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Introduction: Methamphetamine use disorder (MUD) is a chronic relapsing 
disorder characterized by compulsive Methamphetamine (MA) use despite 
its detrimental effects on physical, psychological, and social well-being. The 
development of MUD is a complex process that involves the interplay of 
genetic, epigenetic, and environmental factors. The treatment of MUD remains 
a significant challenge, with no FDA-approved pharmacotherapies currently 
available. Current diagnostic criteria for MUD rely primarily on self-reporting and 
behavioral assessments, which have inherent limitations owing to their subjective 
nature. This lack of objective biomarkers and unidimensional approaches may not 
fully capture the unique features and consequences of MA addiction.

Methods: We performed a literature search for this review using the Boolean 
search in the PubMed database.

Results: This review explores existing technologies for identifying transcriptomic 
biomarkers for MUD diagnosis. We examined non-invasive tissues and scrutinized 
transcriptomic biomarkers relevant to MUD. Additionally, we  investigated 
transcriptomic biomarkers identified for diagnosing, predicting, and monitoring 
MUD in non-invasive tissues.

Discussion: Developing and validating non-invasive MUD biomarkers could 
address these limitations, foster more precise and reliable diagnostic approaches, 
and ultimately enhance the quality of care for individuals with MA addiction.
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1 Introduction

1.1 Methamphetamine and methamphetamine use 
disorder

Methamphetamine (MA) is a potent synthetic stimulant that disrupts the central nervous 
system (CNS) and induces physical and psychological dependence (1). MA targets monoamine 
transporters, particularly dopamine (DA), norepinephrine (NE), and serotonin (5-HT), in the 
CNS (2). Its primary mechanism of action is the release of neurotransmitters from presynaptic 
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terminals, which predominantly reverses their actions (3). 
Additionally, MA inhibits monoamine oxidase (MAO), an enzyme 
responsible for the breakdown of DA, NE, and 5-HT, thereby 
increasing their availability and enhancing their effects (2). The 
pharmacological effects of MA include increased arousal, alertness, 
focus, mood, sociability, and self-esteem (4).

MA use disorder (MUD) is a chronic, relapsing disorder 
characterized by the compulsive use of MA despite its negative 
consequences on physical, psychological, and social well-being (5). 
MUD is a significant global public health problem associated with 
substantial social and economic costs, including increased mortality 
and morbidity (6). MUD is associated with a wide range of health 
issues, including cardiovascular, respiratory, and neurological 
complications, as well as an increased risk of infections such as HIV 
and hepatitis C (4, 7, 8). Furthermore, MA use increases the risk of 
severe clinical withdrawal symptoms, such as depression, anxiety, 
intense craving for MA, psychosis, and suicidal tendencies (9–11).

The onset of MUD involves a complex interplay between genetic, 
epigenetic, and environmental factors (12). Furthermore, the causes 
of MUD may be multifactorial, and there may be correlations with 
various psychopathological variables, such as emotional disturbances 
and regulatory disorders in adolescents (13, 14). The neurobiological 
mechanisms underlying MUD are still not fully understood. However, 
repeated MA exposure induces neuroadaptations in the brain’s reward 
system, particularly within the mesolimbic dopamine pathway, 
including the ventral tegmental area (VTA) and the nucleus 
accumbens (NAc) (15). These neuroadaptations contribute to the 
development of compulsive drug-seeking behavior and the persistence 
of MUD despite its negative consequences (16, 17).

1.2 The importance of non-invasive 
biomarkers for diagnosis and monitoring of 
MUD

The diagnostic criteria for MUD are primarily based on self-
reported questionnaires. In clinical practice, self-report questionnaires 
are often used to assess substance abuse before and during abstinence 
(18). Examples of such questionnaires include the Alcohol, Smoking, 
and Substance Involvement Screening Test (ASSIST) (19), the Drug 
Abuse Screening Test (DAST) (20), and the Addiction Severity Index 
(ASI) (21). Although these questionnaires are the most convenient and 
broadly accessible tools for estimating drug abuse (including MA 
abuse), there are several limitations in the current diagnostic criteria 
and methods. First, these questionnaires are inherently subjective and 
may be influenced by factors such as social desirability bias, memory 
lapses, and misinterpretation of questions (22). This subjectivity can 
lead to under-reporting or over-reporting of MA use and related 
problems, potentially compromising diagnostic accuracy. 
Questionnaires usually rely on an individual’s honesty and accurate 
recall of substance use patterns. However, it can sometimes 
be problematic to evaluate MUD in patients with milder symptoms or 
in those hesitant to seek treatment (23). Second, the current diagnostic 
criteria do not consider biological markers of MA exposure or the 
underlying neurobiological changes associated with 
MUD. Consequently, they may not accurately capture the full extent of 
an individual’s MA use or addiction severity. The lack of objective 
biomarkers also limits the ability to monitor treatment progress and 
assess the risk of relapse. Research has shown that MA use is associated 

with distinct neurobiological alterations, psychiatric comorbidities, and 
functional impairments (1, 24). Therefore, questionnaires must often 
be combined with quantitative analyses of drugs or metabolites in 
peripheral biospecimens, such as urine drug tests, as a supplementary 
tool to confirm recent MA use and strengthen conclusions about drug 
addiction (25). Consequently, the limitations of the current diagnostic 
criteria for MUD highlight the need for more accurate and reliable 
methods of identifying and monitoring individuals with MA addiction.

Non-invasive biomarkers can provide objective and quantifiable 
measures of MA exposure, offering a more reliable diagnostic 
approach. They facilitate the early detection of MUD by identifying 
subtle biological changes that occur before the onset of clinically 
significant symptoms such as cognitive impairment, psychosis, and 
neurotoxicity (26). In addition, non-invasive biomarkers can play a 
crucial role in assessing treatment efficacy as they can provide insight 
into the underlying biological changes that occur in response to 
therapeutic interventions (27). By monitoring changes in biomarker 
levels over time, evaluations can be performed to determine the need 
for adjustments or alternative approaches. Monitoring the risk of 
relapse is another important application of non-invasive biomarkers 
for MUD. Biomarker-level changes can indicate an increased 
likelihood of relapse, enabling clinicians to implement suitable 
interventions, such as behavioral therapy or medication, to prevent or 
attenuate the risk of relapse. Therefore, the real-time monitoring of a 
patient’s physiological status before and during cravings can help 
reduce the risk of relapse and improve clinical outcomes (28).

Non-invasive biomarkers have significant potential for improving 
the diagnosis, early detection, treatment efficacy, and relapse 
monitoring of MA addiction. Developing these biomarkers requires 
multidisciplinary research integrating expertise from various fields, 
including public health, pharmacology, neuroscience, transcriptomics, 
proteomics, metabolomics, neuroimaging, bioinformatics, and 
artificial intelligence. As the research progresses, validating these 
biomarkers in diverse populations and addressing ethical 
considerations, such as privacy and potential stigmatization, are 
essential to ensure their successful implementation in clinical practice.

1.3 Aim and scope of the review

This review aims to comprehensively analyze existing research 
and prospects of non-invasive biomarkers for diagnosing MUD. It 
focuses on the recent developments in identifying and validating 
biomarkers, particularly in the field of transcriptomics. This review 
extensively evaluates literature from various scientific disciplines, 
highlighting relevant and recent findings. It also addresses the 
limitations and challenges of current diagnostic methods and proposes 
potential solutions. This review also discusses the importance of 
interdisciplinary collaboration, biomarker standardization and 
validation, ethical considerations, and regulatory approval for 
successful clinical implementation.

