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Introduction: Autism spectrum disorder (ASD) is a multifaceted developmental 
condition that commonly appears during early childhood. The etiology of 
ASD remains multifactorial and not yet fully understood. The identification 
of biomarkers may provide insights into the underlying mechanisms and 
pathophysiology of the disorder. The present study aimed to explore the 
causes of ASD by investigating the key biomedical markers, trace elements, and 
microbiota factors between children with autism spectrum disorder (ASD) and 
control subjects.

Methods: Medline, PubMed, ProQuest, EMBASE, Cochrane Library, PsycINFO, 
Web of Science, and EMBSCO databases have been searched for publications 
from 2012 to 2023 with no language restrictions using the population, 
intervention, control, and outcome (PICO) approach. Keywords including 
“autism spectrum disorder,” “oxytocin,” “GABA,” “Serotonin,” “CRP,” “IL-6,” “Fe,” 
“Zn,” “Cu,” and “gut microbiota” were used for the search. The Joanna Briggs 
Institute (JBI) critical appraisal checklist was used to assess the article quality, 
and a random model was used to assess the mean difference and standardized 
difference between ASD and the control group in all biomedical markers, trace 
elements, and microbiota factors.

Results: From 76,217 records, 43 studies met the inclusion and exclusion 
criteria and were included in this meta-analysis. The pooled analyses showed 
that children with ASD had significantly lower levels of oxytocin (mean 
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differences, MD  =  −45.691, 95% confidence interval, CI: −61.667, −29.717), iron 
(MD  =  −3.203, 95% CI: −4.891, −1.514), and zinc (MD  =  −6.707, 95% CI: −12.691, 
−0.722), lower relative abundance of Bifidobacterium (MD  =  −1.321, 95% CI: 
−2.403, −0.238) and Parabacteroides (MD  =  −0.081, 95% CI: −0.148, −0.013), 
higher levels of c-reactive protein, CRP (MD  =  0.401, 95% CI: 0.036, 0.772), 
and GABA (MD  =  0.115, 95% CI: 0.045, 0.186), and higher relative abundance 
of Bacteroides (MD  =  1.386, 95% CI: 0.717, 2.055) and Clostridium (MD  =  0.281, 
95% CI: 0.035, 0.526) when compared with controls. The results of the overall 
analyses were stable after performing the sensitivity analyses. Additionally, no 
substantial publication bias was observed among the studies.

Interpretation: Children with ASD have significantly higher levels of CRP 
and GABA, lower levels of oxytocin, iron, and zinc, lower relative abundance 
of Bifidobacterium and Parabacteroides, and higher relative abundance of 
Faecalibacterium, Bacteroides, and Clostridium when compared with controls. 
These results suggest that these indicators may be a potential biomarker panel 
for the diagnosis or determining therapeutic targets of ASD. Furthermore, large, 
sample-based, and randomized controlled trials are needed to confirm these 
results.

KEYWORDS

autism spectrum disorder, biomarkers, biomedical, trace elements, microbiota

Introduction

Autism spectrum disorder (ASD) is a multifaceted developmental 
condition that commonly appears during early childhood. It is marked 
by difficulties in social interaction, challenges in communication, and 
the presence of repetitive behaviors or fixations (1). According to the 
estimation by the American Centers for Disease Control and 
Prevention Center (CDC), one in 44 children aged 8 years was 
diagnosed with autism in 2018 (2). The prevalence of autism was 
approximately 1% globally (3). The risk in boys is 3–4 times higher 
than that in girls, and male autistic patients tend to exhibit more 
obvious signs than female counterparts (4). The current clinical 
diagnosis of autism is largely dependent on the fifth version of 
Diagnostic and Statistical Manual of Mental Disorder (DSM-5) by the 
American Psychiatric Association (1). ASD is usually first diagnosed 
in toddlerhood, with many of the most obvious signs (e.g., stop 
acquiring or losing previously gained skills) presenting around 
2–3 years old; however, clear predictions of later cognitive impairment 
are sometimes difficult in children at 2–3 years of age (1).

Despite extensive research efforts, the etiology of ASD remains 
multifactorial and not yet fully understood (5–9). In recent years, 
studies in biomarkers have found that patients with ASD have a 
higher level of inflammatory factors, such as C-reactive protein 
(CRP) (10, 11), a lower tracer elements level including iron (Fe) 
(12, 13) and zinc (Zn) (14, 15), and a lower abundance of beneficial 
microbiota bacteria (16–19) than healthy patients. The 
identification of biomarkers may provide insights into the 
underlying mechanisms and pathophysiology of the disorder (20–
22). However, there is no study that has systematically assessed the 
characteristics of ASD patients in comparison with healthy people. 
This study aimed to fill in this research gap by comprehensively 
evaluating a wide range of potential biomarkers associated with 

