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Background: Most genetic analyses that have attempted to identify a locus or 
loci that can distinguish patients with treatment-resistant schizophrenia (TRS) 
from those who respond to treatment (non-TRS) have failed. However, evidence 
from multiple studies suggests that patients with schizophrenia who respond 
well to antipsychotic medication have a higher dopamine (DA) state in brain 
synaptic clefts whereas patients with TRS do not show enhanced DA synthesis/
release pathways.

Patients and methods: To examine the contribution (if any) of genetics to 
TRS, we  conducted a genetic association analysis of DA-related genes in 
schizophrenia patients (TRS, n  =  435; non-TRS, n  =  539) and healthy controls 
(HC: n  =  489).

Results: The distributions of the genotypes of rs3756450 and the 40-bp variable 
number tandem repeat on SLC6A3 differed between the TRS and non-TRS 
groups. Regarding rs3756450, the TRS group showed a significantly higher ratio 
of the A allele, whereas the non-TRS group predominantly had the G allele. The 
analysis of the combination of COMT and SLC6A3 yielded a significantly higher 
ratio of the putative low-DA type (i.e., high COMT activity  +  high SLC6A3 activity) 
in the TRS group compared to the two other groups. Patients with the low-DA 
type accounted for the minority of the non-TRS group and exhibited milder 
psychopathology.
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Conclusion: The overall results suggest that (i) SLC6A3 could be  involved in 
responsiveness to antipsychotic medication and (ii) genetic variants modulating 
brain DA levels may be related to the classification of TRS and non-TRS.

KEYWORDS

antipsychotic, dopamine, psychosis, single nucleotide polymorphism, variable number 
of tandem repeats

1 Introduction

Approximately 30% of individuals with schizophrenia do not 
respond well to any standard antipsychotics, even at a sufficient 
dose or sufficient duration; these patients are defined as having 
treatment-resistant schizophrenia (TRS) (1, 2). Patients with TRS 
generally continue to represent severe psychiatric symptoms along 
with an unstable clinical course over the long term, leading to very 
poor outcomes. Several studies have suggested that TRS patients 
should be  understood as those who do not respond well to 
antipsychotic medications, meeting the diagnostic criteria of TRS 
from the early treatment period (3–5). Numerous risk factors for 
TRS such as younger onset (6–9), poor premorbid social 
functioning (10–12), and autistic traits (13, 14) suggest that 
psychiatric abnormalities may have already begun prior to the 
onset of psychosis.

Magnetic resonance spectroscopy (MRS) studies have 
demonstrated some differences in GABAergic and glutamatergic 
networks between patients with TRS taking clozapine and those who 
are not taking clozapine (15–19). Clozapine, the only approved agent 
for TRS, is presumed to have effects on GABAergic and glutamatergic 
systems, which may be associated with its high efficacy (20, 21). These 
findings indicate that (i) patients with TRS may have a pathology that 
differs from that of non-TRS patients, and (ii) abnormalities in 
GABAergic and glutamatergic systems could be  involved in the 
pathogenesis of TRS (5, 22, 23).

Alterations in the dopamine (DA) system have also been 
documented in patients with TRS. Several positron emission 
tomography (PET) studies reported that the DA synthesis capacity of 
TRS patients was not enhanced (i.e., it was comparable to that of 
healthy controls), in contrast to patients who responded to an 
antipsychotic with an enhanced synthesis and release of DA (24, 25). 
Other PET studies also suggested that patients with higher DA levels 
respond better to antipsychotic medication (26–28). An investigation 
by Amato et al. (29) using animal models indicated that an organically 
high DA state in the synaptic cleft is essential for the efficacy of 
antipsychotic drugs, and that the tyrosine hydroxylase (TH) enzyme 
and dopamine transporter (DAT) proteins could play important roles 
in the efficacy of antipsychotics.

Several genetic studies have focused on single nucleotide 
polymorphisms (SNPs) of candidate genes [e.g., dopamine D2 
receptor gene (DRD2)] in patients with TRS (30–34), but nearly all of 
them failed to identify definite variant(s) relating to TRS pathology, 
partly due to the studies’ relatively small sample sizes. An increasing 
number of polygenic risk score (PRS) analyses of TRS with genome-
wide association study (GWAS) data have been published, but their 

results have been inconsistent: some reports showed that TRS patients 
exhibited significantly higher PRS values compared to non-TRS 
patients (35–38) whereas others denied this finding (39, 40). These 
inconsistencies could potentially be explained by the diagnosis of TRS 
based on the use of clozapine as a surrogate marker and the varying 
rates of TRS patients in the discovery cohort used to create the PRS 
threshold (35, 36). Given the rich evidence of a relationship between 
the DA synthesis capacity and responses to antipsychotic medication, 
we speculated that compared to consortium genome samples, a study 
of TRS patients whose cases were collected at the same time as their 
clinical assessments (including accurate medication histories) would 
be more beneficial to detect variants on genes that are relevant to the 
response to antipsychotics.