2 Techniques for identifying 
transcriptomic MUD biomarkers

Various high-throughput technologies have been employed to 
comprehensively understand the molecular mechanisms of MUD and 
identify transcriptomic biomarkers. These technologies provide 
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comprehensive and in-depth information about gene expression 
profiles, facilitating the detection of transcriptomic changes associated 
with MUD and assisting researchers in analyzing, diagnosing, and 
treating the disorder. The 2019 COVID-19 pandemic has catalyzed 
innovations in diagnostic technologies and bioinformatics (29). RNA 
and transcriptome analysis technologies have played significant roles 
in the diagnosis, prognosis prediction, and development of RNA 
therapeutics (30–32). Here, we discuss the traditional technologies 
used in RNA and transcriptome analysis and the diagnosis of MUD 
(Table 1).

2.1 Quantitative real-time PCR

Quantitative real-time PCR (qRT-PCR) is widely used for 
validating microarray and RNA sequencing (RNA-Seq) experiments. 
It is a highly sensitive and specialized technique that measures gene 
expression levels by amplifying target cDNA (33). qRT-PCR was used 
to validate the expression of several candidate MUD biomarkers 

identified in transcriptomic studies (34). Although qRT-PCR is a 
powerful validation tool, it is limited by its low throughput capacity, 
which makes it unsuitable for large-scale transcriptomic profiling (35). 
Numerous researchers have recognized the importance of complex 
interactions and integrated approaches to diseases. As a result, the 
systems biology and bioinformatics fields have seen significant 
advancements since the 2000s, propelled by this demand (36, 37). 
Technologies such as microarray, RNA-seq, non-coding RNA-seq 
(ncRNA-seq), and single-cell RNA-seq (scRNA-seq) have been 
developed for high-throughput transcriptome profiling.

2.2 Microarray

Microarray technology has been widely employed in 
transcriptomic studies because of its high-throughput capabilities and 
ability to analyze thousands of genes simultaneously (38). Microarrays 
consist of DNA probes immobilized on a solid surface to which 
complementary RNA targets can hybridize. Following hybridization, 

TABLE 1 Summary of differences among transcriptome analytic technologies.

Technology Definition Concept Advantages Disadvantages

qRT-PCR

A technique to quantify 

relative amounts of RNA 

molecules

Amplification and 

detection of mRNA occur 

simultaneously, allowing 

monitoring of 

amplification process over 

time

High precision, high 

sensitivity, quantitative 

measurement of gene 

expression

Can only analyze a small 

number of genes, requires 

rigorous experimental design 

and sample purification

Microarray

A technique to compare 

gene expression levels 

simultaneously

DNA fragments are 

placed on a fixed array 

and bind with cDNA 

from the sample to 

indicate the expression 

level of the gene

Can examine thousands of 

gene expressions at the 

same time

Cannot provide information on 

unknown genes, difficulty in 

detecting low expression genes

mRNA sequencing (mRNA-Seq)

A method using RNA 

sequencing to determine 

gene expression levels

Reverse transcription of 

mRNA to create cDNA, 

which is sequenced for 

quantitative analysis of 

gene expression

High resolution and 

sensitivity, can explore 

novel genes or variants

Sequencing process is complex, 

generates a large amount of data 

which makes analysis 

challenging

Non-coding RNA 

sequencing

microRNA 

sequencing (miRNA-

Seq)

A technique to 

understand the 

expression pattern and 

role of microRNA

Allows the identification 

and quantification of 

miRNAs expressed in 

different cell types and 

tissues

Can understand the 

diversity and expression of 

miRNA

Sequencing is difficult due to 

short length, and it’s hard to 

detect low expression miRNAs

long non-coding 

RNA sequencing 

(lncRNA-Seq)

A technique to analyze 

lncRNA expression and 

understand their 

function

lncRNAs play important 

roles in various biological 

processes like gene 

regulation, development, 

cancer etc.

Can understand the 

diversity and complexity of 

lncRNA

Understanding the function and 

structure of lncRNAs is 

challenging

Single-cell RNA sequencing (scRNA-Seq)

A method to analyze the 

transcriptome from 

individual cells

Helps to understand 

differences in expression 

between cells and 

understand the state of 

differentiation and 

function of cells

Can understand differences 

in expression between cells, 

understand the state of 

differentiation and function 

of cells

RNA extraction and sequencing 

from single cells is technically 

difficult, and has a lot of noise
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the intensity of the fluorescent signal produced by the labeled targets 
corresponds to the expression levels of the respective genes (39). In 
the MUD research field, microarray technology is a long-established 
tool employed as a central analysis component. For instance, this 
technology has been used to identify differentially expressed genes 
(DEGs) in response to MA exposure in various animal models and 
human cell lines (34, 40). However, microarrays have some limitations, 
including background noise, cross-hybridization, and limited dynamic 
range (41). Following the COVID-19 pandemic, the commercialization 
of RNA-seq technology has led to a declining trend in the use of 
microarray technology.

2.3 RNA sequencing

RNA-Seq is a next-generation sequencing (NGS) technique that 
has revolutionized the study of the transcriptome, offering a 
comprehensive understanding of the dynamic behavior of biological 
systems. In contrast to previous methods, such as microarrays, 
RNA-Seq enables high-throughput analysis of the entire 
transcriptome, including mRNA and non-coding RNA. This capability 
allows for the detection of novel transcripts, alternative splicing 
variants, and mutations/structural variations, providing a 
comprehensive and accurate picture of gene expression (41). RNA-Seq 
has transformed disease research by providing insights into gene 
expression changes associated with various diseases. This allows for 
the identification of DEGs between normal and diseased states, which 
can lead to the identification of key disease biomarkers and therapeutic 
targets. RNA-Seq has also played a crucial role in understanding 
complex diseases involving multiple genes and pathways, such as 
cancer, neurodegenerative diseases, and autoimmune disorders (42). 
Compared to microarray techniques, RNA-Seq has the advantages of 
high resolution and sensitivity, allowing the detection of 
low-abundance transcripts and DEGs. It has a wide dynamic range 
and can identify novel transcripts and splice variants (43, 44). 
However, mRNA-seq is expensive and generates large amounts of 
data, thus requiring significant bioinformatics expertise for analysis 
(45). In the context of MUD, mRNA-Seq has been instrumental in 
unraveling complex changes in gene expression associated with MA 
use. In a study by Cadet et al. (34), transcriptional changes in the 
brains of rats exposed to MA were compared with those in control rats 
using mRNA-Seq. This study identified numerous DEGs that offer 
insights into the neurobiological effects of MA (34). Our previous 
work also investigated gene expression patterns in the rat brain and 
whisker follicles after MA self-administration using RNA-Seq 
techniques, including mRNA and miRNA (46–48). Furthermore, 
RNA-Seq technology has been used to diagnose patients in biomarker 
discovery studies (49).