ASD, including biomedical markers, trace elements, and 
microbiota factors, using the meta-analysis method. This method 
included potential biomedical markers (oxytocin, γ-aminobutyric 
acid, i.e., GABA, serotonin, CRP, and IL-6), trace elements (Fe, Zn, 
and Cu), and microbiota factors (Bifidobacterium, Faecalibacterium, 
Parabacteroides, Bacteroides, and Clostridium) in ASD. The 
inclusion of specific biomarkers in this study was predicated upon 
their established roles within biological pathways pertinent to 
ASD. Oxytocin, GABA, serotonin, CRP, and IL-6 were selected due 
to their documented involvement in neurodevelopmental 
processes, neurotransmission modulation, and immune system 
regulation—all of which are fundamental elements intertwined 
with ASD pathophysiology (10, 23–25). These biomarkers are 
integral to understanding the neurobiological substrates governing 
social cognition, emotional regulation, and behavioral responses, 
all of which are significantly impaired in individuals with 
ASD. Furthermore, the incorporation of trace elements, i.e., Fe, Zn, 
and Cu, stems from their crucial roles as cofactors in essential 
enzymatic reactions pivotal for brain development and synaptic 
functioning (26–29). Perturbations in their levels have exhibited 
correlations with ASD-related traits, necessitating their 
examination within this context. Additionally, the exploration of 
microbiota factors, including Bifidobacterium, Faecalibacterium, 
Parabacteroides, Bacteroides, and Clostridium, aligns with 
burgeoning research elucidating the bidirectional communication 
between the gut microbiome and the central nervous system (30–
34). These factors potentially influence neurodevelopment and 
behavior, prompting their investigation in relation to ASD. By 
examining and synthesizing the existing literature on these 
biomarkers, this study aimed to enhance the understanding of the 
biological underpinnings of ASD and potentially contribute to the 
development of improved diagnostic and therapeutic approaches.
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Methods

Search strategy and eligibility criteria

This meta-analysis was prepared in accordance with the preferred 
reporting items for systematic reviews and meta-analyses (PRISMA) 
standards (35) (Supplementary eMethods 1). Medline, PubMed, 
ProQuest, EMBASE, Cochrane Library, PsycINFO, Web of Science, 
and EMBSCO databases have been searched for publications from 
2012 to 2023 with the following keywords: “autism spectrum disorder,” 
“oxytocin,” “GABA,” “Serotonin,” “CRP,” “IL-6,” “Fe,” “Zn,” “Cu,” and 
“gut microbiota” (Supplementary eMethods 2).

Using population, intervention, control, and outcome (PICO) 
approach, the study included the following criteria: (i) P: studies 
conducted with ASD participants aged 18 years or younger, (ii) C: 
assessment of participants with ASD and controls, and (iii) O: 
reporting oxytocin, GABA, serotonin, CRP, IL-6, Fe, Zn, Cu, and gut 
microbiota levels with available data for the meta-analysis. Studies 
with full-text available were included regardless of language. As 
intervention studies are not available, the present study focused on 
observational studies, including cross-sectional, case-control, or 
prospective cohort studies. Any studies that did not meet the 
aforementioned criteria, e.g., P: patients older than 18 years old; C: 
control groups who are not healthy or have other mental disorders; 
and O: outcomes focusing on other types of biomarkers, were excluded.

Data extraction and study quality 
assessment

The characteristics of the studies, including the following data, 
were extracted from each study: first author’s surname, year of 
publication, country, study design, total population, number of male 
participants, mean age, age range, biomarker type, contributed 
biomarker, study outcome, and statistics for meta-analysis (mean, 
standard deviation, and participant number in ASD and 
control groups).

Finally, for outcomes including biomedical markers and trace 
elements, the mean and standard deviation of concentrations were 
extracted and for microbiota factors, the genera level of relative 
abundance (%) was extracted.

The Joanna Briggs Institute (JBI) critical appraisal checklist was 
used to assess the article quality (36). The total JBI scores possible for 
a cohort study is 12 (37), for case-control study is 10 (38), and for 
cross-sectional study is 8 (39).

Statistical analysis

For biomedical markers and trace elements, the mean and 
standard deviation of concentrations were collected; for microbiota 
factors, the genera level of relative abundance (%) was recorded. Mean 
differences (MDs) were used as the primary index of comparative 
results between ASD and the control group, and standard mean 
differences (SMDs) were used as the effect size. Heterogeneity across 
the studies was examined using the I2 statistics. Low heterogeneity was 
indicated by I2 less than 25%, moderate heterogeneity by I2 of 
approximately 50%, and substantial heterogeneity by I2 of 75% (40). 

The significance was quantified with Cochrane’s Q statistics. Random-
effects models were chosen if heterogeneity by I2 is approximately 50% 
across studies resulting from differences in subjects and measurements. 
Sensitivity analysis was performed to avoid any single study 
influencing the results of the meta-analysis. To access the publication 
bias, Egger’s test was performed (41), and forest plots were performed 
to visualize the results. A two-tailed p-value of <0.05 was considered 
significant. The analyses were performed in a comprehensive meta-
analysis (version 3) (42).

Results

Study selection

The selection process for the included studies is shown in Figure 1. 
From the 76,217 potentially eligible articles published between 
January 1967 and May 2023, 3,386 publications remained after 
removing duplicates and restricting the publication year from 2012 to 
2023. Following the screening of the title and abstracts, the full-text of 
227 publications were assessed, and 184 publications were excluded 
for the following reasons: review or meta-analysis, unavailability of the 
full-text, inappropriate sample format, wrong study design, wrong 
study population, insufficient data, low quality, incomparability of the 
comparison and control groups, and other diseases. Finally, 43 
publications satisfied the eligibility criteria and were included in the 
meta-analysis.