In order to gain a deeper understanding of the mechanisms 
underlying TRS, we conducted the present study of patients with and 
without TRS to investigate molecules that modulate the amount of DA 
in the synaptic cleft (i.e., synthesis, degradation, and reuptake) from a 
genetics viewpoint. We also evaluated the status of gene variants that 
are known to be functionally relevant to the dopaminergic system and 
then compared the findings in the TRS patients with those in the 
non-TRS patients and a group of healthy controls.

2 Subjects and methods

2.1 Subjects

We analyzed the cases of a total of 974 patients who were treated 
at one of several psychiatric hospitals in mainly Chiba prefecture, 
which is east of Tokyo. They were diagnosed as having schizophrenia 
or schizoaffective disorder by at least two experienced psychiatrists 
based on the Diagnostic and Statistical Manual of Disorders IV-TR or 
the 5th edition (DSM-5). Patients who met the criteria of substance 
abuse were excluded from the study. A total of 489 healthy controls 
also participated in the study. They were confirmed to have no history 
of psychiatric disorders of their own or among family members. All 
participants were Japanese.

At the blood sample collection, the subjects were provided a 
detailed explanation of the study and gave their written informed 
consent to participate in the study. For a patient who was judged to 
be  compromised in understanding the study due to psychiatric 
symptoms, the consent was obtained from his/her family member. The 
study was approved by the ethics committees of Chiba University 
Graduate School of Medicine and the other psychiatric hospitals that 
participated in the study. The study was conducted in accord with the 
Declaration of Helsinki.
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2.2 Diagnosis of treatment-resistant 
schizophrenia

The diagnosis of TRS was made based on both the evaluation by 
the patient’s attending physician and the patient’s chart record. The 
diagnostic criteria for TRS followed the criteria of the Clozapine 
Patient Monitoring Service (CPMS), which defines patients with TRS 
as those who have not responded adequately [i.e., never reaching a 
Global Assessment of Functioning (GAF) score > 41 points in the 
12 months prior to the blood sampling] to at least two different 
antipsychotic medications with a ≥ 600 mg chlorpromazine-equivalent 
(CP-eq.) dose and ≥ 4 weeks’ treatment with each medication. Patients 
who met the “intolerance to antipsychotic medication” criterion in the 
CPMS criteria were excluded from the study. The patients’ levels of 
adherence to their medications was also assessed as part of the 
determination of whether they met the criteria for TRS. Those who 
clearly did not meet the TRS criteria were judged as belonging to the 
non-TRS group in this study. The patients for whom sufficient 
information was unavailable were removed from the analysis.

2.3 Selected variants

As shown in Table 1, eight functional variants of genes relevant to 
DA synthesis, metabolism, and reuptake and DRD2 were selected for 
analysis, following previous genetic studies.

2.4 Genotyping of SNPs and the analysis of 
VNTR polymorphisms

Genomes were extracted from each subject’s blood sample with 
the use of the QIAamp DNA Blood Mini Kit (250) (Qiagen, 

Valencia, CA, United  States). The genotype of each SNP was 
determined by a TaqMan probe assay (Applied Biosystems, Foster 
City, CA, United  States) using an ABI PRISM 7300 real-time 
polymerase chain reaction (PCR) system. This was done at 95°C 
for one 10-min cycle, followed by 40 cycles of 95°C for 15 s and 
60°C for 60 s.

For the amplification of the 40-bp variable number tandem repeat 
(VNTR) on Solute Carrier Family 6 Member 3 (dopamine transporter) 
gene (SLC6A3), the following primer sequences were used: upstream, 
5′-TGTGGTGTAGGGAACGGCCTGAGA-3′; downstream, 5′-TGT 
TGGTCTGCAGGCTGCCTGCAT-3′ (60). The PCR procedure was 
followed by a one-cycle denaturation step at 95°C for 1 min, followed 
by 35 cycles of denaturation at 95°C for 15 s, annealing at 55°C for 15 s, 
extension at 72°C for 30 s, and finally an extension step at 72°C for 
7 min. Then, 2 μL of PCR products were run on a 2% agarose gel, and 
the repeat allele sizes were quantified with a transilluminator: 7-repeat 
(330 bp), 8-repeat (370 bp), 9-repeat (410 bp), 10-repeat (450 bp), and 
11-repeat (490 bp).

2.5 Statistical analyses

The demographic characteristics of the healthy controls (HC), 
schizophrenia (SCH) group, and patients with and without TRS were 
compared using Student’s t-test or an ANOVA for continuous 
variables, and the χ2 test for categorical variables. We used the same 
statistical methods to compare the allelic and genotype distributions 
of the eight studied SNPs between the schizophrenia subgroups and 
the HC group. As post hoc tests, Bonferroni correction was used for 
the ANOVA and a residual analysis was used for the χ2 test. To explore 
the potential impact of each SNP on the classification of TRS or 
non-TRS, we  conducted a multivariate logistic analysis in which 
we used the group (TRS, non-TRS, or HC) as the response variable 

TABLE 1 Eight polymorphisms (SNP and VNTR) examined in the present study.

