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face-matching functional
MRI task
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3Department of Medical Image Acquisitions, Philips Research, Eindhoven, Netherlands, 4Department
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Radiology and Nuclear Medicine, Maastricht University, Maastricht, Netherlands, 6Department of
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Introduction: Approximately one in six people will experience an episode of

major depressive disorder (MDD) in their lifetime. Effective treatment is hindered

by subjective clinical decision-making and a lack of objective prognostic

biomarkers. Functional MRI (fMRI) could provide such an objective measure

but the majority of MDD studies has focused on static approaches, disregarding

the rapidly changing nature of the brain. In this study, we aim to predict

depression severity changes at 3 and 6 months using dynamic fMRI features.

Methods: For our research, we acquired a longitudinal dataset of 32 MDD

patients with fMRI scans acquired at baseline and clinical follow-ups 3 and 6

months later. Several measures were derived from an emotion face-matching

fMRI dataset: activity in brain regions, static and dynamic functional connectivity

between functional brain networks (FBNs) and two measures from a wavelet

coherence analysis approach. All fMRI features were evaluated independently,

with and without demographic and clinical parameters. Patients were divided

into two classes based on changes in depression severity at both follow-ups.

Results: The number of coherence clusters (nCC) between FBNs, reflecting the

total number of interactions (either synchronous, anti-synchronous or causal),

resulted in the highest predictive performance. The nCC-based classifier

achieved 87.5% and 77.4% accuracy for the 3- and 6-months change in

severity, respectively. Furthermore, regression analyses supported the potential

of nCC for predicting depression severity on a continuous scale. The posterior

default mode network (DMN), dorsal attention network (DAN) and two visual

networks were the most important networks in the optimal nCC models.

Reduced nCC was associated with a poorer depression course, suggesting

deficits in sustained attention to and coping with emotion-related faces. An

ensemble of classifiers with demographic, clinical and lead coherence features, a
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measure of dynamic causality, resulted in a 3-months clinical outcome

prediction accuracy of 81.2%.

Discussion: The dynamic wavelet features demonstrated high accuracy in

predicting individual depression severity change. Features describing brain

dynamics could enhance understanding of depression and support clinical

decision-making. Further studies are required to evaluate their robustness and

replicability in larger cohorts.
KEYWORDS

major depressive disorder, prognosis, functional MRI, neurodynamics, brain networks,
multi-echo
1 Introduction

Major depressive disorder (MDD) is a severe neuropsychiatric

disorder and one of the leading causes of disability worldwide, affecting

around 4.4% of the global population (1). Moreover, approximately

one out of six people will experience a major depressive episode at

some point in their lifetime (2). Yet, current treatment options are not

effective: two-thirds of MDD patients will not remit after first-line

treatment, which often takes nearly 3 months (3). Approximately a

third develops a resistant type of depression (4). These patients often

undergo various combinations of treatment strategies, including

psychotherapy, multiple concurrent pharmacological treatments,

switching between different antidepressants as well as changing in

dose (4). Each treatment plan is based on decision-making by clinical

experts, who are supported in this process by established guidelines

regarding appropriate treatment and medication selection at different

stages (4). However, this subjective approach might not be beneficial

for all patients. It has been hypothesized that objective prognosis based

on physiological measurements could support this decision-making

and eventually improve the quality of individual treatment strategies

(5, 6).

Functional MRI (fMRI) is an imaging technique that allows the

indirect measurement of neuronal activity in the brain. Functional

MR images can be acquired when the patient is at rest in the scanner

(resting-state) or during the performance of a task which is

developed to activate brain regions or networks associated with

specific functional domains (task-based) (7). Task-based studies in

MDD have demonstrated enhanced activations in limbic regions

such as the amygdala and anterior cingulate cortex (ACC) in

depressed subjects compared to healthy controls when viewing

emotional faces (8–11). In addition, frontal activity has shown to

be reduced. In terms of treatment prediction, the rostral ACCmight

play an important role: increased activity is often reported during

processing of negative emotional faces, predicting poor treatment

outcome (9, 10, 12).

Synchronicity in brain activation is another area that is often

explored in fMRI research. Functional connectivity (FC),
02
commonly measured as correlation between time-series of voxels,

regions or networks, is often evaluated for this purpose. Aberrant

synchronicity in depression has previously been found in both

resting-state and task-based fMRI studies, showing alterations in

connections between frontal, limbic, and subcortical networks (13).

In addition, altered fronto-limbic FC has often been found to be

significantly correlated with clinical outcome, i.e. symptomatology

and treatment-induced alterations, though with inconsistent results

(14, 15).

One disadvantage of FC is the fact that it is a measure of ‘static’

functional connectivity (sFC). i.e. it assumes the presence of a constant

correlation and reflects the correlation between whole time-series. Yet,

the activity of the brain adapts over time with complex interactions

between networks. Dynamic FC (dFC) is a measure of FC that takes

into account the temporal nature and interactions between time-series.