Study characteristics

The study characteristics are summarized in Table 1. A total of 17 
articles had the results of biomedical markers (10, 11, 24, 43–56); 8 
articles had the results of trace elements (12–15, 57–60); 16 articles 
had the results of microbiota factors (16–19, 63–74); and 2 articles had 
the results for both biomedical markers and microbiota factors (61, 
62). These studies were performed in 16 countries, including 16 
studies in China (10, 11, 14, 17, 18, 47, 55, 58, 61, 63, 64, 66, 67, 69, 
70), 5 studies in the USA (52, 59, 71, 72, 74), 4 studies in Iraq (43, 44, 
48, 49), 3 studies in Egypt (13, 45, 51), 3 studies in Italy (16, 19, 68), 2 
studies in Jordan (15, 53), 2 studies in Turkey (54, 56), and 1 study 
each in Ecuador (62), India (73), Japan (46), Malaysia (60), Qatar (12), 
Russia (57), Saudi Arabia (24), Spain (65), and Tunisia (50). In this 
pooled review, 35 articles were case-control studies and their JBI 
scores ranged from 6 to 10; 7 articles were cross-sectional studies and 
their JBI scores ranged from 5 to 6; and 1 article was a cohort study 
and its JBI score was 10.

Meta-analysis results

Biomedical markers
Three studies (10, 11, 54), with a total of 616 participants, provided 

sufficient information for a meta-analysis of CRP (Table 2). There was 
a statistically significant difference in the mean CRP concentration 
between ASD and control, with an overall mean difference of 0.401 
(95% CI: 0.036, 0.772, p = 0.034), indicating that the ASD group had a 
higher CRP concentration than the healthy control group. The effect 
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size was moderate, and the SMD was 0.497 (95% CI: 0.219, 0.775, 
p < 0.001). The heterogeneity was significant (I2 = 91.968%, p < 0.0001). 
The forest plot of the effect is shown in Figure 2A.

Four studies (10, 53, 55, 62), with a total of 510 participants, 
provided sufficient information for a meta-analysis of IL-6. The MD 
between ASD and control was 1.223 (95% CI, −1.101, 3.547, p = 0.302), 
and the ASD group had a higher level of IL-6 than the control group. 
The effect size was moderate, with an SMD of 0.485 (95% CI, 0.034, 
0.936, p < 0.05). The heterogeneity was significant (I2  = 92.622%, 
p < 0.0001). The forest plot of the MD is shown in Figure 2B.

Three studies (24, 50, 61) involving a total of 166 participants 
provided sufficient information for a meta-analysis of GABA. There 
was a statistically significant difference in the mean GABA 
concentration between ASD and control, with an overall MD of 0.115 
(95% CI: 0.045, 0.186, p = 0.001), and the ASD group had a higher 
GABA concentration than the control group. There effect size was 
large, the SMD was 1.163 (95% CI, −0.022, 2.347, p = 0.054), and the 
heterogeneity was also statistically significant (I2  = 74.260%, 
p < 0.0001). One study was removed due to sensitivity analysis (45). 
The forest plot of the effect is shown in Figure 2C.

Five studies (24, 44, 51, 52, 61) involving a total of 283 participants 
provided sufficient information for a meta-analysis of serotonin 
(Table 2). The MD between ASD and control was 15.302 (95% CI: 
−31.367, 61.972), indicating that the ASD group had a higher 
serotonin level than the control group, but the difference was not 
statistically significant (p = 0.520). The effect size was large, and the 
SMD was 0.825 (95% CI: −1.127, 2.776, p = 0.407); although the 
difference was also not statistically significant, heterogeneity was 
significant (I2 = 99.128%, p < 0.0001). The forest plot of serotonin is 
shown in Figure 2D.

Five studies (24, 43, 46, 47, 49) involving a total of 419 participants 
provided sufficient information for a meta-analysis of oxytocin. There 
was a statistically significant difference in the mean oxytocin 
concentration between ASD and control, with a mean difference of 
−45.691 (95% CI: −61.667, −29.717, p < 0.0001), and the ASD group 
had a lower oxytocin level than the control group and a very large 
effect size, with an SMD of −1.849 (95% CI: 2.796, −0.903, p < 0.0001). 
One study was removed due to sensitivity analysis (48). The 
heterogeneity was also significant (I2 = 90.646%, p < 0.0001). The forest 
plot of the effect is shown in Figure 2E.

FIGURE 1

Flow diagram of study selection.
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TABLE 1 Study characteristics of included studies.

Study Country Study 
design

Total 
population

Number 
of boys

Boys 
%

Mean 
age

Age 
range

Biomarkers 
type

Contributed 
biomarkers

Study 
outcomes

JBI 
scores

Total JBI 
scores 

possible

Abdulamir 2016 

(43)
Iraq Case-control 86 86 100% 7.28 3 to 13 Biomedical markers Oxytocin Oxytocin: ASD↓ 8 10

Abdulamir 2018 

(44)
Iraq

Cross-

sectional
86 86 100% 7.28 3 to 13 Biomedical markers Serotonin Serotonin: ASD↑ 6 8

Alabdali 2014 (24) Saudi Arabia
Cross-

sectional
82 82 100% 7.20 3 to 12 Biomedical markers

GABA, serotonin, 

oxytocin

GABA: ASD↑; 

serotonin, 

oxytocin: ASD↓

6 8

El-Ansary 2019 

(45)
Egypt Case-control 40 22 55% 3.34 3 to 4 Biomedical markers GABA GABA: ASD↓ 8 10

Tanaka 2020 (46) Japan Case-control 20 15 75% 9.6 8 to 13 Biomedical markers Oxytocin Oxytocin: ASD↑ 8 10

Huang 2021 (47) China Case-control 83 63 76% 4.9 3 to 7 Biomedical markers Oxytocin Oxytocin: ASD↓ 8 10