SNP Variant and position Evidence

TH

rs10770141 G824A: 5′-UTR
Individuals who have the minor allele A have been reported to have 30–40% higher gene expression of TH 

compared to subjects without an A allele (41).

rs6356 Val(A)81Met(G): Exon3
This SNP is located within the regulatory domain of the TH gene (42). There is a recent report that the A allele of 

this SNP is associated with a high expression of the TH gene in the hippocampus and nucleus accumbens (43).

DRD2

rs1800497

Taq1A with the reference allele [A] 

named “A1” and the substituted allele G 

named “A2”: Exon1 on ANKK1 gene:

PET studies indicated that the A1 allele is associated with a 40% reduction in DRD2 expression in the striatum 

(44–46). Some research groups have reported that this variant was significantly related to treatment 

responsiveness and cognitive function in schizophrenic patients in meta-analyses (47, 48).

rs6275 A939G: Exon7
There are several reports that schizophrenia patients with the AA genotype have particularly poor attention and 

executive function (49–51).

COMT

rs4680 Val158Met: Exon3

This polymorphism affects the activity of the COMT enzyme, with Met (A allele) homozygotes having 40% less 

enzyme activity than Val (G allele) homozygotes, leading to increased DA levels in the prefrontal cortex (PFC) 

and anterior cingulate cortex (ACC) (52, 53).

SLC6A3

rs3756450 A > G: 5′-UTR
Recently, the genetic makeup of the 5′-UTR was found to affect the expression of DAT (54). The alteration allele 

G decreased the expression compared to the reference allele A (55).

rs420422 G > A: Intron3 The region including this SNP is reported to be related to splicing variants of DAT (56).

40-bp VNTR 3′-UTR
This VNTR was extensively studied since this can affect the expression of DAT, which was not clarified yet (57–

59). The most common forms of VNTR are the 9- and 10-repeat types.
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and the genotype of each SNP as the explanatory variables with 
patient’s age and sex as covariates.

The statistical significance level was set at p < 0.05, with the 
exception of the comparisons of SNP distribution. For the analysis of 
SNP distributions, a Bonferroni correction for multiple comparisons 
was applied, and the statistical significance level was thus set at 
p = 0.00625 (=0.05/8). All statistical analyses were performed using 
SPSS ver. 22.0 software (IBM, NY).

3 Results

The SCH group had a significantly higher proportion of females 
(49.8%) compared to the HC group (44.1%) (Table 2). The patients’ 
ages at the time of blood sampling were significantly higher in the 
SCH group compared to the HC group. There was also a significant 
difference in age among the three groups: the TRS group was the 
oldest, followed by the non-TRS group, with the youngest group being 
the HC group.

3.1 Univariate analysis

The univariate analysis detected no polymorphisms that showed 
deviant results from the Hardy–Weinberg equilibrium in the HC or 
SCH groups.

3.1.1 SCH vs. HC
None of the seven polymorphisms other than the 40-bp VNTR 

showed significant differences in genotype or allelic distribution 
between the HC and SCH groups (Supplementary Table S1). 
Regarding the 40-bp VNTR, there was a significantly higher ratio of 
subjects with the 10X genotype in the SCH group compared to the 
HC group.

When additional analyses separating male and female subjects 
were conducted, there were no significant differences between the HC 
and SCH groups for any of the eight variants (data not shown).

3.1.2 TRS vs. non-TRS vs. HC
There was a significant difference in rs3756450  in both the 

genotype and allelic distributions; the residual analysis showed a 
higher ratio of A alleles in the TRS group and a higher ratio of G 
alleles in the non-TRS group (Table 3). These results are the same as 
those obtained in the analyses that were conducted separately for the 
male and female subjects (the residual analysis showed a higher ratio 

of G allele in the non-TRS group, with p values of 0.00338  in the 
males-only analysis and 0.0418 in the females-only analysis), although 
there was no significant difference in the genotype-based analyses.

The results for the 40-bp VNTR also showed a significant 
difference, with a higher ratio of XY in the TRS group and a higher 
ratio of homozygotes with 10 10 in the HC group (Table 3). When 
10-repeat, 9-repeat, or other repeat allele sizes were examined 
separately, we  observed that the distribution differed significantly 
among the three groups (Supplementary Table S2). This was also true 
for the analysis of the females-only group, while there was no 
significant difference in the analysis for the male subjects. There were 
no significant differences in the genotype or allelic distribution for 
other polymorphisms in the entire series of subjects or in the separate 
analyses of males and females.

3.2 Multivariate logistic analysis

By applying the seven SNPs or the seven SNPs plus the 40-bp 
VNTR to multivariate logistic models, we searched for significant 
variants affecting the classification of the TRS and non-TRS patients.

