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Major Depressive Disorder (MDD) is a severe psychiatric disorder characterized 
by selective impairments in mood regulation, cognition and behavior. Although 
it is well-known that antidepressants can effectively treat moderate to severe 
depression, the biochemical effects of these medications on white matter (WM) 
integrity are still unclear. Therefore, the aim of the study is to review the main 
scientific evidence on the differences in WM integrity in responders and non-
responders to antidepressant medications. A record search was performed on 
three datasets (PubMed, Scopus and Web of Science) and ten records matched 
our inclusion criteria. Overall, the reviewed studies highlighted a good efficacy of 
antidepressants in MDD treatment. Furthermore, there were differences in WM 
integrity between responders and non-responders, mainly localized in cingulate 
cortices, hippocampus and corpus callosum, where the former group showed 
higher fractional anisotropy and lower axial diffusivity values. Modifications in 
WM integrity might be partially explained by branching and proliferation as well as 
neurogenesis of axonal fibers mediated by antidepressants, which in turn may have 
positively affected brain metabolism and increase the quantity of the serotonergic 
neurotransmitter within synaptic clefts. However, the reviewed studies suffer from 
some limitations, including the heterogeneity in treatment duration, antidepressant 
administration, medical posology, and psychiatric comorbidities. Therefore, future 
studies are needed to reduce confounding effects of antidepressant medications 
and to adopt longitudinal and multimodal approaches in order to better characterize 
the differences in WM integrity between responders and non-responders.
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1 Introduction

Major depressive disorder (MDD) is a psychiatric disorder characterized by low mood, 
low self-esteem, and loss of interest in ordinary activities (1).

From a neuroimaging perspective, impairments in signal transduction caused by 
alteration in levels of neurotransmitters have been consistently reported in MDD (2, 3), 
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especially in subcortical structures that are part of the limbic 
system and known to be involved in emotional codification and 
processing (4).

Among neurotransmitters, serotonin is one of the most involved 
due to its crucial role in mood regulation (5). Indeed, decreased levels 
of serotonin were observed in MDD (6), maybe due to deficits in the 
serotonin transporter (5-HTT) within raphe nuclei, at the level of 
brainstem (7), or within the amygdala and midbrain (8), as well as in 
the hippocampus, whose neurochemical disruption has been 
suggested to contribute to developing depressive and anxiety 
behaviors (9).

In order to rebalance the levels of serotonin in MDD, several 
pharmacological treatments were developed, including antidepressant 
medications, which aim to regulate the quantity of neurotransmitters 
within the brain cortex (10) and to rewire axonal fiber connections by 
exploiting neuroplasticity (11). Considering the individual tolerability 
and safety in administration, nowadays the two most used 
antidepressant drug classes are the Selective Serotonin Reuptake 
Inhibitors (SSRIs) and the Serotonin-Norepinephrine Reuptake 
Inhibitors (SNRIs) (12). SSRIs increase the amount of serotonin at the 
level of synaptic clefts by blocking the normal reuptake of the 
neurotransmitter (13), and their efficacy was tested against the most 
severe MDD diagnosis (14). The SNRIs, on the other hand, have a 
double action on both serotonin and noradrenaline by blocking their 
reuptake within the synaptic clefts and working similarly to cyclic 
antidepressants (15).

Beside neurotransmitter impairment, Diffusion Tensor 
Imaging (DTI) studies consistently reported widespread disruption 
within white matter (WM) tissue in MDD (16). DTI estimates the 
directionality of water molecules movement in each voxel and 
describes it with four diffusivity indices: fractional anisotropy 
(FA), mean diffusivity (MD), axial diffusivity (AD) and radial 
diffusivity (RD) (17). FA is a scalar value between 0 and 1 
describing the degree of anisotropy within brain tissues; MD is an 
estimate of the average water movement inside the considered 
voxel; AD describes the diffusivity along the principal diffusion 
direction; and, finally, RD describes the diffusivity perpendicular 
to the main diffusion direction. In the field of DTI, tract-based 
spatial statistics (TBSS) and tractography are employed to analyze 
WM pathways in the brain. TBSS is a statistical method used for 
group-wise analysis of WM microstructure and it is based on the 
alignment of individual subjects’ DTI to a common space (18). On 
the other hand, tractography is a visualization technique that 
reconstructs and maps the pathways of WM tracts in the brain 
based on DTI data (19). In particular, in MDD structural 
disruptions within WM tissue are reflected by decreased FA mainly 
localized in the corpus callosum (CC), cingulum and uncinate 
fasciculus (20). Moreover, reduction of FA has been found 
correlating with severity of depressive symptomatology (21) and 
MDD duration (22), probably explaining the impairments in 
general cognitive functioning often observed in these patients 
according to anatomical disruptions (23).