Al-Ali 2022 (48) Iraq Case-control 120 N/A N/A 7.08 3 to 15 Biomedical markers Oxytocin Oxytocin: ASD↑ 6 10

Mossa 2020 (49) Iraq Case-control 80 N/A N/A N/A 3 to 13 Biomedical markers Oxytocin Oxytocin: ASD↓ 6 10

Chamtouri 2023 

(50)
Tunisia Case-control 56 44 78.6 N/A 4 to 10 Biomedical markers GABA GABA: ASD↑ 6 10

Mostafa 2021 (51) Egypt Case-control 44 11 25% 5.75 3 to 11 Biomedical markers Serotonin Serotonin: ASD↑ 9 10

Zuniga-Kennedy 

2022 (52)
USA Case-control 17 N/A N/A 10.5 4 to 18 Biomedical markers Serotonin Serotonin: ASD↑ 7 10

Alzghoul 2019 

(53)
Jordan

Cross-

sectional
166 108 65% 6.28 <12 Biomedical markers IL-6 IL-6: ASD↑ 5 8

Esnafoglu 2022 

(54)
Turkey

Cross-

sectional
252 192 76% 7.34 N/A Biomedical markers CRP CRP: ASD↑ 6 8

Ning 2019 (10) China Case-control 204 160 78% 4.5 N/A Biomedical markers CRP, IL-6 CRP, IL-6: ASD↑ 10 10

Shen 2021 (55) China Case-control 83 62 75% 4.3 3 to 8 Biomedical markers IL-6 IL-6: ASD↑ 9 10

Zhao 2015 (11) China Case-control 160 128 80% 3.69 N/A Biomedical markers Hs-CRP CRP: ASD↑ 10 10

Kartalcı 2022 (56) Turkey Cohort 70 52 74% 8 3 to 12 Biomedical markers IL-6 IL-6: ASD↑ 10 12

Bener 2017 (12) Qatar Case-control 616 N/A N/A 5.51 <8 Trace element Fe Fe: ASD↓ 7 10

Li 2014 (14) China Case-control 120 96 80% 3.78 N/A Trace element
Zn, Cu Zn: ASD↓; Cu: 

ASD↑

8 10

Skalny 2016 (57) Russia Case-control 96 48 50% 6.55 N/A Trace element Fe, Cu, Zn Fe: ASD↓; Zn: 

ASD↑

7 10

(Continued)
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TABLE 1 (Continued)

Study Country Study 
design

Total 
population

Number 
of boys

Boys 
%

Mean 
age

Age 
range

Biomarkers 
type

Contributed 
biomarkers

Study 
outcomes

JBI 
scores

Total JBI 
scores 

possible

Wu 2018 (58) China Case-control 254 194 76% 4.95 2 to 10 Trace element Fe, Cu, Zn Fe: ASD↑; Cu, Zn: 

ASD↓

8 10

Mehta 2021 (59) USA Case-control 129 89 69% 3 2 to 4 Trace element Zn Zn: ASD↓ 7 10

Higazi 2021 (13) Egypt Case-control 85 54 64% 8.35 4 to 13 Trace element Fe Fe: ASD↓ 6 10

Abd Wahil 2022 

(60)

Malaysia Case-control 155 41 26% 3 2 to 6 Trace element Fe Fe: ASD↓ 8 10

Rashaid 2021 (15) Arab Case-control 107 87 81% 7.46 2 to 12 Trace element Fe, Cu, Zu Fe, Cu, Zn: ASD↓ 7 10

Wang 2020 (61) China Case-control 50 46 92% 4.4 2 to 8 Biomedical markers 

and Microbiota 

markers

Serotonin, GABA, 

Clostridium

Serotonin: ASD↑; 

GABA: ASD↓; 

Clostridium: ASD↑

8 10

Zurita 2020 (62) Ecuador Case-control 60 56 93% 8.65 N/A Biomedical markers, 

microbiota markers

IL-6, Bacteroides Bacteroides: ASD↑ 8 10

Ding 2020 (63) China Case-control 127 98 77% 3.33 N/A Microbiota markers Bacteroides, 

Faecalibacterium

Bacteroides, 

Faecalibacterium: 

ASD↓

8 10

Xie 2022 (64) China Case-control 204 166 81% 4.33 N/A Microbiota markers Bacteroides, 

Faecalibacterium

Bacteroides: ASD↓; 

Faecalibacterium: 

ASD↑

8 10

Ding 2021 (17) China Case-control 45 33 73% 5.55 N/A Microbiota markers Bacteroides, 

Faecalibacterium

Bacteroides: ASD↓; 

Faecalibacterium: 

ASD↑

8 10

Plaza-Díaz 2019 

(65)

Spain Cross-

sectional

115 N/A N/A N/A 2 to 6 Microbiota markers Faecalibacterium, 

Bacteroides, 

Clostridium

Clostridium: ASD↑; 

Faecalibacterium, 

Bacteroides: ASD↓

6 8

Ma 2019 (66) China Cross-

sectional

90 78 87% 7.15 6 to 9 Microbiota markers Bacteroides, 

Clostridium, 

Faecalibacterium, 

Parabacteroides

Bacteroides, 

Faecalibacterium, 

Clostridium: ASD↑; 

Parabacteroides: 

ASD↓

6 8

(Continued)
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Study Country Study 
design

Total 
population

Number 
of boys

Boys 
%

Mean 
age

Age 
range

Biomarkers 
type

Contributed 
biomarkers

Study 
outcomes

JBI 
scores

Total JBI 
scores 

possible

Coretti 2018 (16) Italy Cross-

sectional

25 17 68% 2.9 2 to 4 Microbiota markers Bacteroides, 

Faecalibacterium, 

Parabacteroides

Bacteroides, 

Faecalibacterium, 

Parabacteroides: 