The first model including the seven SNPs revealed that the GG 
genotype of rs1800497 was significantly less related to TRS, with an 
odds ratio (OR) of 0.640 (p = 0.045) using the HC group as the 
reference (Table 4). When the TRS group was compared with the 
non-TRS (reference) group, the GG genotype of rs3756450 showed 
protection against TRS (OR = 0.685, p = 0.044), whereas the AA 
genotype was related to a risk of TRS (OR 1.430, p = 0.043).

The second model including the seven SNPs plus the 40-bp VNTR 
indicated that the GG genotype of rs1800497 and the GG(ValVal)
genotype of rs4680 carried lower risks for TRS and non-TRS relative 
to the HC (reference) group, suggesting that there can be protective 
genotypes against schizophrenia per se (Table 4). When the non-TRS 
group was the reference group, the AA genotype of rs3756450 was 
significantly related to TRS, with an OR of 2.362 (p = 0.037).

3.3 The combination analysis with COMT 
and SLC6A3

We next examined the effect of the combination of rs4680 on 
Catechol-O-methyltransferase gene (COMT) and rs3756450 
(SLC6A3), which we  speculated may alter the activity of the two 
proteins and thus modulate the amount of DA in the synaptic cleft; 
our hypothesis was that patients with the combination of variants 

TABLE 2 Demographic characteristics of the healthy controls, schizophrenia group, and the patients with and without treatment-resistant 
schizophrenia.

Variable HC group SCH group TRS group Non-TRS 
group

Statistical values

n  =  489 n  =  974 n  =  435 n  =  539 HC vs. SCH HC vs. TRS vs. 
non-TRS

Sex: male/female, n 271/214a 487/484a 222/211 265/273 χ2 = 4.243, p = 0.039 χ2 = 4.633, p = 0.099

Age at blood sampling, 

years*
36.68 (15.20) 46.64 (14.87) 49.29 (14.43) 44.45 (14.88) t = 11.946, p < 0.001

F = 85.105, p < 0.001

TRS > non-TRS > HC

*These data are mean (SD).
aThe age at blood sampling was unknown for 19 patients in the schizophrenia (SCH) group and two in the healthy control (HC) group. TRS: treatment-resistant schizophrenia.
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TABLE 3 Comparisons of the allelic and genotype distributions of the eight studied SNPs between the schizophrenia subgroups and the healthy control group.

SNP Major/minor 
allele (MAF)#

Group Genotype n (%) Allele n (%) OR 95% CI

MM Mm mm p value M m p value

TH

rs10770141 G > A [A:0.068]

HC 359 [85.7] 57 [13.6] 3 [0.7]

0.696

775 [92.5] 63 [7.5]

0.837Non-TRS 457 [86.2] 72 [13.6] 1 [0.2] 986 [93.0] 74 [7.0] 0.923 0.651–1.309

TRS 371 [87.1] 52 [12.2] 3 [0.7] 794 [93.2] 58 [6.8] 0.910 0.621–1.301

rs6356 A > G [G:0.325]

HC 201 [49.4] 170 [41.8] 36 [8.8]

0.317

572 [70.3] 242 [29.7]

0.396Non-TRS 238 [45.8] 235 [45.2] 47 [9.0] 711 [68.4] 329 [31.6] 1.094 0.896–1.335

TRS 215 [52.1] 158 [38.3] 40 [9.7] 588 [71.2] 238 [28.8] 0.957 0.773–1.184

DRD2

rs1800497 G > A [A:0.373]

HC 205 [45.7] 184 [41.0] 60 [13.4]

0.311

594 [66.1] 304 [33.9]

0.256Non-TRS 214 [40.2] 239 [44.8] 80 [15.0] 667 [62.6] 399 [37.4] 1.169 0.971–1.407

TRS 176 [41.1] 196 [46.5] 53 [12.4] 551 [64.4] 305 [35.6] 1.082 0.889–1.317

rs6275 A > G [G:0.432]

HC 176 [37.1] 215 [45.3] 84 [17.7]

0.287

567 [59.7] 383 [40.3]

0.183Non-TRS 167 [31.5] 261 [49.2] 103 [19.4] 595 [56.0] 467 [44.0] 1.162 0.973–1.388

TRS 148 [34.7] 211 [49.4] 68 [15.9] 507 [59.4] 347 [40.6] 1.013 0.893–1.223

COMT

rs4680 G > A [A:0.317]

HC 205 [42.8] 210 [43.8] 64 [13.4]

0.288

620 [64.7] 338 [35.3]

0.310Non-TRS 243 [44.9] 231 [43.2] 61 [11.4] 717 [67.0] 353 [33.0] 0.903 0.751–1.085

TRS 192 [44.9] 198 [46.3] 38 [8.9] 582 [68.0] 274 [32.0] 0.864 0.710–1.050

SLC6A3

rs3756450 A > G [G:0.469]