Importantly, as demonstrated by several pieces of evidence, WM 
is very sensitive to external factors (24), such as pharmacological 
treatments. Indeed, drugs seem to have a great impact on axonal fibers 
by modifying their synaptic plasticity and structural organization (25, 
26). Therefore, it is likely that during a treatment based on 
antidepressant medications WM undergoes neuroplasticity processes 

which may characterize a specific clinical outcome, as already 
demonstrated by functional connectivity evidence (27).

In this context, this review aims to collect evidence on WM 
integrity after antidepressant medications by focusing on diffusion 
differences of clinical outcomes, such as responders vs. non-responders 
and remitters vs. non-remitters, as they are paramount to describe 
different levels of success at the end of a pharmacological treatment 
(28). Responders are patients who show clinically significant 
improvements in their symptomatology, which is typically defined by 
a certain percentage reduction in symptom severity scores, often 
measured by standardized rating scales. On the other hand, remitters 
are patients who not only respond to medications but also achieve 
complete resolution of their symptomatology, returning to a clinical 
state comparable to healthy individuals.

2 Materials and methods

Record research was performed on three datasets: PubMed, 
Scopus and Web of Science. Combining Boolean operators the string 
used was the following: (Diffusion Tensor Imaging OR DTI) AND 
white matter AND antidepress* AND (Major Depressive Disorder OR 
MDD). The inclusion criteria were: (i) peer-reviewed original 
publication, (ii) English language, (iii) MDD diagnosis, (iv) DTI 
investigation of WM integrity after antidepressant medications by 
focusing on clinical outcomes, and (v) employment of at least one 
diffusion index (FA, MD, AD and/or RD) to describe WM integrity. 
Exclusion criteria were: (i) animal studies, (ii) current psychiatric and/
or neurological comorbidities (excluding generalized anxiety disorder 
and social anxiety disorder), and (iii) no comparison between clinical 
outcomes. No limit was placed regarding antidepressant 
administration (e.g., type of drugs, duration of treatment, clinical 
efficacy) and type of clinical outcome comparisons (e.g., remitters vs. 
non-remitters, pre- vs. post-treatment individual conditions). Record 
research was performed on August 11th, 2023 with no temporal 
windows. In Figure 1 the record research is reported. 201 records were 
found, of which 120 were unique records. After title and abstract 
screening, 22 records were assessed for eligibility and only 10 were 
included in the review by matching inclusion and exclusion criteria. 
Table 1 provides records, extracted variables and main results.

3 Results

All studies employed SSRIs and SNRIs for MDD treatment. Beside 
SSRIs and SNRIs, Hoogenboom et al. (32) investigated the combined 
effects of several antidepressants, including norepinephrine and 
dopamine reuptake inhibitors, tricyclic antidepressants, lithium, 
noradrenergic and specific serotonergic antidepressants, serotonin 
antagonist and reuptake inhibitors. The majority of the studies 
adopted a pharmacological treatment lasting in total between 8 and 
12 weeks, except for three studies that considered either a more 
extended (24 weeks and 12 months) (31, 32) or shorter (2 days) (35) 
temporal window. Out of ten studies, only four investigated MD, AD 
and RD other than FA (30, 34, 35, 38). Finally, with regards to DTI 
analysis, only five studies employed TBSS (31, 33, 35, 36, 38), one 
tractography (34), and the remaining ones a voxel-based approach 
(29, 30, 32, 37).
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3.1 Single-drug treatment

Six studies administered a single-drug treatment and investigated 
WM integrity of MDD patients by considering both remission and 
response as clinical outcomes (29, 30, 34, 35, 37, 38).

Alexopoulos et al. (29) administered 10 milligrams per day (mg/
dd) of escitalopram to 48 MDD elderly patients for 12 weeks. At the 
end of treatment, 25 patients were remitters and 23 were non-remitters. 
The authors found that compared to non-remitters, remitters showed 
higher FA in several WM regions, including anterior cingulate cortex 
(ACC) and posterior cingulate cortex, dorsolateral prefrontal cortex, 
genu of CC, hippocampus, and insula.