ASD↑

6 8

Strati 2017 (19) Italy Case-control 80 59 74% 8.5 3.6 to 17 Microbiota markers Bacteroides, 

Faecalibacterium, 

Clostridium, 

Parabacteroides

Faecalibacterium, 

Clostridium: ASD↑; 

Bacteroides, 

Parabacteroides: 

ASD↓

8 10

Liu 2022 (67) China Case-control 50 36 72% 3.80 2 to 6.8 Microbiota markers Bacteroides Bacteroides: ASD↓ 8 10

Chiappori 2022 

(68)

Italy Case-control 12 8 67% 13 6 to 20 Microbiota markers Bacteroides Bacteroides: ASD↑ 8 10

Zou 2020 (69) China Case-control 60 38 63% 4.5 2 to 6.5 Microbiota markers Bacteroides, 

Clostridium

Bacteroides: ASD↑; 

Clostridium: ASD↓

6 10

Dan 2020 (18) China Case-control 286 257 89% 4.9 2 to 13 Microbiota markers Bacteroides, 

Parabacteroides, 

Clostridium

Bacteroides, 

Parabacteroides, 

Clostridium: ASD↓

7 10

Sun 2019 (70) China Case-control 15 12 80% N/A 3 to 12 Microbiota markers Bacteroides Bacteroides: ASD↓ 8 10

Maigoro 2021 (71) USA Case-control 57 N/A N/A N/A N/A Microbiota markers Bacteroides Bacteroides: ASD↑ 6 10

Kang 2017 (72) USA Case-control 38 34 89% 10.8 7 to 16 Microbiota markers Bacteroides, 

Clostridium

Bacteroides, 

Clostridium: ASD↑

8 10

Pulikkan 2018 

(73)

India Case-control 54 43 80% 9.5 3 to 16 Microbiota markers Bacteroides Bacteroides: ASD↓ 9 10

Kang 2013 (74) USA Case-control 40 35 88% 6.7 3 to 16 Microbiota markers Bacteroides, 

Clostridium

Bacteroides, 

Clostridium: ASD↑

10 10

GABA, gamma-aminobutyric acid; IL-6, interleukin-6; CRP, C-reactive protein; Cu, cooper; Fe, iron; Zn, zinc; N/A, not available; JBI, Joanna Briggs Institute; ↑, indicating the concentration of the biomedical marker or the trace element, or the genera level of relative 
abundance is higher in the ASD than in the controls; ↓, indicating the concentration of the biomedical marker or the trace element, or the genera level of relative abundance is lower in the ASD than in the controls.

TABLE 1 (Continued)
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TABLE 2 Meta-analysis of immune and gut microbiota characteristics.

Characteristics Studies 
(n)

Participants 
(N)

Mean differences Standardized mean 
differences

Heterogeneity

Mean 
differences 

(95% CI)

p-
value

Standardized 
mean 

differences 
(95% CI)

p-
value

Q test 
(df)

p-
value

I2 (%)

CRP 3 616 0.401 (0.036, 0.772)* 0.034
0.497 (0.219, 

0.775)***
<0.0001 24.901 (2)*** <0.0001 91.968

IL-6 4 510 1.223 (−1.101, 3.547) 0.302 0.485 (0.034, 0.936)* 0.035 40.662 (3)*** <0.0001 92.622

GABA 3 166 0.115 (0.045, 0.186)** 0.001 1.163 (−0.022, 2.347) 0.054 11.656 (3)*** 0.009 74.26

Serotonin 5 283
15.302 (−31.367, 

61.972)
0.52 0.825 (−1.127. 2.776) 0.407

802.682 

(7)***
<0.0001 99.128

Oxytocin 5 419
−45.691 (−61.667, 

−29.717)***
<0.0001

−1.849 (2.796, 

−0.903)***
<0.0001 74.833 (7)*** <0.0001 90.646

Cu 4 577 0.293 (−1.349, 1.935) 0.726 0.059 (−0.368, 0.485) 0.788 19.429 (3)*** <0.0001 84.559

Fe 6 1,313
−3.203 (−4.891, 

−1.514)***
<0.0001

−0.375 (−0.743, 

−0.007)*
0.046

100.645 

(5)***
<0.0001 95.032

Zn 5 706
−6.707 (−12.691, 

−0.722)*
0.028

−0.498 (−0.958, 

−0.037)*
0.034 80.898 (4)*** <0.0001 95.055

Bifidobacterium 11 1,067
−1.321 (−2.403, 

−0.238)*
0.017

−0.311 (−1.005, 

0.383)
0.38

1225.316 

(10)***
<0.0001 99.184

Parabacteroides 4 481
−0.081 (−0.148, 

−0.013)*
0.019 0.287 (−0.837, 1.410) 0.617

218.219 

(3)***
<0.0001 98.625

Faecalibacterium 6 501 0.814 (−0.065, 1.693) 0.069 1.144 (0.296, 1.992)** 0.008 50.255 (5)*** <0.0001 90.051

Bacteroides 16 1,257
1.386 (0.717, 

2.055)***
<0.0001 0.834 (0.197, 1.470)** 0.01

1393.282 

(15)***
<0.0001 98.923

Clostridium 9 912 0.281 (0.035, 0.526)* 0.025
2.994 (1.724, 

4.265)***
<0.0001

13777.581 

(8)***
<0.0001 99.942

*p < 0.05; **p < 0.01; ***p < 0.001. GABA, gamma-aminobutyric acid; IL-6, interleukin-6; CRP, C-reactive protein; Cu, cooper; Fe, iron; Zn, zinc; CI, confidence interval.