HC 133 [30.8] 210 [48.6] 89 [20.6]

0.006

476 [55.1] 388 [44.9]

<0.001Non-TRS 112 [22.6] 250 [50.4] 134 [27.0] 474 [47.8] 518 [52.2] 1.341 1.117–1.620

TRS 124 [30.8] 200 [49.8] 78 [19.4] 448 [55.7] 356 [44.3] 0.975 0.804–1.183

rs420422 G > A [A:0.392]

HC 152 [35.8] 202 [47.6] 70 [16.5]

0.330

506 [59.7] 342 [40.3]

0.119Non-TRS 214 [41.6] 233 [45.3] 67 [13.0] 661 [64.3] 367 [35.7] 0.822 0.681–0.991

TRS 157 [37.8] 200 [48.2] 58 [14.0] 514 [61.9] 316 [38.1] 0.910 0.748–1.107

10 10 10 X X Y 10 repeat 9 repeat Others

40-bp VNTR 10 > others [10: 0.93]#

HC 93 [91.2] 9 [8.8] 0 [0]

0.004

195 [95.6] 5 [2.5] 4 [2.0]

0.023Non-TRS 79 [80.6] 19 [19.4] 0 [0] 177 [89.8] 8 [4.1] 12 [6.1] 2.448 1.086–5.518

TRS 77 [77.8] 17 [17.2] 5 [5.1] 171 [86.8] 15 [7.6] 11 [5.6] 3.294 1.502–7.225

SNP, Single nucleotide polymorphism; VNTR, Variable number of tandem repeats.
#From Sano et al. (60).
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exhibiting a low-DA state would show a poorer response to 
antipsychotic medications. In this analysis, we defined patients with 
the combination of the GG (ValVal) of rs4680 and the AA of rs3756450 
as those with a “low-DA combination” (in place of the actual 
measurement of DA levels) and the patients with other combinations 
as “others.”

The results revealed that the distribution of this genotype 
combination differed between the TRS and non-TRS groups: the TRS 
group more frequently had a low-DA combination and less frequently 
had other combinations (χ2 = 5.304, p = 0.021). These results were the 
same for the females-only analysis, whereas the male-only analysis 
showed no significant difference. Additional analyses of the TRS vs. 
non-TRS vs. HC groups supported these results, revealing that the 
low-DA combination was significantly less common in the non-TRS 
group (χ2 = 6.000, p = 0.0498) compared to the TRS group, whereas the 
distribution in the TRS and HC groups did not differ significantly 
(Table 5).

3.4 SLC6A3 and clinical parameters

We also examined the potential effects of the combination of 
rs4680 and rs3756450, rs4680 alone, rs3756450 alone, and the 40-bp 
VNTR on clinical indicators. We observed that in the TRS group, 
there were no significant effects of the combination of the two SNPs, 
rs4680, rs3756450, or 40-bp VNTR on any clinical measurements.

In the non-TRS group, the analyses of the two-SNP combination 
and rs3756450 showed significant differences in the subjects’ Clinical 
Global Impression-Severity (CGI-S) scale score, employment, and 

antipsychotic dosage: the patients with the low-DA combination 
among the combined two-SNP or G allele carriers of rs3756450 
exhibited more severe psychopathology in terms of the CGI-S and 
employment and were being treated with higher doses of 
antipsychotics compared to the patients with other combinations and 
compared to the patients without the G allele (Table  6; 
Supplementary Table S3).

Regarding both rs4680 and the 40-bp VNTR, there were no 
significant differences between polymorphisms or clinical 
measurements among the SCH, TRS, and non-TRS groups.

4 Discussion

Our findings demonstrated that the distributions of the genotypes 
of rs3756450 and the 40-bp VNTR of SLC6A3 differed between the 
TRS and non-TRS groups in the following three ways: (i) regarding 
rs3756450, the A allele was significantly less abundant in the non-TRS 
patients and significantly more abundant in the TRS patients (Tables 3, 
4). Concerning the 40-bp VNTR, the TRS group had significantly 
fewer carriers of 10-repeat homozygotes compared to the non-TRS 
and HC groups (Table 3; Supplementary Table S2). (ii) The analysis of 
the combination of COMT and SLC6A3 revealed the TRS group’s 
significantly higher ratio of patients with the low-DA type (i.e., high 
COMT activity + high DAT activity) compared to both the HC and 
non-TRS groups (Table 5). (iii) In the non-TRS group, patients with 
the low-DA type were a minority and exhibited milder 
psychopathology compared to those with other genotype 
combinations (Supplementary Table S3; Table 6).

TABLE 4 Multivariate logistic regression analysis discriminating the TRS and non-TRS groups.