Similarly, Davis et al. (30) investigated the effect of escitalopram 
(10-20 mg/dd) on WM and clinical outcome in 165 MDD patients 
after 2 and 8 weeks of treatment. Interestingly, the authors found that 
the most significant differences between 85 responders and 80 
non-responders were observed after 8 weeks of treatment. Specifically, 
compared to non-responders, responders had lower AD in bilateral 

cerebral peduncle, left posterior thalamic radiation, right cingulum 
cingulate (CgC), bilateral cingulum hippocampus, and left external 
capsule (EC). No significant differences were observed for FA, 
MD and RD.

On the other hand, Pillai et al. (34) explored the effect of sertraline 
on WM integrity and clinical outcome in 144 MDD patients from 
Establishing Moderators and Biosignatures of Antidepressant 
Response in Clinical Care (EMBARC) dataset. After an 8 weeks 
treatment with a maximum dosage of 200 mg/dd, 53 patients were 
remitters and 91 were non-remitters. Compared to non-remitters, 
remitters showed lower FA in WM tracts connecting the raphe 
nucleus and bilateral amygdala without, though, showing any 
significant difference in MD, AD and RD.

These results were only partially confirmed by Taylor et al. (37), 
who designed a similar study with 74 MDD patients by focusing only 
on FA and following 12 weeks of treatment based on sertraline 
(50–200 mg/dd). Among 37 remitters, lower FA was found within the 
right ACC in comparison with the 37 non-remitters.

FIGURE 1

Flowchart diagram for record selection.
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TABLE 1 Sociodemographic and clinical variables of reviewed studies.

Study Study 
design

Sample size 
(M/F)

Age 
(mean  ±  sd)

Clinical treatment DTI parameters Main results

Antidepressant 
medications

Dosage
Length 

of 
therapy

Acquisition 
(Tesla, direction, 
voxel—mm3)

Indices
Clinical 
outcome

WM 
integrity

Alexopoulos 

et al. (29)

Cross-

sectional

MDD: 48 (ns/ns) 70.2 ± 5.8 Escitalopram 10 mg/dd 12 wk 1.5 T, 8, 5 × 5 × 5 FA • Remitters (25)

• Non-remitters (23)

↑FA ACC, 

DLPFC, genu 

(CC), 

hippocampus, 

PCC, insula.

Davis et al. 

(30)

Cross-

sectional

MDD: 165 

(61/104)

35.7 ± 12.5 Escitalopram 10-20 mg/dd •2 wk.

•8 wk

• 3.0 T, 30, 2.5 × 2.5 × 2.5

• 3.0 T, 31, 2.5 × 2.5 × 2.5

• FA

• MD

• AD

• RD

• Responders (80)

• Non-responders (85)

↓AD bilateral 

cerebral peduncle, 

L PTR, R CgC, 

bilateral CgH, L 

EC.

Dong et al. 

(31)

Cross-

sectional

MDD: 127 (58/69) 35.3 ± 9.1 • SSRI

• SNRI

ns 24 wk 3.0 T, 32, 3 × 3 × 3 FA • Remitters (62)

• Non-remitters (65)

NS FA.

Hoogenboom 

et al. (32)

Cross-

sectional

MDD: 92 (34/58) 46.5 ± 14.6 • SSRI

• NDRI

• SNRI

• TCA

• Lithium

• NaSSA

• SARI

ns 12 mo • 1.5 T, 7, 6 x 6 x 6

• 1.5 T, 16, 6 × 6 × 6

• 1.5 T, 22, 6 × 6 × 6

• 1.5 T, 23, 6 × 6 × 6

• 1.5 T, 28, 6 × 6 × 6

• 1.5 T, 35, 6 × 6 × 6

• 1.5 T, 39, 6 × 6 × 6

• 1.5 T, 70, 6 x 6 x 6

FA • Remitters (63)

• Non-remitters (29)

↑FA medial fornix.

Korgaonkar 

et al. (33)

Cross-

sectional

MDD: 80 (40/40) 33.8 ± 13.1 • Escitalopram

• Sertraline

• Venlafaxine-XR

• 10-20 mg/dd 

(Escitalopram)

• 50-200 mg/dd 

(Sertraline)

• 75-225 mg/dd 

(Venlafaxine-XR)

8 wk 3.0 T, 42, 2.5 × 2.5 × 2.5 FA • Remitters (37)

• Non-remitters (43)

↑FA CgC.