2.4 Non-coding RNA sequencing

ncRNAs are a class of RNA molecules that do not encode proteins 
but perform various cellular functions. They can be classified into two 
main categories based on their length: small non-coding RNAs 
(sncRNAs <200 nucleotides)—including miRNAs, small interfering 
RNAs (siRNAs), and piwi-interacting RNAs (piRNAs)—and long 
ncRNAs (lncRNAs >200 nucleotides). Although sncRNAs are 

well-known regulators of gene expression at the post-transcriptional 
level, lncRNAs have been implicated in various biological processes, 
including transcriptional regulation, chromatin modification, and 
molecular scaffolding (50).

Small-RNA-Seq is an NGS approach designed to capture and 
sequence sncRNAs from a sample. This technology has become a 
powerful tool for discovering and quantifying both known and novel 
sncRNAs. Given the ability of sncRNAs to regulate gene expression, 
small RNA-Seqs can provide critical insights into various biological 
processes and disease states (51). Recent studies have demonstrated 
that understanding the role of ncRNAs can enhance our understanding 
of the mechanisms underlying MA-related processes from the 
perspective of bioinformatics experts. Zhao et al. analyzed miRNAs in 
the peripheral blood of individuals with MUD to identify differentially 
expressed miRNAs compared to the control group from the 
perspective of bioinformatics experts (52). In another study, the 
response of miRNAs to MA and their effects on the NAc of mice were 
investigated, revealing their potential contribution to neuronal 
autophagy, metabolism, and immune responses (53).

2.5 Single-cell RNA sequencing

scRNA-Seq is a revolutionary technology that allows profiling of 
the transcriptome of individual cells. This technique provides a higher 
resolution of cellular differences and a better understanding of the 
function of an individual cell in the context of its microenvironment. 
By capturing and analyzing the transcriptome at the single-cell level, 
researchers can uncover the diversity of cell types and states within a 
population that would otherwise be  obscured by bulk RNA-Seq 
measurements (54). scRNA-Seq has proven to be particularly useful 
in disease research, as it can identify changes in the transcriptome 
associated with diseases at the individual cell level. This has led to the 
discovery of novel cell types, the unraveling of disease mechanisms, 
and the identification of potential therapeutic targets. For example, 
scRNA-Seq has been used in cancer research to elucidate tumor 
heterogeneity and the tumor microenvironment, leading to improved 
therapeutic strategies (55). The key advantage of scRNA-Seq is its 
ability to dissect cellular heterogeneity and unravel the complexity of 
biological systems at a resolution that was previously unachievable. It 
also allows the identification of rare cell types (56). However, 
scRNA-Seq also has some limitations, including technical noise, the 
large amount of data generated, the requirement for specialized 
analytical tools, and the relatively high cost compared to bulk 
RNA-Seq (57). In 2021, Dang et al. conducted a study investigating 
the effect of prenatal MA exposure on fetal brain development using 
a human cerebral organoid model. They observed that MA induces 
changes in the expression of neuroinflammatory and cytokine gene 
expression (58).

In conclusion, various technologies that can profile the expression 
and complex interactions of the transcriptome—including 
microarrays, mRNA-Seq, ncRNA-Seq, and scRNA-Seq—are required 
to diagnose, monitor, and treat MUD. qRT-PCR is the most widely 
used technology for verifying the discovered targets. Each technology 
has advantages and disadvantages, with RNA-Seq emerging as the 
preferred method for large-scale transcriptome profiling owing to its 
high sensitivity and broad dynamic range. Since the 2000s, the 
importance of non-coding RNA has been highlighted, and research 
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on small RNA has remained popular. As scRNA-Seq technology 
continues to develop and become cost-effective, it is expected to play 
an increasingly important role in MUD research, enabling the 
discovery of cell-specific transcriptomic changes and the derivation of 
new markers.

3 Methods

3.1 Literature search

We performed a literature search for this review using the Boolean 
search in the PubMed database. The search criteria were as follows: 
(transcript OR transcriptome OR RNA OR mRNA OR miRNA) AND 
(plasma OR blood OR serum OR urine OR exosome OR hair OR 
whisker OR saliva OR sweat OR breath OR skin) AND 
(methamphetamine use disorder OR methamphetamine addiction 
OR methamphetamine dependence OR methamphetamine abuse OR 
methamphetamine) NOT cancer.

3.2 Inclusion and exclusion criteria

The articles and reviews found through the database search were 
screened based on the following criteria:

 • Studies related to MA use disorders (studies on 
carcinomas excluded).

 • Whole-genome studies to evaluate multiple biomarkers.
 • Studies providing performance metrics of biomarkers, such as 

accuracy or Area Under the Curve (AUC) of the Receiver 
Operating Characteristic (ROC) curve.

 • Studies written in English.
 • Studies with the full text available.

The literature review may also include references cited in the 
retrieved papers. We have represented the process of literature search 
and analysis with a flow diagram (Figure 1).

4 Results

4.1 Study selection and overview

Twenty papers that used transcriptomic-based methods to 
identify biomarkers of MUD or MA exposure were identified 
(Table 2). These 20 studies were designed to identify biomarkers by 
comparing MUD versus non-MUD, MA users versus non-users, 
MUD versus MUD treatment, or similar populations (Figure  2). 
Seventeen studies investigated biomarkers of MUD in humans, one in 
macaques and three in rats. Among the human studies, seven used 
blood tissue, five used circulating extracellular vesicles (cEVs)/
exosomes, one used blood/exosomes, one used saliva, two used cell 
lines, and one used hair follicles for their investigations. Additionally, 
seven studies focused on mRNA biomarkers, eight on miRNA 
biomarkers, and two on both mRNA and miRNAs simultaneously. 
Many studies have evaluated the effects of MA on the transcriptomes 
of peripheral tissues without providing performance measures for 

biomarkers. Of the 20 studies, only seven included performance 
measures of the biomarkers. These seven studies were conducted on 
humans. Three studies used blood, two used cEV/exosomes, one used 
blood/exosome, and the other used hair follicles. Five studies 
measured miRNAs, and two study measured mRNA levels. Overall, 
the peripheral transcriptome signatures could distinguish between 
MUD and non-MUD (or similar MA-related phenotypes, depending 
on the study).

Thirteen studies did not measure biomarkers. These studies did 
not meet the inclusion criteria but formed the basis of RNA 
biomarkers for MUD; hence, they were separated. Nine studies were 
conducted in humans, and three were performed in experimental 
animals, targeting rats. Additionally, one study was conducted 
involving macaques, rats, and humans simultaneously. Four studies 
used whole blood, two used cell lines, one used saliva, and three used 
plasma EVs. Three studies measured miRNAs, two simultaneously 
measured miRNAs and mRNA, and five measured mRNA.

In several studies, there have been reports suggesting that gender 
differences are an essential consideration not only in the 
transcriptomic biomarker research for MUD but also for substance 
use disorder (SUD). Differences in transcriptomic expression based 
on gender can impact the accuracy of diagnostic biomarkers, 
potentially leading to a decrease in the efficacy of diagnosis and 
treatment. Out of the 20 studies we reviewed, 4 discussed gender 
differences (63, 66, 69, 72). Two of these studies demonstrated that the 
effects of MA are more pronounced in females and have empirically 
confirmed significant differences in elements like miRNA and DA 
through direct experimentation (63, 66). Additionally, two other 
studies mentioned the heightened sensitivity to MA effects in females 
(69, 72). The remaining 16 studies either used participants of the same 
gender, utilized animals, or included both genders but did not 
consider gender differences in their discussions.