Trace elements
Four studies (14, 15, 57, 58) involving a total of 577 participants 

provided sufficient information for a meta-analysis of Cu (Table 2). 
The MD between ASD and control was 0.293 (95% CI: −1.349, 1.935, 
p = 0.726), indicating that the ASD group had a high Cu level than the 
control and a small effect size, with an SMD of 0.059 (95% CI: −0.368, 
0.485, p = 0.788). The heterogeneity was significant (I2  = 84.559%, 
p < 0.0001). The forest plot of the effect is shown in Figure 3A.

Six studies (12, 13, 15, 57, 58, 60) involving a total of 1,313 
participants provided sufficient information for a meta-analysis of Fe 
(Table 2). There was a statistically significant difference in the mean 
iron concentration between ASD and control, with an MD of −3.203 
(95% CI: −4.891, −1.514, p < 0.0001), and the ASD group had a lower 
iron level than the control and a smaller effect size, with a standardized 
mean difference of −0.375 (95% CI: −0.743, −0.007, p = 0.046). The 
heterogeneity was also significant (I2 = 95.032%, p < 0.0001). The forest 
plot of the effect is shown in Figure 3B.

Five studies (14, 15, 57–59), with a total of 706 participants, 
provided sufficient information for a meta-analysis of Zn (Table 2). 
There was a statistically significant difference in the mean zinc 
concentration between ASD and control, with a mean difference of 
−6.707 (95% CI: −12.691, −0.722, p = 0.028), and the ASD group had 
a lower zinc level than the control and a moderate effect size, with a 

standardized mean difference of −0.498 (95% CI: −0.958, −0.037, 
p = 0.034). The heterogeneity was also significant (I2  = 95.055%, 
p < 0.0001). The forest plot of the effect is shown in Figure 3C.

Microbiota factors
Eleven studies (16–19, 61, 63–66, 72, 74) involving a total of 1,067 

participants provided sufficient information for a meta-analysis of 
Bifidobacterium (Table  2). There was a statistically significant 
difference in the relative abundance of Bifidobacterium between ASD 
and control, with a mean difference of −1.321 (95% CI: −2.403, 
−0.238, p = 0.019), and the ASD group had a smaller abundance than 
the control group. The effect size was small, with an SMD of −0.311 
[95% CI: −1.005, 0.383, which was not statistically significant 
(p = 0.380)]. The heterogeneity was also significant (I2  = 99.184%, 
p < 0.0001). The forest plot of the effect is shown in Figure 4A.

Four studies (16, 18, 19, 66) involving a total of 481 participants 
were included in the meta-analysis of Parabacteroides. There was a 
statistically significant difference in the relative abundance of 
Parabacteroides between ASD and control, with a mean difference of 
−0.081 (95% CI: −0.148, −0.013, p = 0.019), and the ASD group had 
a smaller abundance than the control group in Parabacteroides. The 
effect size was small, with an SMD of 0.287 (95% CI: −0.837, 1.410), 
which was not statistically significant (p = 0.617). One study was 
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removed due to sensitivity analysis (65). The heterogeneity was also 
significant (I2 = 98.625%, p < 0.0001). The forest plot of the effect is 
presented in Figure 4B.

Six studies (16, 17, 19, 64–66) involving a total of 501 participants 
were included in the meta-analysis of Faecalibacterium. The mean 
difference of relative abundance between ASD and control was 0.814 
(95% CI: −0.065, 1.693, p = 0.069), the ASD group had a higher 
abundance than the control group, and the effect size was large, with 
an SMD of 1.144 (95% CI: 0.296, 1.992), which was statistically 
significant (p = 0.008). One study (63) was removed due to sensitivity 
analysis, and another study (18) was removed due to publication bias 
and Egger’s test being less than 0.05. The heterogeneity was significant 
(I2 = 90.051%, p < 0.0001). The forest plot of the effect is shown in 
Figure 4C.

Sixteen studies (16–19, 62, 64–74) involving a total of 1,257 
participants were included in the meta-analysis of Bacteroides. There 
was a statistically significant difference in the relative abundance of 
Bacteroides between ASD and control, with a mean difference of 1.386 
(95% CI: 0.717, 2.055, p < 0.0001), and the ASD group had a higher 
abundance than the control group, and the effect size is large, with a 
standardized mean difference of 0.287 (95% CI: −0.837, 1.410, 
p = 0.01). One study was removed due to sensitivity analysis (63). The 
heterogeneity was also significant (I2 = 98.923%, p < 0.0001). The forest 
plot of the effect is shown in Figure 4D.

Finally, nine studies (18, 19, 61, 63, 65, 66, 69, 72, 74) involving a 
total of 912 participants were included in the meta-analysis of 
Clostridium (Table 2). There was a statistically significant difference in 
the relative abundance of Clostridium between ASD and control, with 
a mean difference of 0.281 (95% CI: 0.035, 0.526, p = 0.025), and the 
ASD group had a higher abundance than the control group, and a 
large effect size, with a standardized mean difference of 2.994 (95% CI: 
1.724, 4.265, p < 0.0001). The heterogeneity was also significant 
(I2 = 99.942%, p < 0.0001). The forest plot of the effect is shown in 
Figure 4E.