TRS non-TRS

OR 95%CI p value OR 95%CI p value

Model including SNPs ①–⑦

Reference: HC

rs1800497 GG vs. GA 0.640 0.413–0.991 0.045 0.804 0.542–1.193 0.279

Reference: non-TRS

rs3756450 GG vs. GA 0.685 0.475–0.989 0.044

rs3756450 AA vs. GA 1.430 1.011–2.022 0.043

Model including SNPs ①–⑦ and 40 bp-VNTR

Reference: HC

rs1800497 GG vs. GA 0.191 0.072–0.502 0.001 0.185 0.072–0.474 <0.001

rs4680 GG vs. GA 0.257 0.121–0.546 <0.001 0.285 0.137–0.592 0.001

Reference: non-TRS

rs3756450 AA vs. GA 2.362 1.051–5.306 0.037

TABLE 5 Genotypic analysis of the COMT gene rs4680 combined with the SLC6A3 gene rs3756450.

rs4680/rs3756450 HC group 
(n  =  427)

non-TRS group 
(n  =  495)

TRS group 
(n  =  400)

Statistical values

Post-hoc

GG / AA 54 (12.6) 43 (8.7) 54 (13.5)
χ2 = 6.000, p = 0.0498

GG/AA: TRS = HC > non-TRS

Others 373 (87.4) 452 (91.3) 346 (86.5) Others: TRS = HC < non TRS

The data are number of subjects (%).
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Several neuroimaging studies have indicated that the capacity to 
synthesize DA is not enhanced in patients with TRS and that a lower 
level of DA in the synaptic cleft may contribute to their 
nonresponsiveness to antipsychotics (24, 25). Our present results are 
the first to provide evidence that SLC6A3 may be  involved in the 
responsiveness to antipsychotic medication or the classification of 
TRS/non-TRS and that the specific genotype leading to the low-DA 
state could be related to patients with TRS.

In vitro studies have revealed that several variants spanning from 
the 5′-UTR to exon 1 on SLC6A3 affect the expression of DAT in a 
combined manner (61–63). These variants are in a relatively high-
linkage disequilibrium (LD) relationship (64), and their alteration 
allele uniformly leads to lower expression relative to their respective 
reference allele (61, 64, 65). The same difference in expression was true 
for rs3756450: the alteration allele (A) showed lower expression (55, 
65), except in a single study (62). The binding site with transcription 
factors is defined uniquely to the specific allele in the 5′-UTR on 
SLC6A3, which might be a reason for the differential expression by 
alleles (65).

Regarding the association with schizophrenia, two studies have 
demonstrated that rs3756450 was not the top-hit polymorphism of 
SLC6A3; however, it showed a highly significant signal in an 
association analysis between patients with schizophrenia and healthy 
subjects (55, 64). This finding was supported by a meta-analysis of the 
association between rs3756450 and schizophrenia (66). In the present 
study, this SNP was not significantly related to the patients with 
schizophrenia as a whole (Supplementary Table S1). However, when 
we divided the patients into TRS and non-TRS groups, a significant 
difference was observed: the non-TRS group had a significantly higher 
ratio of the G allele of rs3756450 (Table 3). In contrast, the TRS group 
did not differ from the HC group in the genotype or allelic 
distributions of rs3756450, but the TRS group had a significantly 
higher ratio of AA genotype carriers than the non-TRS group. In fact, 
the AA genotype was identified as the only risk factor in the 
multivariate logistic analysis including all other polymorphisms as 
independent variables (Table 4). These results suggest that in addition 
to the potential involvement of this SNP is might not only be involved 

in the vulnerability to schizophrenia (i.e., significant relationship with 
the non-TRS group), it may also be involved in the development of 
TRS following the onset of the disease.

Our present results showed a significantly higher ratio of the 
9-repeat of the 40-bp VNTR in the TRS group compared to the 
non-TRS and HC groups (Supplementary Table S2). The 40-bp VNTR 
polymorphism in SLC6A3 can affect its transcription (57, 67). 
Extensive in vivo and in vitro studies have obtained highly 
controversial findings regarding the effect of the 40-bp VNTR 
polymorphism in SLC6A3 on DAT expression: higher expression in 
10-repeat relative to 9-repeat (68–72); higher expression in 9-repeat 
compared to 10-repeat (73, 74); and no difference between them (75–
78). This uncertain situation remains as of this writing, and there is 
some speculation that these variants are unlikely to be involved in 
schizophrenia (58, 59).

As our results concerning the 40-bp VNTR came from a small 
sample size, no conclusion can be drawn. However, the significant 
difference in the distribution of the 40-bp VNTR between 
schizophrenia subtypes provides an important insight into its relation 
to the responsiveness to antipsychotic medication among patients 
with schizophrenia, although two studies have denied the association 
of the 40-bp VNTR with responses to antipsychotics (79, 80). The 
regulation of the expression of DAT has not yet been clarified, and 
several regions such as the 5′-UTR (including rs3756450), the 3′-UTR 
(including the 40-bp VNTR), and other variants are thought to work 
together to determine expression levels (81). A complete 
understanding of the regulation of DAT expression is strongly desired.