4.2 Non-invasive MUD biomarkers

The identification of biomarkers for MUD in animals and humans 
is primarily conducted using brain tissue. However, for the diagnosis 
and monitoring of clinical treatments, non-invasive biomarkers in 
accessible tissues are necessary. The identification of non-invasive 
transcriptomic biomarkers from biological fluids and hair has gained 
significant attention, as these are more easily accessible and less 
invasive than other sampling methods (75). Here, we  discuss the 
transcriptomic biomarkers identified to date for the diagnosis, 
prediction, and treatment monitoring of MUD in non-invasive tissues. 
Unless otherwise specified, we  focus our discussion solely on 
MA-related content in research papers involving several drugs.

4.2.1 Biomarkers in blood
Blood, specifically peripheral blood, is one of the most common 

sources for transcriptome research on various diseases (including 
juvenile arthritis, hypertension, cancer, chronic fatigue, neuronal 
injuries, and metabolic disorders) because of its relatively non-invasive 
collection procedure (76, 77). Blood samples can be collected relatively 
easily and offer the advantage of being readily applicable to various 
analytical methods and techniques, such as microarray and 
qRT-PCR. However, the major disadvantage of blood samples is the 
high background noise owing to the different cell types and dynamic 
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changes in blood components in response to various external stimuli 
(77). Blood biomarkers for MUD have been investigated in several 
studies, and some candidates have shown promise as potential 
diagnostic markers. Among the 19 studies investigated, 8 reported 
transcriptome and transcriptome profiling studies using samples 
derived from blood or peripheral blood. Among these studies, four 
measured the biomarker performance. Additionally, seven studies 
focused on human participants, whereas one study was conducted 
using rat subjects.

Wei et  al. investigated neurotransmitter levels and associated 
receptors in the bloodstream of MA-addicted individuals compared 
with healthy controls (n = 118 and n = 113, respectively) using ELISA 
and qRT-PCR (63). The study revealed significantly decreased blood 
5-HT levels and increased blood DA and glutamate levels in 
MA-dependent patients but no significant difference in NE levels. 
Surprisingly, no significant correlation was found between the mRNA 
expression of neurotransmitter receptors and serum neurotransmitter 
concentration. Despite the changes in the blood concentrations of 
neurotransmitters, there were no significant changes in the expression 
of the corresponding receptor mRNA. Additionally, there was no 
correlation between the blood concentrations of neurotransmitters 
and the expression of related receptor mRNA.

Breen et al. performed RNA-Seq blood transcriptome profiling of 
subjects with MA-associated psychosis (MAP; n = 10), MA individuals 
without psychosis (MA; n = 10), and healthy controls (n = 10) to 
identify potential blood biomarkers of MAP (59). Employing a 

weighted gene co-expression network analysis (WGCNA), they 
identified 25 candidate biomarkers for subjects with MA and 20 for 
MAP. These biomarkers included 14 genes associated with the 
circadian clock, genetic transcription, RNA degradation, and 
ubiquitin-mediated proteolysis. These potential biomarkers could 
distinguish MA patients from healthy controls and provide insights 
into the biological mechanisms underlying psychosis.

In a study of mental illness, Yang et al. assessed neurotrophins and 
their receptors in peripheral blood mononuclear cells related to the 
antidepressant effects of exercise therapy during long-term MA 
abstinence (64). They targeted male MA addicts with or without 
depression and divided them into control and exercise groups. Plasma 
brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), 
neurotrophin-4 (NT-4), nerve growth factor (NGF), and pro-BDNF 
levels were measured using ELISA. Neurotrophin receptor expressions 
[tropomyosin receptor kinase A (TrkA), tropomyosin receptor kinase 
B-full length (TrkB-FL), tropomyosin receptor kinase B-truncated 
(TrkB-T1), tropomyosin receptor kinase C (TrkC), and low-affinity 
neurotrophin receptor (P75NTR)] in peripheral blood mononuclear 
cells were detected through qRT-PCR. The study found a significant 
association between plasma NT-4 levels and depression and a 
remarkable decrease in TrkB-FL and TrkB-T1 mRNA expression in 
peripheral blood mononuclear cells after exercise. Exercise appears to 
have an antidepressant effect in patients recovering from MA 
addiction, indicating its potential as a beneficial treatment for 
these patients.

FIGURE 1

Flow diagram for the literature search and analysis.
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TABLE 2 MUD transcriptome studies in non-invasive tissues.

References Species Sources RNA 
type

Methodology Condition Biomarkers Biomarker 
performance

Breen et al. (59) Human Blood mRNA RNA-Seq • MA dependence 

with MAP (n = 10)

• MA dependence 

without MAP (n = 10)

• Healthy control 

(n = 10)

ELK3, MAGEE1, 

RNF138P1, 

TBC1D2, 

DDRGK1, 

MTHFSD, ARL6, 

FAM169A, 

ZSCAN5A, FBN1, 

ZNF821, FBP1, 

C7orf11, PHLDB2

BRB-array tools-

supervised 

classification methods 

using RFE and 

LOOCV

Zhang et al. (60) Human Cell line mRNA

miRNA

qRT-PCR • MA (n = 124)

• Healthy control 

(n = 57)

GRIA2, miR-181a

Niu et al. (61) Human Blood mRNA Microarray • METH-dependent 

participants

  – TPM (n = 69)

  – placebo (n = 71)

PML, SASH1, 

FPR1, 

GABARAPL1, 

CSNK1A1, 

CTNND1, CXCR4, 

DTX1, MAPK14, 

PLEKHF2, PSMB2, 

PSMD1, PTEN

Gu et al. (62) Human Blood miRNA Microarray • MA abuser (n = 42)

• Control (n = 42)

miR-9-3p ROC-AUC

Wei et al. (63) Human Blood mRNA qRT-PCR • Healthy control 

subjects (n = 113)

• Methamphetamine-

dependent patients 

(n = 118)

5-HT1A, 5-HT1B, 

Dopamine-D1, and 

Dopamine-D2 

receptors

Yang et al. (64) Human Blood mRNA qRT-PCR • METH addicts 

without depression 

(n = 25)

• METH addicts with 

depression (n = 47)

TrkB

Rezai Moradali 

et al. (65)

Human Blood miRNA qRT-PCR • MA (n = 60)

• Healthy control 

(n = 60)

miR-127, miR-132 ROC-AUC

Zhao et al. (52) Human Blood miRNA Microarray • MA-dependent 

patients (n = 4)

• Normal controls 

(n = 4)

miR-181a, miR-

15b, miR-let-7e, 

miR-let-7d

Xu et al. (66) Human Blood & 

exosome

miRNA Microarray, miRNA-

Seq, qRT-PCR

• MA patients (n = 82)

• Healthy control 

(n = 50)

miR-320 ROC-AUC

Kim et al. (67) Human cEVs miRNA qRT-PCR • MA abstinence 

(n = 37)

• Healthy control 

(n = 35)

miR-137 ROC-AUC

Burns and 

Ciborowski (68)

Human Cell line mRNA qRT-PCR • Control

• Meth (2 h)

• Meth (6 h)

TNF, CXCL1, IL-8, 

CCL7

(Continued)
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TABLE 2 (Continued)