↓FA stria 

terminalis.

Pillai et al. (34) Cross-

sectional

MDD: 144 (54/90) 37.2 ± 13.7 Sertraline 200 mg/dd 

(maximum dose)

8 wk • ns, 64, 2.5 × 2.5 × 2.5

• ns, 64, 1.9 × 1.9 × 1.9

• FA

• MD

• AD

• RD

• Remitters (53)

• Non-remitters (91)

↓FA WM tracts 

raphe nucleus-

bilateral amygdala.

(Continued)

https://doi.org/10.3389/fpsyt.2023.1335706
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


V
id

etta et al. 
10

.3
3

8
9

/fp
syt.2

0
2

3.13
3

570
6

Fro
n

tie
rs in

 P
sych

iatry
0

5
fro

n
tie

rsin
.o

rg

Study Study 
design

Sample size 
(M/F)

Age 
(mean  ±  sd)

Clinical treatment DTI parameters Main results

Antidepressant 
medications

Dosage
Length 

of 
therapy

Acquisition 
(Tesla, direction, 
voxel—mm3)

Indices
Clinical 
outcome

WM 
integrity

Seiger et al. 

(35)

Longitudinal MDD: 33 (17/16) 29.2 ± 9.6 Citalopram 8 mg/dd 2 dd 3.0 T, 30, 2 × 2 × 2 • FA

• MD

• AD

• RD

na ↓MD L ACR, L 

EC, CC.

↓AD L EC, genu 

(CC), splenium 

(CC), inf frontal 

blade.

↓RD L ACR, sup 

frontal blade.

Tatham et al. 

(36)*

*(the study 

employed a 

MDD 

subgroup who 

was 

administered 

quetiapine XR)

Cross-

sectional

MDD: 24 (ns/ ns) ns ± ns Citalopram 20 mg/dd 

(Citalopram)

8 wk 3.0 T, 12, 3 × 3 × 3 FA • Responders (9)

• Remitters (8)

• Non-responders (7)

NS FA.

Taylor et al. 

(37)

Cross-

sectional

MDD: 74 (40/34) 68.1 ± 6.8 Sertraline 50-200 mg/dd 

(maximum dose)

12 wk 1.5 T, 6, 3 x 3 × 3 FA • Remitters (37)

• Non-remitters (37)

↓FA R ACC.

Vieira et al. 

(38)

Cross-

sectional

MDD: 20 (6/14) 37.7 ± 12.2 Paroxetine 20 mg/dd 12 wk 1.5 T, 30, 2 x 2 × 2 • FA

• MD

• AD

• RD

• Responders (12)

• Non-responders (8)

↑FA forceps 

minor, bilateral 

SLF, L IFOF.

↓RD L SLF.

↑, increase; ↓, decrease; ACC, Anterior Cingulate Cortex; ACR, Anterior Corona Radiata; AD, Axial Diffusivity; CC, Corpus Callosum; CgC, Cingulum Cingulate; CgH, Cingulum Hippocampus; dd, Day(s); DLPFC, Dorsolateral Prefrontal Cortex; DTI, Diffusion 
Tensor Imaging; EC, External Capsule; F, Females; FA, Fractional Anisotropy; IFOF, Inferior Frontal Occipital Fasciculus; inf, Inferior; L, Left; M, Males; MD, Mean Diffusivity; mg, Milligrams; MDD, Major Depressive Disorder; mo, Month(s); na, Not Applicable (not 
recorded variable); NaSSA, Noradrenergic And Specific Serotonergic Antidepressant; NDRI, Norepinephrine and Dopamine Reuptake Inhibitors; NS, Not Significant; ns, Not Specified (recorded but not reported variable); PCC, Posterior Cingulate Cortex; PTR, 
Posterior Thalamic Radiation; R, Right; RD, Radial Diffusivity; SARI, Serotonin Antagonist and Reuptake Inhibitors; sd, Standard Deviation; SLF, Superior Longitudinal Fasciculus; SNRI, Serotonin-Norepinephrine Reuptake Inhibitor; SSRI, Selective Serotonin 
Reuptake Inhibitors; sup, Superior; TCA, Tricyclic Antidepressant; WM, White Matter; wk, Weeks.