In our additional analysis of the combined effects with the Val/
Met polymorphism (rs4680) of COMT and rs3756450 of SLC6A3, 
which are suspected to more strongly affect the amounts of DA in the 
synaptic cleft, we observed that the TRS group’s frequency of this 
combination did not differ significantly from that of the HC group, 
but the ratio of “low-DA types” (the combination of GG of rs4680 and 
AA of rs3756450) was significantly lower in the non-TRS group 
(Table 5). This difference was even more evident in the two-group 
(TRS and non-TRS groups) comparison: the TRS group had a higher 
ratio of low-DA types than the non-TRS group.

TABLE 6 Comparison of clinically related measures for rs3756450 G(+) carriers and G(−) carriers in the non-TRS groups.

Variables rs3756450 G(+) rs3756450 G(−) Statistic values

n  =  387 n  =  113

Sex: male/female [n] 180/206 63/50 χ2 = 2.910, p = 0.088

Age at time of blood sampling [years] 45.26 (15.35) 44.09 (14.26) t = 0.715, p = 0.475

Age at onset [years] 27.19 (10.35) 27.25 (9.09) t = 0.046, p = 0.963

Duration of disease [years] 11.62 (9.79) 14.31 (11.31) t = 1.902, p = 0.058

CGI-S 3.15 (1.07) 2.79 (0.97) t = 2.610, p = 0.010

Number of hospitalizations [times] 1.45 (1.84) 1.31 (2.27) t = 0.544, p = 0.587

Work experience following disease onset: Yes/No 120/104 52 / 21 χ2 = 7.046, p = 0.008

Employment at time of blood sampling: Yes/No 69/157 36 / 36 χ2 = 9.070, p = 0.003

ECT from onset of illness to time of blood sampling: Yes/No 6/231 3 / 74 χ2 = 0.389, p = 0.533

Clozapine medication from onset to present: Yes/No 0/235 0 / 76 -

Antipsychotic dose (CP-eq.) [mg] 477.9 (336.7) 331.2 (186.6) t = 3.665, p < 0.001

Monotherapy with antipsychotic: Yes/No 185 / 51 68 / 10 χ2 = 2.894, p = 0.089

Cells with a value and parenthesis indicate mean (SD). Sex was unknown for one patient in the rs3756450 G(+) group.

https://doi.org/10.3389/fpsyt.2023.1334335
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Kogure et al. 10.3389/fpsyt.2023.1334335

Frontiers in Psychiatry 08 frontiersin.org

Catechol-O-methyltransferase gene has been shown to be related 
to multiple symptom domains as well as cognitive impairment in 
schizophrenia patients (82, 83). Most of the relevant studies have 
consistently shown that patients with the Val allele (leading to low 
DA) have severe psychopathology or poor cognitive function (84–87), 
although a meta-analysis did not support a relationship with working 
memory (88). In many areas of the human brain such as the striatum, 
thalamus, and hippocampus, both COMT and DAT provide DA 
clearance (89, 90), and it has been indicated that DAT could 
be involved more closely than COMT in the synaptic clefts (91–93). 
In the prefrontal cortex where DAT is less abundant, DA is broken 
down by COMT and other transporters such as norepinephrine 
transporter, and DAT plays a role in the volume transmission of DA 
away from the synaptic clefts (94, 95), suggesting that the effect of a 
specific genotype on brain function might differ depending on the 
brain region.

Several fMRI studies used the N-back task performed by healthy 
subjects, and with the classification of their genotypes the authors 
reported that the interacting effect of COMT (rs4680) and SLC6A3 
(40-bp VNTR) on brain activation was linear in the dorsolateral 
prefrontal cortex (96–98), whereas the effect was nonlinear (i.e., an 
inverted-U-shape curve) in the hippocampus (97). Notably, the 
lowest-DA genetic combination (defined as the Val allele of COMT 
and the 10-repeat of SLC6A3) did not exhibit the lowest DA signal or 
the highest blood oxygen level-dependent (BOLD) signal, indicating 
the veracity of the inverted-U-shape. It has been speculated that DA 
in the prefrontal cortex is modulated in a multi-layered way at both 
the synaptic level (i.e., by COMT) and the network level in the 
cortical-striatal-thalamus-cortex pathway (i.e., by both COMT and 
DAT) (99), leading to differential relationships between molecule 
functions and brain activation.

Our results after the selection of the 5′-UTR on SLC6A3 instead 
of the 40-bp VNTR in the 3′-UTR, demonstrated that the 5′-UTR 
(rs3475860) alone and the combination of 5′-UTR on SLC6A3 and 
COMT could be significantly related to TRS (Table 5). Our findings 
might support a linear interacting effect of COMT and SLC6A3 on the 
responsiveness to antipsychotic(s) in the striatum, in contrast to the 
nonlinear interaction (inverted U-shape curve) in the prefrontal 
cortex under cognitive tasks shown in fMRI studies.