References Species Sources RNA 
type

Methodology Condition Biomarkers Biomarker 
performance

Sandau et al. (69) Human cEVs miRNA miRNA array • MA-ACT (n = 10)

• CTL (n = 10)

miR-301a-3p, 

miR-382-5p, miR-

628-5p

Chen et al. (70) Human Exosome miRNA small RNA-Seq • MA dependence

  – withdraw 7 days 

(n = 20)

  – 3 month (n = 20)

  – 12 month (n = 20)

• Healthy control 

(n = 20)

miR-744-5p ROC-AUC

Wu et al. (71) Human Exosome mRNA, 

miRNA, 

lncRNA

RNA-Seq • MUD patients, AW 

(n = 22)

• MUD patients, PW 

(n = 29)

• Healthy control 

(n = 31)

IL-1b, IL-9, IL-15, 

Basic FGF, and 

MIP1a, IL-1ra, 

IL-6, Eotaxin IP-10, 

VEGF, RANTES, 

IL-7, IL-12p70

Jang et al. (49) Human Hair follicle mRNA RNA-Seq • Control (n = 29)

• Methamphetamine 

(n = 23)

• Recovery (n = 11)

PSMA2, RAC3, 

PPP1R12A, DVL1, 

SUFU, APC2, 

KLC3, NDUFA4, 

FADD, APOE

ROC-AUC

Nohesara et al. (72) Human Saliva mRNA qRT-PCR • MA without 

psychotic experience 

(n = 25)

• MA with psychotic 

experience (n = 25)

• Normal control 

(n = 25)

DRD3, DRD4, 

MB-COMT, AKT1

Chand et al. (73) • Human

• Macaque

• Rat

sEVs/

exomeres

miRNA qRT-PCR • Rhesus macaque: 

Control (n = 5) / MA 

(n = 5)

• Rat: Control (n = 14) 

/ MA (n = 12)

• Human: Control 

(n = 10) / MA (n = 10)

miRNA-29a

Tavakkolifard et al. 

(74)

Rat Blood mRNA qRT-PCR • MA non-prefer 

(n = 21)

• MA prefer (n = 11)

OX1R

Song et al. (46) Rat Whisker 

follicle

mRNA RNA-Seq • CON: before self-

administration (n = 6)

• MASA: MA self-

administration (n = 6)

• WD: MA self-

administration after 

withdrawal (n = 6)

Vcl, Nrp1, Itgb1, 

Tgfb1, Src, Ywhab, 

Nfkb2, Rela, Sdc2, 

Akt1, App, Mapk14, 

Egfr

Jang et al. (47) Rat Whisker 

follicle

mRNA RNA-Seq • MA self-

administration (n = 6)

• SA(saline) self-

administration (n = 6)

App, Per1, Ddit4, 

Tagln

cEVs, circulating Extracellular vesicle; miRNA, microRNA; lncRNA, long non-coding RNA; MA, Methamphetamine; MAP, MA-associated psychosis; TPM, Topiramate; METH, 
Methamphetamine; MUD, methamphetamine use disorder; RFE, Recursive feature elimination; LOOCV, Leave-one-out cross-validation; ROC, Receiver operating characteristic curve; AUC, 
Area Under the Curve.
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Niu et al. conducted a study to identify biomarkers for tracking 
changes in gene expression during therapeutic interventions for MA 
dependence using topiramate (TPM) (61). They analyzed microarray 
gene expression data from 8- and 12-week TPM responders and 
identified 1,381 genes in the 8-week group, with 359 genes common 
to both time points and 300 genes unique to TPM responders. 
Ingenuity pathway analysis revealed the presence of the 
phosphoinositide 3-kinase/AKT serine/threonine kinase 1 (AKT1) 
signaling pathway in both TPM groups. Certain genes were 
consistently downregulated, including glycogen synthase 1 (GYS1), 
heat shock protein 90 beta family member 1 (HSP90B1), NFKB 
inhibitor epsilon (NFKBIE), protein phosphatase 2 regulatory subunit 
B’delta (PPP2R5D), RAS related (RRAS), and tumor protein p53 
(TP53). In contrast, phosphatase and tensin homolog (PTEN) were 
consistently upregulated. Different molecular interaction networks 
were detected in the 8- and 12-week TPM groups, suggesting a 
combined effect of TPM and MA on multiple molecular pathways, 
leading to the attenuation of MA withdrawal symptoms. This study 
identified enriched pathways related to neuronal function, synaptic 
plasticity, signal transduction, inflammation, immune function, and 
oxidative stress response, offering potential insights for more effective 
treatments for MA dependence.

In another study related to MA dependence, Tavakkolifard et al. 
investigated the correlation between the gene expression levels of the 

orexin-1 receptor (OX1R) in the rat prefrontal cortex (PFC) and blood 
lymphocytes and susceptibility to MA dependence and novelty-
seeking behavior (74). This study was conducted in male Wistar rats 
to evaluate OX1R expression using real-time PCR. Novelty-seeking 
behavior was assessed using the novel object recognition test, and 
susceptibility to MA abuse was examined using voluntary MA oral 
consumption tests. The results showed that rats in the MA-preferring 
group had significantly higher OX1R expression in both blood 
lymphocytes and the PFC than rats in the non-preferring group. This 
study suggested that MA abuse may impact orexin regulation. 
Moreover, upregulation of OX1R mRNA expression in lymphocytes 
and the PFC could predict vulnerability to MA consumption and 
novelty-seeking behavior. This finding may help predict sensitivity to 
the reward effects of MA and identify individuals with higher novelty-
seeking tendencies.

Small RNAs, particularly miRNAs, have gained attention for their 
roles in gene regulation since the early 2000s (78). miRNAs are small 
non-coding RNA molecules that post-transcriptionally regulate gene 
expression by binding to target mRNA 3′ untranslated regions (79). 
The dysregulation of miRNAs can contribute to various diseases, 
including cancer, cardiovascular diseases, and neurological disorders 
(80, 81). Research on miRNAs as non-invasive biomarkers for diseases 
has been growing because of their stability in bodily fluids and tissues 
and their potential as non-invasive markers for diagnosis and 

FIGURE 2

Overview of the transcriptomic biomarker studies identified in the literature search.
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prognosis. Studies have explored the effect of MA on miRNA 
expression profiles in the context of MA-induced neurotoxicity; 
however, more comprehensive research is required.

Zhao et al. investigated plasma miRNA expression in patients with 
MUD (52). They found six downregulated miRNAs (miR-181a, 
miR-15b, miR-let-7e, and miR-let-7d) in patients with MUDs 
compared with healthy controls. These altered miRNAs were 
negatively correlated with the frequency of drug use. They and others 
also revealed that miR-181a could bind to the mRNA transcripts of 
the human glutamate receptor genes, glutamate ionotropic receptor 
AMPA type subunit 2 (GRIA2), and gamma-aminobutyric acid 
receptor subunit alpha-1 (GABRA1) (60). Validation experiments 
confirmed elevated GRIA2 expression in patients with MUD, and cell-
based studies supported miR-181a’s role in regulating GRIA2 
expression. This study highlights the significant roles of miR-181a and 
GRIA2 in MUD.