TABLE 1 (Continued)
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Finally, Seiger et al. (35) and Vieira et al. (38) investigated the 
effects of citalopram and paroxetine, respectively, on WM integrity in 
MDD patients. Seiger et al. (35) analyzed the short-term effects of 
citalopram according to a 2-days treatment with a dosage of 8 mg/dd. 
In 33 MDD patients the authors evaluated FA, MD, AD and RD pre- 
and post-treatment and found lower MD in left anterior corona 
radiata (ACR), left EC and CC; lower AD in left EC, genu and 
splenium of CC, inferior frontal blade; lower RD in left ACR and 
superior frontal blade. Finally, Vieira et al. (38) recruited 20 MDD 
patients who underwent paroxetine treatment for 12 weeks. The WM 
integrity was compared between 12 responders and 8 non-responders. 
In responders, higher FA was localized in forceps minor, bilateral 
superior longitudinal fasciculus (SLF) and left inferior fronto-occipital 
fasciculus whereas reduced RD was localized in left SLF.

3.2 Multiple-drug treatment

Four studies employed antidepressant medications based on 
administration of multiple drugs in order to investigate the clinical 
outcomes related to WM integrity among MDD patients (31–33, 36).

In a sample of 127 MDD patients, Dong et al. (31) investigated FA 
differences between remitters and non-remitters after administration 
of several SSRIs and SNRIs for 24 weeks. At the end of treatment, 
patients who achieved remission were 62, while those who did not 
were 65. However, no significant differences in FA were observed 
between remitters and non-remitters.

In contrast, Hoogenboom et al. (32) carried out a legacy-data 
study on 92 MDD patients. Authors retrieved clinical records of 
patients who had been recruited from 1999 to 2009 and had been 
administered different antidepressants for a period of almost 
24 months. The only significant result found by authors was the higher 
FA in medial fornix in 63 remitters compared to 29 non-remitters.

Also, Korgaonkar et al. (33) administered two SSRIs, escitalopram 
and sertraline, and an SNRI, venlafaxine-XR, to 80 MDD patients for 
8 weeks. The dosage was different for each drug: 10-20 mg/dd, for 
escitalopram; 50-200 mg/dd, for sertraline; 75-225 mg/dd, for 
venlafaxine-XR. Similar to Dong et al. (31) and Hoogenboom et al. 
(32), the authors investigated only FA in 37 remitters and 43 remitters 
and reported that the former group had higher FA in CgC and lower 
FA in stria terminalis compared to the latter group.

Finally, Tatham et al. (36) administered citalopram (20 mg/dd) to 
24 MDD patients, at the end of which the authors examined WM 
integrity through FA. Between 9 responders, 7 non-responders and 8 
remitters no statistical difference was detected in FA values.

4 Discussion

The present study reviewed the literature on WM integrity after 
antidepressant medications by comparing the clinical outcomes of 
MDD patients. Overall, the results showed that MDD patients who 
achieved remission or responded to the pharmacological treatment, 
showed a difference in DTI indices in respect to non-remitters and 
non-responders, mainly localized in cingulate cortices, 
hippocampus and CC.

Overall, considering the efficacy of antidepressant medications, 
almost half of reviewed studies demonstrated a good rate of clinical 

outcome (29, 32, 36–38), in line with previous evidence reported by 
the literature (39). However, almost all the reviewed studies employed 
a cross-sectional design and, therefore, it is not possible to state 
whether the differences in WM integrity are due to the effect of 
medications or were already in place before administering 
antidepressants. Only Seiger et al. (35) designed a longitudinal study 
showing partial recovery effects on WM integrity before and after 
pharmacological treatment, ultimately suggesting that antidepressants 
may have a normalizing effect on axonal fiber organization.

As described by the reviewed studies the main effects of 
antidepressant medications were found within cingulate cortices, 
where, in line with literature, an overall increase of FA occurs in MDD 
patients at the end of pharmacological treatment (40). Specifically, the 
reviewed studies found a difference in WM integrity in the cingulum 
between remitters and non-remitters (29, 33), and between responders 
and non-responders (30), with the formers showing higher FA and 
lower AD, respectively. The cingulum belongs to the limbic system and 
creates anatomical connections with thalamus, hypothalamus and 
brainstem nuclei (41). Its functional role is related to emotional 
codification which characterizes depressive symptomatology (42) and, 
therefore, it is not surprising that in MDD it is one of the most 
disrupted structures (43). A lower FA in the cingulum might 
be associated with dysfunctions in connectivity patterns (44) due to 
either a reduction (45) or a demyelination (46) of axonal fibers. 
Moreover, abnormal connectivity in cingulate cortices determines an 
altered activation in frontal regions (47, 48), which correlated with the 
severity of MDD (49, 50). The specific effects of antidepressant 
medications on cingulate cortices might be explained by structural 
modifications within axonal fibers related to proliferation and 
branching processes (51). This would be  coherent to higher WM 
integrity in responders and may reflect both an improvement in brain 
metabolism and an increase of serotonergic neurotransmitter within 
synaptic clefts (52, 53).