Publication bias
Findings from the Egger’s test (Table 3), it can be suggested that 

there was no publication bias for all markers (CRP: p = 0.70; GABA: 
p = 1.00; serotonin: p = 0.99; oxytocin: p = 0.14; Cu: p = 0.56, Fe: p = 0.86; 
Zn: p = 0.92; Bifidobacterium: p =  0.71; Parabacteroides: p = 0.25; 
Faecalibacterium: p =  0.16; Bacteroides: p =  0.31; and Clostridium: 
p = 0.23), except IL-6 (p = 0.05).

Discussion

The pooled effects based on our meta-analyses found that ASD 
youth have significantly higher levels of CRP and GABA, lower levels 
of oxytocin, iron, and zinc, lower relative abundance of Bifidobacterium 
and Parabacteroides, and higher relative abundance of 
Faecalibacterium, Bacteroides, and Clostridium when compared with 
control youth. To our knowledge, this is the first meta-analysis 
providing a wide range of potential biomarkers for children with ASD.

Inflammatory processes have gained increasing attention as 
potential contributors to the pathophysiology of ASD. Inflammation 
can impact brain development and function, and alterations in 
immune system markers have been observed in individuals with ASD 
(75, 76). CRP and IL-6 are two of the most commonly studied 

inflammatory markers and have shown associations with ASD in 
previous research (25, 77). CRP is an acute-phase protein that reflects 
systemic inflammation (78, 79). IL-6, a pro-inflammatory cytokine, is 
involved in immune reactions and synaptic plasticity (80, 81). In this 
meta-analysis, we have found that the CRP levels were significantly 
higher in ASD compared with controls, which is consistent with 
previous studies (77, 82). High levels of CRP could increase the blood-
brain barrier (BBB) paracellular permeability, activating the microglia 
to impair the central nervous system (CNS) (83). Previous studies 
have pointed out that microglia play key roles in the pathogenesis of 
ASD (84–86). Thus, there might be a causal relationship between CRP 
levels and ASD, and CRP could be a potential biomarker for autism 
diagnosis. Elevated IL-6 levels have been documented not solely in 
autoimmune disorders but also in certain neurodegenerative 
conditions, such as Alzheimer’s disease, as well as diverse mental 
disorders (42, 87). Additionally, studies also reported that children 
who were later diagnosed with ASD have elevated levels of IL-6 during 
gestation, as IL-6 may have transferred across the placental barriers 
and accumulated in the fetuses (88, 89).

Neurotransmitters have also been implicated in the regulation 
of various neurodevelopmental processes, including social 
cognition, emotional regulation, and sensory integration (90, 91). 
Studies have suggested alterations in the levels and functioning of 
these neurotransmitters in individuals with ASD (92). Oxytocin, 
known for its role in social bonding and affiliation, has shown 
promise as a potential biomarker for ASD (93–95). Similarly, 
dysregulation of gamma-aminobutyric acid (GABA), the primary 
inhibitory neurotransmitter in the brain, has been implicated in 
the pathogenesis of ASD (96–98). Serotonin, involved in mood 
regulation and sensory processing, has also been the subject of 
investigation, with studies reporting variations in serotonin levels 
in individuals with ASD (52, 99, 100). In this meta-analysis, the 
ASD groups have significantly higher levels of GABA and lower 
levels of oxytocin compared with control groups. A preliminary 
meta-analysis has provided support for a potential link between 
autism spectrum disorder and variations in the oxytocin receptor 
gene, OXTR (94). However, this association does not reach the 
level of significance when considering the entire genome. 
Additionally, numerous studies have been conducted to explore the 
potential of oxytocin therapy in individuals with autism spectrum 
disorders (93, 101–105). Despite the fact that the majority of these 
investigations have yielded inconclusive results, oxytocin could 
be developed as a potential biomarker for autism diagnosis.

Trace elements play crucial roles in various biological processes, 
including neurotransmitter synthesis (106), antioxidant defense (107), 
and immune function (108). Imbalances in these trace elements have 
been reported in individuals with ASD, suggesting a potential link 
between their dysregulation and the pathogenesis of the disorder (109, 
110). Iron deficiency, for instance, has been associated with impaired 
cognitive function and socioemotional difficulties observed in ASD 
(111, 112). Similarly, alterations in Zn and Cu levels have been 
reported, potentially affecting neurotransmitter systems and oxidative 
stress (113, 114). In this meta-analysis, we have found lower levels of 
Fe and Zn in the ASD groups. While it is acknowledged that there is 
a mineral imbalance in ASD, we anticipate the implementation of 
pertinent examinations and the establishment of standard levels for 
trace elements as potential biomarkers that can be  valuable for 
diagnosing, preventing, and treating ASD.
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Emerging research has also highlighted the potential involvement 
of the gut microbiome in ASD (115, 116). The gut microbiota, a 
diverse community of microorganisms residing in the gastrointestinal 
tract, is known to influence brain development and function through 
bidirectional communication with the central nervous system (117, 
118). Altered microbial compositions and imbalances in microbial 
metabolites have been reported in individuals with ASD, suggesting a 
potential role for the gut microbiome as a biomarker and therapeutic 
target for the disorder (119–121). Specific bacterial genera, such as 
Bifidobacterium, Faecalibacterium, Parabacteroides, Bacteroides, and 
Clostridium, have been investigated in this meta-analysis. As a result, 
Bifidobacterium and Parabacteroides as protective bacteria showed a 
significantly lower abundance in the ASD group, while 
Faecalibacterium, Bacteroides, and Clostridium showed a significantly 
higher abundance in the ASD group, suggesting that there is indeed 
dysbiosis in ASD patients. Several studies have reported a lesser 
abundance of beneficial bacteria, such as Bifidobacterium in autism 
(16, 61, 65), leading to clinical trials with probiotic treatment (122–
125). With the intervention of probiotics, children with ASD have 
shown improved autistic behavioral scores as well as gastrointestinal 
symptoms. In addition to the low abundance of beneficial bacteria, an 
increased abundance of bacteria such as Faecalibacterium, Bacteroides, 
and Clostridium in autism was also reported (126). 