Gu et al. explored circulating miRNA expression in drug addicts 
as a non-invasive diagnostic tool for drug abuse (62). Microarray 
analysis identified 109 significantly altered miRNAs in MA addicts, 
with miR-9-3p exhibiting increased expression. This suggests the 
potential of altered serum miRNAs as adjunct tools for identifying 
individuals with drug abuse or addiction.

Moradaali et al. investigated the expression levels of miR-127 and 
miR-132 in MA abusers in Iran (65). They found significantly higher 
expression of miRNA-127 and miRNA-132 in MA abusers than in 
healthy controls, indicating their possible involvement in the 
pathophysiology of MA abuse.

4.2.2 Biomarkers in cEVs, exosome
Circulating extracellular vesicles (cEVs) have gained recognition 

as crucial tools for intercellular communication in biomedical research 
(82, 83). They encompass various entities such as ectosomes, 
microparticles, microvesicles, exosomes, and oncosomes, which are 
released not only during cellular death but also during the normal 
functioning of healthy cells. These vesicles found in the circulatory 
system encapsulate biomolecules (RNA, proteins, and metabolites) 
and hold promise as disease biomarkers, influencing physiological 
functions (83).

Exosomes are small extracellular vesicles (30–150 nm) that play a 
vital role in cell-to-cell communication and addiction; they contain 
biomolecules such as proteins, lipids, mRNA, miRNA, and 
lncRNA. They are secreted by various cell types and are found in 
diverse biofluids such as blood, urine, and cerebrospinal fluid (84–86). 
Owing to their easy isolation and detection from body fluids, 
exosomes and cEVs offer the potential for disease etiology elucidation, 
early diagnosis, tracking, and diagnostic marker development (87, 88). 
However, determining their origin and reflecting specific biological 
states remains challenging (89).

Recent studies have highlighted exosomes as a potential source of 
non-invasive biomarkers for MUD (67). One study focused on 
miRNA markers for MA withdrawal symptoms and found that cEV 
miR-137 was significantly reduced in patients with MA withdrawal 
symptoms compared with healthy controls. cEV miR-137 showed 
consistent diagnostic power regardless of the duration of MA 
withdrawal symptoms or period of MA use. Interestingly, cEV 
miR-137 interacts with age, demonstrating different diagnostic power 
for distinguishing MA withdrawal symptoms more effectively in 
younger populations. Factors such as the duration of MA use or 

withdrawal symptoms, smoking status, depression, and antidepressant 
treatment did not affect the decrease in cEV miR-137 levels caused by 
MA withdrawal symptoms. These findings suggest that cEV miR-137 
has the potential to serve as a stable and accurate diagnostic marker 
for MA withdrawal.

Sandau et al. investigated the effect of MA on human plasma 
extracellular vesicles and their miRNA cargo (69). These findings 
reveal that MA use influences extracellular vesicles and their miRNA 
content, highlighting the importance of further research to explore 
their roles in addiction, recovery, and relapse mechanisms. This study 
is the first to analyze plasma extracellular vesicles and their miRNA 
cargo in both MA users and controls. Notably, the MA use group 
exhibited an increase in the tetraspanin markers (CD9, CD63, and 
CD81) of extracellular vesicles. In contrast, there was no such increase 
in coagulation, platelets, and red blood cell-derived extracellular 
vesicles. Moreover, among the 169 plasma EV-miRNAs, eight of them 
(miR-223-5p, miR-301a-3p, miR-32-5p, miR-191-5p, miR-142-5p, 
miR-29a-3p, miR-199a-3p, and miR-579-3p) exhibited noteworthy 
characteristics in the MA use group based on multiple 
statistical criteria.

Interestingly, 15 miRNAs of interest were identified in smokers, 
two of which overlapped with those in the MA-use group. Three 
miRNAs (miR-301a-3p, miR-382-5p, and miR-628) in the MA use 
group were significantly associated with clinical features of MA use. 
Their target predictions were linked to pathways related to MA use, 
particularly cardiovascular disease and neuroinflammation. These 
findings emphasize the impact of MA use on extracellular vesicles and 
their miRNA content, underscoring the need for further research to 
investigate their role in addiction, recovery, and relapse mechanisms. 
Additionally, this study aimed to explore the potential of plasma 
extracellular vesicles as valuable clinical biomarkers for monitoring 
recovery from MA use disorder. Furthermore, to gain insights into the 
pathways regulated by cEV and their molecular cargo, mechanistic 
studies investigating the subtypes of extracellular vesicles (neuron-
derived vs. microglia-derived extracellular vesicles) and their targets 
are necessary.

A study conducted by Wu et al. focused on investigating the severe 
damage caused by MA addiction and withdrawal from the immune 
and neural systems (71). However, much of its etiology remains 
unknown. The researchers examined the peripheral cytokine and 
exosomal transcriptome regulatory networks in patients with 
MUD. Among the 51 participants, 22 were in the acute withdrawal 
(AW) phase, 29 were in the prolonged withdrawal (PW) phase, and 31 
were age-and sex-matched healthy controls (HCs). Compared to HCs, 
the levels of Interleukin (IL)-1β, IL-9, IL-15, Basic FGF, and MIP1a 
significantly decreased. In contrast, IL-1rα, IL-6, Eotaxin IP-10, 
vascular endothelial growth factor (VEGF), and regulated up 
activation, normal T cell expressed and secreted (RANTES) levels 
increased during the AW phase. Most disturbances were fully or 
partially restored to baseline levels during the PW phase. However, the 
levels of cytokines, such as IL-6, IL-7, and IL-12p70, continued to 
increase even after 1 year of withdrawal. Additionally, the counts of 
CD3+ and CD4 + T cells significantly decreased in the AW phase; this 
reduction was restored to baseline during the PW phase.

Conversely, no statistically significant changes were observed in 
CD8 + T, NK, and B cells. Furthermore, researchers have profiled 
exosomal mRNA and lncRNAs and established an lncRNA-miRNA-
mRNA network associated with the AW and PW phases. Notably, 
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chemical marker signaling markedly increased during the AW phase, 
whereas differentially expressed mRNAs/lincRNAs were significantly 
enriched in neurodegenerative diseases during the PW phase. In 
conclusion, this study identified a series of cytokines and exosomal 
mRNA/lncRNA regulatory networks linked to MA withdrawal. The 
study provides an experimental and theoretical foundation that could 
be  valuable for further understanding the etiology of withdrawal 
symptoms in MUD.

Xu et al. aimed to identify miRNA biomarkers in the blood plasma 
and exosomes of patients through multi-omics research (66). This 
study included 82 MA patients and 50 healthy controls. Plasma 
miRNA analyses used samples from five patients with MA and five 
healthy controls, whereas miRNA analyses of exosomes used samples 
from 39 patients with MA and 21 healthy controls. They screened 
2006 miRNAs in plasma using microarray technology and 758 
miRNAs in exosomes using miRNA-Seq technology. Of these, 603 
miRNAs exhibited common expression changes in both the plasma 
and exosomes. Among them, miRNAs satisfying the conditions of 
p < 0.01 and fold-change>2.0 were ultimately selected. Interestingly, 
two miRNAs (miR-320a-3p and miR-320c) were identified in the 
plasma, and five miRNAs (miR-320a-3p, miR-320b-1, miR-320b-2, 
miR-320c-1, and miR-320c-2) were identified in the exosomes. The 
miR-320 family in both plasma and exosomes was validated using 
qRT-PCR and showed significantly increased expression in patients 
with MA compared to healthy controls. Diagnostic power was 
assessed using the Area Under the Curve (AUC) of the Receiver 
Operating Characteristic (ROC) curve, with AUC values of 0.751 and 
0.962 for miR-320 in plasma and exosomes, respectively. Increased 
plasma miR-320 levels were positively associated with smoking, age at 
onset, and daily use of MA. Target pathway predictions related to 
miR-320 included cardiovascular diseases, synaptic plasticity, and 
neuroinflammation. In conclusion, this study highlights miR-320 in 
the plasma and exosomes as a potential blood-based biomarker for 
diagnosing MUD.