Similarly, at the end of SSRIs treatment two reviewed studies (29, 
30) also reported higher FA and lower AD within the hippocampus in 
remitters and responders compared to non-remitters and 
non-responders. Hippocampus is a key region known to be involved 
in the pathophysiology of MDD whose abnormal neurogenesis has 
always been identified as a distinctive trait of depressive 
symptomatology (54). Hippocampal neurogenesis involves the normal 
growth of axonal fibers (55) and has been revealed to be sensitive to 
stress (56) and brain-induced neurotrophic effects (57). Delay or stop 
of neurogenesis within hippocampal cortices has important 
consequences on brain metabolism (58), volumetric dimensions (59) 
and synaptic organization (60). Therefore, by considering hippocampal 
neurogenesis as clinical target for MDD treatment (54), the higher FA 
observed in remitters and responders after antidepressant medications 
might be due to the reactivation of axonal fiber growth which may 
reverse the atrophy process (61) and up-regulate the neurotrophin 
signaling pathways (62). In other words, pharmacological treatment 
based on SSRIs seem to restore 5-HTT deficits (63, 64) by mediating 
the pro-proliferate effect of antidepressant response (65) and 
guaranteeing prolonged outcomes even after the total attenuation of 
depressive symptomatology (66).

Finally, some reviewed studies (29, 35, 38) found higher FA and 
lower AD in CC between responders and non-responders at the end 
of antidepressant medications. The CC has been consistently found 
disrupted in MDD patients, especially the genu, where a decrease of 
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FA, probably connected with a reduction of axonal fibers (67), has 
been largely reported (68, 69). According to WM neuroanatomy, the 
axonal fibers originating from genu constitute forceps minor, a well-
known clinical biomarker for MDD treatment (38), and reach the 
frontal regions (70). Therefore, decreased FA in genu of MDD patients 
may be linked to functional deactivation of those networks which are 
involved in emotional codification within the frontal cortex (71). As 
for cingulate cortices, also for CC, the effects of antidepressant 
medications on WM integrity might be  explained by axonal 
proliferation and branching, which in turn determine higher FA in 
responders (72).

However, in order to correctly interpret these results, some study 
limitations should be considered. First, reviewed studies did not employ 
specific analysis to investigate the impact of each antidepressant in 
multiple-drug treatments. Second, the effects of different medical 
dosage on WM integrity were not quantified. Third, the heterogeneity 
of length of treatment and the extraction of only one DTI index (FA) 
may not allow a clear interpretation on the effect of antidepressant 
medications on WM tissue. Fourth, some of the reviewed studies often 
recruited individuals with comorbid anxiety disorders which did not 
allow to generalize the observed findings to just MDD patients. Fifth, 
another limitation associated with inclusion and exclusion criteria can 
be  identified in the choice of selecting only English language 
publications which could provide a biased assessment of a topic, and can 
lead to biased results in literature reviews. Finally, we  have not 
conducted a full systematic review therefore our work has intrinsic 
limits mostly related to deep search (e.g.: bibliography screening) and 
critical evaluation (e.g.: quality bias assessment) of papers as well as 
retrieval of missing variables of interest.

In conclusion, from the reviewed studies it emerged that at the 
end of pharmacological treatment MDD patients who achieved 
remission or responded to antidepressant medications, showed higher 
WM integrity mainly localized in cingulate cortices, hippocampus and 
CC. This would ultimately suggest that antidepressants may indeed 
have neurotrophic effects on selective brain regions, which may 
be  therefore considered putative clinical biomarkers for MDD 
treatment. However, future research is warranted for at least two 
reasons. First, it is necessary to consider the confounding effects of 

external factors related to antidepressant medications and of 
overlapping comorbidities related to anxiety disorders. Second, it 
becomes essential to employ more refined neuroimaging techniques 
to better characterize neurobiological processes underlying the 
modifications in WM integrity. This would increase our understanding 
on the etiology of MDD and will allow the identification of more 
personalized clinical treatments for depressive patients.
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