Butyrate-producing bacteria, Faecalibacterium, were reported to affect 
physiological functions and homeostasis in the gut and were closely 
associated with autism core symptoms (127). Bacteroides are the main 
producers of propionic acid (PPA), which is one of the neurotoxic 
short-chain fatty acids, and have been reported to cause autistic 
characteristics in animal models (128). Additional studies suggested 
that Bacteroides are the distinguishing differences between autism and 
control children (129). Notwithstanding their non-invasive nature, 
Clostridium possess the ability to elicit deleterious effects on distant 
organs or tissues, such as the brain, by means of their secreted 
molecules traversing the intestinal barrier and spreading via the 
systemic circulation to remote locations, where they exert their 
biological activity (126). It has been hypothesized that there is a 
potential association between Clostridium and symptoms related to 
ASD (130), with a particular emphasis on the significance of 
Clostridium’s ability to form spores in relation to the recurrence of 
ASD symptoms (131).

This study has several limitations. First, this meta-analysis was 
based on observational studies; therefore, we  cannot establish a 
causal relationship between the proposed markers and ASD. These 
changes in the levels of the abovementioned markers could be either 
a cause or a consequence of the pathogenesis of ASD. Second, some 
of the markers have limited numbers of studies, i.e., CRP only had 

FIGURE 2

Forest plots of biomedical markers between ASD and control; (A) CRP; (B) IL-6; (C) GABA; (D) Serotonin; (E) Oxytocin.
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three studies. While the results of the meta-analysis markers were 
consistent with previous studies (77, 82), further research is 
recommended. Third, heterogeneity was high in this meta-analysis. 
Due to the paucity of information from each of the included studies, 
we were unable to investigate the underlying confounding factors for 
the reason of high heterogeneity by doing subgroup analysis. For 
example, this meta-analysis encountered complexities in categorizing 
participants into children and adolescents due to heterogeneous age 
reporting across the included studies. Ambiguities in age ranges and 

missing mean age data hindered robust subgroup analyses, 
highlighting the need for standardized and comprehensive age 
reporting in future ASD biomarker studies to elucidate age-specific 
trends more effectively. Future studies will be  conducted to 
systematically assess the randomized controlled trial on these 
markers, and subgroup analysis will be conducted to identify the 
sources of high heterogeneity.

Despite the limitations, this meta-analysis also has several major 
strengths. First, we  conducted a comprehensive literature search 

FIGURE 3

Forest plots of trace elements between ASD and control; (A) Cu; (B) Fe; (C) Zn.
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through a list of electronic databases. Second, our literature selection 
workflow was based on rigorous inclusion and exclusion criteria. 
Third, the publication bias for each type of biomarker in this meta-
analysis was minimal. Finally, we  have included a wide range of 
popular but controversial biomarkers, ranging from biomedical trace 
elements to gut microbiota.

In conclusion, the present meta-analysis found an association 
between the levels of CRP, GABA, oxytocin, Fe, Zn and the relative 
abundance of Bifidobacterium, Parabacteroides, Bacteroides, 
Clostridium, and ASD, suggesting that these indications may 
be promising biomarkers for ASD. Future investigation is necessary to 
determine whether these biomarker profiles are specific to 
ASD. Additionally, our study also indicated that enhancing the levels 
of these biomarkers could serve as an effective intervention and 
treatment strategies for ASD.
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The original contributions presented in the study are included in 
the article/Supplementary material, further inquiries can be directed 
to the corresponding author.

TABLE 3 Results of publication bias.

Characteristics Publication bias

Egger’s t 95% CI p-value

CRP 0.509 (−176.440, 191.157) 0.7

IL-6 4.441* (−17.069, −0.272) 0.047

GABA 0.006 (−7.867, 7.889) 0.996

Serotonin 0.018 (−11.605, 11.433) 0.985

Oxytocin 1.683 (−22.356, 4.134) 0.143

Cu 0.685 (−24.237, 33.417) 0.564

Fe 0.194 (−9.604, 11.047) 0.856

Zn 0.11 (−26.003, 24.258) 0.919

Bifidobacterium 0.381 (−9.747, 6.936) 0.712

Parabacteroides 1.601 (−27.894, 12.764) 0.251

Faecalibacterium 1.731 (−3.849, 16.605) 0.158

Bacteroides 1.044 (−2.897, 8.393) 0.314

Clostridium 1.318 (−15.396, 54.189) 0.229

*p < 0.05. GABA, gamma-aminobutyric acid; IL-6, interleukin-6; CRP, C-reactive protein; 
Cu, cooper; Fe, iron; Zn, zinc; CI, confidence interval.

FIGURE 4

Forest plots of the relative abundance of microbiota factors between ASD and control; (A) Bifidobacterium; (B) Faecalibacterium; (C) Parabacteroides; 
(D) Bacteroides; (E) Clostridium.
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