 14 for Composite1, Composite2, Composite3,

Composite4, Composite5, and SSHO2D, respectively. Among the

composite scores, Composite2, which was derived from sixHOIRT-

5D scores, response times, and age, had the smallest number

of mismatched cases. When using only SSHO2D or Composite4

and applying a cut point of -0.026 for SSHO2D and 0.925 for

Composite4, there were 14 mismatched cases. However, when

running the RF model using these scores as the only feature, the

number of mismatched cases reduced to 4. This suggests that using

composite scores as the sole predictor in a machine learning model

can improve the accuracy of cognitive impairment prediction

compared to using individual domain scores or composite scores

with cut points.

When only composite scores were used as features in the feature

space, the RF model produced a significantly smaller number of

mismatched cases compared to using cut points. This finding

suggests that composite scores may serve as a useful predictor of

impairment and that machine learning models such as RF can be a

valuable tool for predicting impairment in clinical settings.

Additionally, the study conducted a comparison of prediction

performance between two groups: patients who underwent five

assessments (DCCS, PSM, ARW, MFS, and NSM) and those

who only took two assessments (PSM and DCCS). The findings

indicated that the model achieved better performance when

more assessments were taken. However, for certain models,

utilizing two assessments (DCCS and PSM) and predicting

using the assessment scores along with age information yielded

comparable results. When comparing composite scores derived

from five vs. two assessments, the results showed that using

only two assessments (DCCS and PSM) and adding demographic

information to the three assessment scores (SSHO2D, dccs2D,

and psm2D), the RF model was able to correctly predict all

86 patients. However, when using feature space F7, which only

contains the three scores and does not include demographic

information, the RF model had one “normal” patient classified

as “CI” (cognitive impairment) and one “CI” patient classified as

“normal”. Therefore, including demographic information such as

age is important in cognitive impairment prediction models to

improve accuracy.

Given the small training size, the stability of the results

becomes a concern. To mitigate this issue, bootstrap techniques

were employed on specific feature spaces. The training results

were computed based on 100 bootstrap samplings, allowing for

the calculation of mean and standard deviations. Machine learning

model RF with features that contains composite score and age

yielded precision, recall, accuracy, F1, and specificity of values

0.803, 0.758, 0.902, 0.742, and 0.951, respectively. The composite

score was derived from a 2-parameter higher order item response

theory (HOIRT) model with two assessments DCCS and PSM.

The final model takes into account the inherent challenges of

gathering demographic information, including gender, education,

income, and race. It is intentionally crafted to concentrate on

a select set of features, specifically age, raw response data, and

response times, with a specific focus on the DCCS and PSM content

areas. The graphical representations of the AUC and confusion

matrices for the ANN and GB models provide evidence of the

model’s commendable performance.

In summary, the study emphasizes the significance of

incorporating demographic information and item-level

response times into the feature space for machine learning

models to achieve improved prediction performance (25, 26).

It suggests that relying on a single, simple cut point for a

composite score, regardless of how well it is derived, may

not yield optimal outcomes. Instead, employing machine

learning models that utilize scores derived from HOIRT2D

and encompass features such as age can lead to effective

prediction models.

In order to improve the performance and generalizability of

machine learning models, a larger training size is often necessary.

To utilize the model in practice, it is important to collect a

representative and diverse dataset for training the models. This

helps to ensure that the models learn from a wide range of samples

and can generalize well to unseen data.
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FIGURE 8

The Number of Count for Recall, F measure, Precision and Accuracy from 100 Bootstrap for RF model for Features containing SSHO2D and age.

For forthcoming research endeavors, our objective is to

integrate the temporal aspects of patients’ PSM tests such

as action sequences of patients taking the test and survey

responses into machine learning models, with the aim of detecting

abnormal behaviors and identifying patients with Alzheimer’s

disease/cognitive impairment (AD/CI). Notably, in the field of

literature review, significant advancements have been made in the

development and exploration of novel machine learning models.

Jiao and colleagues (27) offered an insightful review of the

literature in this context with emphasis in measurement and

assessments. Furthermore, in a recent investigation conducted by

Ke and colleagues (28), they explored the application of a deep

convolutional neural network (CNN) and a frequency channel-

based CNN (FCCNN) for the precise and expedited identification

of depression. The FCCNN operates in the frequency domain,

allowing it to capture patterns and features that may not be

readily discernible in the spatial domain. This approach draws

parallels with term document weighting (TDW) in natural language

processing [NLP, (29)], where attention is paid to term frequencies

to discover significant features. The study’s findings indicated that

FCCNN achieved a high classification accuracy when applied to a

publicly available EEG dataset related to major depressive disorder.
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FIGURE 9

The Number of Count for Recall, F measure, Precision and Accuracy from 100 Bootstrap for ANN model for Features containing dccs2D, psm2D,

dccs-rt, psm-rt, and age.

These innovative approaches showcase the ongoing progress in the

field and hold promise for future research.

Functional magnetic resonance imaging (fMRI) provides a

comprehensive insight into brain activity and has emerged as a

pivotal tool in the identification of attention-deficit/hyperactivity

disorder (ADHD), a prevalent behavioral disorder in children.

Researchers have harnessed the capabilities of fMRI in conjunction

with various neural measures, including electroencephalography

(EEG), to investigate a wide spectrum of cognitive processes,

encompassing perception, memory, decision-making, and

emotional responses (30). Additionally, the combination of a

patient’s clinical status with perfusion-CT imaging, as highlighted

by Strambo and colleagues (31), holds considerable promise. The

integration of fMRI data with our cognitive assessment scores, such

as those derived from the DCCS and PSM, in conjunction with

demographic information is considered powerful in the detection

and comprehension of AD/CI. Our commitment to advancing this

aspect of our study underscores our dedication to enhancing our

understanding of cognitive function and its potential variations

across diverse individuals and populations.
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FIGURE 10

Learning Curve, ROC Curve and Confusion Matrix for ANN and GB for features containing age, number of correct scores, and their total response

times for DCCS and PSM.

Our ultimate objective is to develop the MyCog system,

which can autonomously provide accurate and efficient

predictions of patients’ AD/CI. The continuous updating of

hyperparameters with newly acquired data is of paramount

importance in achieving this goal. In their research, Ke and

colleagues (30) introduced a dual-CNN (convolutional neural

network) methodology to enhance brain e-health service

platforms. This innovative system leverages automatic machine
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learning techniques to construct a dual-CNN model that excels

in both accuracy and efficiency. Furthermore, it empowers

a deep Neural network (DNN)-based model to continually

enhance its own performance through the optimization of

hyperparameters and adaptation to incoming data. Their study

showcases the potential of machine learning and hyperparameter

optimization in the development of a robust and adaptive

system, bringing us closer to the realization of the MyCog

system’s goal of providing accurate and efficient predictions for

AD/CI patients.
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