Chen et  al. characterized changes in neurotransmitter and 
exosomal miRNA profiles during heroin and MA withdrawal (70). 
This study also sought to determine their associations with psychiatric 
comorbidities in a large group of patients with substance use disorder 
(SUD). A list of DEGs, including the presenilin enhancer gamma-
secretase subunit (PSENEN), ferredoxin 2 (FDX1L), VPS37D subunit 
of ESCRT-I (VPS37D), spectrin beta non-erythrocytic 4 (SPTBN4), 
serine/threonine-protein phosphatase 5 (PPP5C), and family with 
sequence similarity of 57 member B (FAM57B) were identified as 
potential direct or indirect targets of hsa-miR-744–5p. The 
dysregulated miRNA signatures, including hsa-miR-451a and 
hsa-miR-21a, resulted in an AUC of 0.966 and 0.861 for predicting 
SUD, respectively. The identified DEGs were mainly involved in 
neurodegenerative diseases rather than psychiatric disorders. For 
example, PSENEN, which is associated with late-onset Alzheimer’s 
disease, is a key regulator of the gamma-secretase complex that is 
involved in amyloid beta 42 peptide production. SPTBN4 disorders 
are characterized by severe developmental delays or intellectual 
disability. The study suggests that the miRNA content of circulating 
exosomes represents a biomolecular “fingerprint” of substance 
withdrawal progression, potentially contributing to psychiatric 
symptoms. This study is significant in the field of substance 
withdrawal, which is lacking in molecular biomarker and related 
mechanistic studies.

Burns et al. aimed to identify a miRNA marker of MA abstinence 
in cEVs (68). Researchers quantified miR-137 in the cEVs of patients 
with MA abstinence and compared them to those of healthy controls. 
The study included 37 patients with MA abstinence and 35 
age-matched healthy controls diagnosed with SUD for MA, according 
to the Diagnostic and Statistical Manual of Mental Disorders, Fifth 
Edition (DSM-5). Blood samples were collected from all the patients. 
This study found that the reduction in cEV miR-137 was stable 
irrespective of MA use or abstinence duration. Interestingly, an 
interaction was observed with age; control participants displayed an 
aging-dependent reduction in cEV miR-137, whereas MA-abstinent 
patients showed an age-dependent increase in cEV miR-137. This 
study demonstrates that miR-137 in cEVs holds high potential as a 
stable and accurate diagnostic marker for MA abstinence syndrome.

Chand et al. demonstrated evidence that miR-29a is elevated in 
brain-derived EVs (BDE) and in EVs extracted from the blood using 
chronic methamphetamine (MA) exposure models in non-human 
primates (macaques) and rodents (rats) (73). Furthermore, the 
researchers discovered that miR-29a is abundantly expressed in EV 
pools composed of small EVs and exomers. They showed that miR-29a 
plays a crucial role in MA-induced inflammation and synaptodendritic 
damage. By extracting EVs from the blood of individuals diagnosed 
with MUD, the researchers provide evidence suggesting that miR-29a 
could serve as a biomarker for detecting neural damage in individuals 
diagnosed with MUD.

4.2.3 Biomarkers in saliva
Saliva is a complex biofluid secreted from the major and minor 

salivary glands and serves as an important source of biomarkers 
reflecting the body’s internal state (90, 91). It contains proteins, 
transcripts, microbes, cells, hormones, and antibodies. Saliva offers 
clear advantages for biomarker research owing to its non-invasive 
collection, allowing frequent sampling without special treatment or 
preservation (92). Additionally, saliva contains various forms of RNA, 
enabling the assessment of the cell transcriptome status. However, its 
relatively low RNA concentration may limit its sensitivity and 
specificity during analysis, which demands high accuracy (93). The 
complexity of the diverse components of saliva can complicate the 
process of isolating or purifying specific components (94). Despite 
these challenges, transcriptome analysis of saliva can be used for early 
disease diagnosis and monitoring, providing insights into oral cancer, 
metabolic syndrome, autoimmune diseases, and potential diagnostic 
markers (95). As a non-invasive biological fluid, saliva holds promise 
as a valuable source of MUD biomarkers.

Nohesara et al. investigated the epigenetic and expression changes 
induced by MA in key genes associated with psychosis (72). The study 
included patients with MA dependence, with and without psychosis, 
along with control subjects; each group consisted of 25 individuals. 
RNA and DNA were extracted from the saliva samples of patients with 
MA dependence and psychosis, MA dependence without psychosis, 
and control subjects. The study found significant DNA 
hypomethylation of the promoter regions of the dopamine receptor 
D3 (DRD3), dopamine receptor D4 (DRD4), membrane-bound 
catechol-O-methyltransferase (MB-COMT), and AKT1 genes 
associated with increased expression of the corresponding genes in 
patients with MA psychosis. This was observed to a lesser degree in 
some candidate genes in non-psychotic patients than in 
control subjects.
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These genes are related to dopamine receptors (DRD1, DRD2, 
DRD3, and DRD4), which play roles in reward, motivation, memory, 
and other functions, potentially impacting psychiatric disorders such 
as psychosis. MB-COMT is involved in dopamine breakdown, and 
changes in its expression can influence dopamine levels and behavior. 
Glutamate Decarboxylase 1 (GAD1) affects the neurotransmitter 
gamma-aminobutyric acid (GABA) levels, potentially influencing 
mood and cognition. AKT1, which is associated with cell survival and 
metabolic pathways, has implications for psychiatric disorders such as 
schizophrenia and psychosis. This study provides evidence that MA 
dependence is associated with reduced DNA methylation and 
increased expression of key genes involved in the pathogenesis of 
psychotic disorders.

4.2.4 Biomarkers in hair roots: hair follicles and 
whisker follicles

Hair samples are desirable sources for SUD diagnosis because of 
their non-invasive collection, long detection window, and resistance 
to external environmental conditions (96, 97). Addictive drugs and 
their metabolites are incorporated into the hair matrix through blood 
circulation, sweat, and sebum, resulting in their accumulation in the 
hair shaft (98). Given that hair grows at a rate of approximately 1 cm 
per month, drug use can be  retrospectively assessed by analyzing 
segments of the hair shaft (99, 100). This characteristic allows the 
detection of drug use over several months or even years, depending 
on hair length (101). Consequently, hair analysis can effectively track 
the drug usage history of heavy drug users (99, 102). Moreover, hair 
analysis is less invasive and more tamper-resistant than other methods, 
such as blood and urine testing. It also avoids common challenges 
faced in urine testing, such as adulteration or substitution (103). 
Furthermore, hair analysis has a higher detection limit for various 
drugs than blood or saliva samples, making analysis easier and more 
accurate (104).