Although several PET studies have reported that DA synthesis is 
not enhanced in individuals with TRS (24, 25), our present analyses 
showed that the two SNPs on the TH gene were not significantly 
associated with assignment to the TRS group, or the non-TRS group, 
or to schizophrenia patients as a whole. There are several potential 
reasons for this discrepancy between our result and those of the PET 
studies. Since no SNP with a significant impact on the expression of 
TH has been found to date, it is possible that a polymorphism other 
than the two SNPs we selected (rs10770141 and rs6356) may have a 
greater impact on the enzyme’s function (100, 101). Significant 
associations of rs10840491, rs10840489, rs11042978, and rs11564717 
on TH gene in individuals with schizophrenia were reported in 
association studies of schizophrenia (102, 103), but other reports 
denied these associations. The synthesis of DA by TH may 
be influenced by the methylation of TH or another upstream region 
of this molecule (104). In addition, the degree of DA synthesis in 
patients with TRS observed in the PET studies (i.e., a lack of enhanced 
DA synthesis) is similar to that in healthy subjects, and in this sense, 
this finding is not inconsistent with our present results.

Our analyses considering the subjects’ clinically related measures 
revealed that among the non-TRS patients, the patients with a low-DA 
type showed only slightly but nevertheless significantly lower values 
than the patients with other types in terms of psychopathology and 
antipsychotic doses, in both the single analysis of rs3756450 and the 
analysis combining rs4680 and rs3756450 (Supplementary Table S3; 
Table 6). These results in the non-TRS group were in contrast to the 
TRS-group findings showing that the low-DA type(s) could be risk 
genotypes for TRS with severe psychopathology (Table 5). However, 
the results concerning the non-TRS group were not contradictory 
since patients in the non-TRS group respond to antipsychotic 
medication by definition: the schizophrenia of the patients with the 
low-DA types in particular would be controlled with lower doses of 
antipsychotics, and these patients would thus experience better social 
lives, including employment.

This study has several strengths over other similar association 
studies of TRS patients. The sample size was relatively large. In 
addition, the majority of the prior similar studies reported that the 
diagnosis of TRS was based on a threshold antipsychotic dosage (e.g., 
>400 or > 600 mg), whereas we conducted a thorough review of the 
patients’ medical records to determine the diagnosis of TRS. The 
results of that review also reflect the patients’ clinical courses to the 
greatest extent possible, and the validity of the TRS diagnosis is high, 
which is another study strength.

However, there are several study limitations to address. The first 
is that although the sample size is relatively large, it was still small 
enough to have insufficient statistical power. A second limitation is 
that the patients’ responses to antipsychotic medication were not 
evaluated with standard assessment tools such as the Positive and 
Negative Syndrome Scale (PANSS) or the Brief Psychiatric Rating 
Scale (BPRS). Patients with TRS are heterogeneous in their response 
to antipsychotic(s) and other non-genetic factors such as adherence 
to medication and the duration of untreated psychosis (4, 5). 
Several research groups recently proposed that TRS could 
be classified into an early subtype and a late subtype (and others), 
and the late subtype of TRS is speculated to be  related to the 
development of dopamine supersensitivity psychosis (DSP) (5). 
Patients with DSP respond well to initial antipsychotics for their 
first episode of psychosis by definition, and thus the dopaminergic 
function of this subtype could be  similar to that of non-TRS 
patients, but not to that of an early subtype of TRS. However, 
we  could not collect data relevant to DSP for all of the present 
patients, and we did not performed such an analysis of DSP in the 
present study. To more precisely examine the relationships between 
genetic-based phenotypes and responsiveness to medication even 
among only patients with TRS, more objective and thorough 
assessments are necessary.

In addition, our analysis strategy might be slightly arbitrary; we did 
not measure DA in the patients’ brains, and relationships between each 
variant and their presumed DA level are only hypothetical, particularly 
in the analysis of the COMT and DAT combination, which did not 
reflect the actual DA state in brains. Lastly, the targeted genes and 
polymorphisms were greatly restricted. Other genes (e.g., MAO-B and 
VMAT2) or functional/non-coding variants could have influenced our 
findings. Resequencing analyses for the relevant genes are required to 
obtain more comprehensive results.

In conclusion, the results of our analyses revealed significant 
difference in allelic and genotypic distributions of rs3756450 
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between schizophrenia patients with and without a treatment-
resistant phenotype. These results partially support those of several 
PET studies showing non-enhancement of the DA synthesis 
pathway in patients with TRS. Our analysis of the COMT rs4680 
and SLC6A3 rs3756450 combination suggests that a presumptive 
low-DA state is more frequently present in the TRS patients 
compared to non-TRS patients. These findings suggest that DA 
modulation in the synaptic cleft by DAT could affect patients’ 
responses to antipsychotics medication, ultimately leading to the 
development of TRS.
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