Research has shown that melanin, the primary pigment in hair, 
can bind to drugs, leading to higher drug concentrations in darker 
hair. This variability can result in differences in drug detection levels 
among individuals with different hair characteristics (100). To 
minimize these variations, some researchers have suggested using 
standardized hair sampling procedures and population-specific cut-off 
values (103). Recent studies have focused on profiling hair and hair 
follicles’ endogenous metabolome to identify MA use biomarkers 
(105, 106).

Despite the numerous advantages of hair analysis, certain 
limitations must be considered when detecting addictive drugs and 
their metabolites. One challenge is the potential for external 
contamination, as hair can come into contact with drugs through 
environmental exposure, such as the passive inhalation of drug 
particles. To address this issue, various decontamination procedures, 
including the use of organic solvents and detergents, have been 
developed to remove external contamination (103). Another 
limitation is the detection window for hair analysis, which is 
influenced by factors such as hair growth rate, cosmetic treatments, 
and environmental conditions, which may impact the interpretation 
of the results (100, 101, 107).

Maekawa et al. proposed using scalp follicles to identify genes 
related to brain diseases because the brain and scalp follicles share a 
developmental origin as ectoderm-derived tissues (108). By examining 
gene expression in hair follicles and postmortem brain tissue samples 

from patients with autism, they proposed hair follicles as an alternative 
tool to reflect the disease state of the central nervous system, including 
conditions such as autism and chronic psychosis (108). Given that 
MUD is classified as a brain disease, discovering MUD biomarkers 
through transcriptome profiling of hair follicles is a valid approach. 
Our research group is currently conducting studies on transcriptome 
profiling and biomarker discovery related to MA use in rat whisker 
follicles and human hair follicles, which will be presented here.

Our group has studied the gene expression profile of MA-induced 
reward effects in a rat model of MA self-administration (46). Using 
RNA-seq, we investigated changes in gene expression in rat whisker 
follicles before self-administration, after MA self-administration, and 
after withdrawal. We  identified six statistically significant gene 
expression patterns and constructed a functional network of 43 core 
genes, including HSP90-beta 1 (HSP90AB1), RAC-alpha serine/
threonine-protein kinase (AKT1), and proto-oncogene non-receptor 
tyrosine kinase (SRC). These genes are associated with drug addiction, 
suggesting their importance in MA addiction. Notably, HSP90AB1 
shows increased expression in the rat frontal cortex after morphine 
self-administration (109), whereas AKT1 and SRC are linked to 
excessive alcohol consumption (110) and contextual cocaine-seeking 
behaviors (111), respectively. Overall, this study highlights the 
potential of these gene alterations in rat whisker follicles as indicators 
of the reward effects of MA.

We investigated MA-induced transcriptional changes in whisker 
follicles and the striatum of MA-self-administered rats (47). This study 
used Molecular Complex Detection (MCODE) cluster analysis on 
protein–protein interaction (PPI) networks to identify 129 statistically 
significant core genes [e.g., activity-regulated cytoskeleton-associated 
protein (ARC), proto-oncogene, and AP-1 transcription factor subunit 
(Junb)] in whisker follicles and 49 [e.g., amyloid beta precursor 
protein (App)] in the striatum, potentially serving as diagnostic 
markers. The DEGs in the striatum were related to nicotine, cocaine, 
and amphetamine addiction, whereas whisker follicles were associated 
with Parkinson’s disease, Huntington’s disease, and Alzheimer’s 
disease. Common genes [period circadian regulator 1 (Per1), DNA 
damage-inducible transcript 4 (Ddit4), and transgelin (Tagln)] and 
pathways, including the retrograde endocannabinoid signaling and 
synaptic vesicle cycle pathways, were identified between the two 
tissues. This study offers important data on gene expression related to 
MA reward in whisker follicles and the striatum, potentially aiding 
research using whisker follicles as alternative biomarkers for 
diagnosing MA use disorders.

Following research on MA biomarkers in whisker follicles, 
we extended this study to humans. Gene expression and biomarkers 
were explored during various withdrawal periods in patients with 
MUD (49). Transcriptome analysis was performed on hair follicle 
samples from different MUD stages. Two major clusters were 
identified: non-recovered (NR) and almost recovered (AR) patients. 
A predictive model for MUD diagnosis was developed with a high 
accuracy (98.7% for NR and 81.3% for AR). Important genes such as 
PMS1 homolog 2, mismatch repair system component (PSM2), and 
Rac family small GTPase 3 (RAC3) were found. PSM2 was upregulated 
in NR and linked to neurological dysfunction, while RAC3 
downregulation could impact GABAergic neuronal function in 
disorders such as epilepsy and schizophrenia. This study highlights the 
potential of transcriptomics-based biomarkers and suggests that 
previous classification methods for patients with MUDs may have 
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certain limitations. This notable study using hair follicles of patients 
with MUDs developed a transcriptomic-based predictive model, 
showing promise for improving MUD diagnosis and advancing future 
pharmacological treatments for this disorder.

5 Conclusion

This review summarizes the latest advancements in the 
identification of non-invasive transcriptomic biomarkers for the 

diagnosis of MUD. Routine MUD diagnosis and discrimination are 
primarily based on self-reported questionnaires that assess drug use 
before and during abstinence. However, researchers have expressed 
concerns about the reliability, validity, and cognitive biases inherent 
in self-report questionnaires, especially in complex contexts such as 
SUD. In this respect, we investigated recent trends in the discovery of 
transcription biomarkers using non-invasive tissues. Non-invasive 
biomarkers excavated from the blood, exosomes, saliva, hair, and hair 
follicle cells were investigated, and their functions were described 
(Figure  3). Moreover, considering gender differences will offer 

FIGURE 3

Illustration of the pathological mechanisms involving mRNA biomarkers (A) and miRNA biomarkers (B) in non-invasive tissues of MUD patients.
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valuable insights into the diagnosis and treatment of MUD. Recently, 
the development of intrinsic diagnostic markers for MUD in 
non-invasive tissues has been actively underway in various fields, 
including transcriptional studies, metabolism, genomics, and 
proteomics. Multi-omics analyses of these biomarkers, combined with 
multimodal neuroimaging, can mitigate the diagnostic uncertainties 
of self-report questionnaires. Moreover, artificial intelligence-powered 
multi-omics and modal analyses demonstrated high analytical power 
and reproducibility. Nevertheless, challenges remain for the clinical 
application of non-invasive biomarkers for the diagnosis of MUD. The 
difference between laboratory and clinical settings often makes it 
difficult to directly apply these findings to actual patient care, 
necessitating verification and standardization to achieve consistent 
clinical results. Furthermore, integrating MUD transcriptome 
biomarkers discovered in various studies is challenging due to 
differences in methodologies, sample types, and experimental 
conditions used across studies, making it difficult to draw consistent 
conclusions. Not all reported transcriptome biomarkers are clinically 
significant or useful. To overcome these issues, the development of 
more sophisticated analytical tools and the establishment of 
standardized protocols are necessary. To apply these findings for 
predicting, diagnosing, and treating MUD, there is a need to explore 
and agree upon integrated approaches and standards for evaluating 
clinical utility. Building sustainable diagnostic management pathways 
and improving the care of MUD patients make non-invasive testing 
the only viable option for diseases with physical and mental health and 
socioeconomic implications.
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