Similar to sFC, it is commonly calculated by correlation, but instead

over a number of shorter periods shifting over time, using a sliding

window (16). This better reflects the brain activation synchronicity

dynamically. For example, abnormal dFC cluster patterns, referred to

as ‘brain states’, have been explored (16). Subsequently, the time of the

subjects being in these states could be used for further analyses.

Another common analysis approach for measuring the temporal

variability is to calculate the standard deviation or dissimilarity of FC

over time, reflecting the extent of synchronicity over time (17). The

dFC approach has previously been successfully implemented in several

resting-state MDD studies, demonstrating its potential for the purpose

of objectively distinguishing between depression and controls (16, 18–

21), predicting response to electroconvulsive therapy (16) or

antidepressants (22) and relating to symptom severity (16, 18–20, 22,

23) and other clinical variables, such as rumination (18) and childhood

trauma (23).

An alternative promising approach to explore dynamic brain

activity interaction is a Wavelet Coherence Analysis (WCA). WCA

yields phase information regarding two signals over time and per

frequency bin: in-phase, out-of-phase, phase shifted or no

coherence (24). These reflect networks that are synchronous, anti-

correlated, causal or without any of these interactions, respectively.
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Despite its limited use in MDD research thus far, previous studies

have demonstrated its potential as subjects with autism spectrum

disorder could be separated from subjects without autism spectrum

disorder with an accuracy of 86.7% (25). More recently, a study

obtained an accuracy of 86% for classifying between depressed and

non-depressed subject groups based onWCA-derived features (26).

Longitudinal approaches that aim to predict the depression

course based on follow-up depression severity assessments are

scarce. Moreover, the majority of MDD studies analyzed static FC

in resting-state fMRI data (27, 28). Thus far, dynamic analyses of

task-based fMRI have not been employed for objective

depression prognosis.

Finally, fMRI acquisitions are prone to physiological and

motion confounders and susceptibility artifacts in deeper located

subcortical and inferior temporal regions (29–32). Multiband

multi-echo (MBME) acquisitions improve the BOLD sensitivity,

reduce signal loss, and allow for enhanced spatial or temporal

resolution (33). The use of MBME sequences has been shown to

increase sensitivity, robustness, and reproducibility in FC and

dynamic co-activation pattern analyses (34, 35).

Accordingly, the goal of this study is to explore the potential of

dynamic analyses on task-based MBME fMRI data for MDD

prognosis. More specifically, using an emotion face-matching

paradigm, we aim to predict depression symptom improvement

after 3 and 6 months. Based on previous findings, we hypothesize
Frontiers in Psychiatry 03
that dynamic fMRI-based features improve the performance in

predicting clinical outcome compared to activation and static FC

(sFC) based features. In addition, we expect aberrant connectivity or

coherence between frontal and limbic networks to be predictive of

clinical outcome.
2 Materials and methods

This section first describes the details of the included participants

in the study. Subsequently, the study design is explained, including

the clinical assessments and MRI examination. Third, the details of

the MRI pre-processing steps are provided. Extraction of different

categories of fMRI features are discussed in the next subsection. In the

last part, the methods to predict depression clinical outcome are

pointed out. These include a binary classification between the classes

≥50% versus<50% decline in depression severity, and prediction of

depression severity change on a continuous scale. A summary of the

methodology is shown in Figure 1 below.
2.1 Participants

Thirty-two adult patients with MDD (mean age 43.8 ± 13.4

years, 20 females) satisfied selection criteria as defined hereafter and
FIGURE 1

Methodology of the study. 1) 32 MDD patients are selected and complete clinical assessments and undergo an MRI examination. At 3- and 6-
months, depression severity and treatment is re-assessed via telephone. 2) The T1 and fMRI scans are pre-processed. 3) fMRI features of different
categories are extracted. 4a) Subjects are labeled as positive or negative clinical outcome (CO), depending on whether depression severity
decreased with ≥ 50% or < 50%, respectively, after 3 or 6 months compared to baseline. 4b) For each feature category, binary CO is predicted using
a linear support vector machine (SVM) classifier. Performance is assessed through leave-one-out cross-validation (LOOCV). For each fold, features
are ranked and selected up to a maximum of K = 20 features. The procedure is repeated for 3- and 6-months prediction. 5) Continuous CO (change
in depression severity) prediction is performed. Regression models are fit for every fold in a LOOCV procedure after which the model is applied on
the test sample to obtain the predicted change in severity. These are compared to actual HDRS changes. 6) The added value of demographic and
clinical features is evaluated for the binary and continuous approaches. Models of an fMRI feature set and the demo/clin features were combined by
soft voting (binary) and HDRS averaging (continuous) and compared to models without the demo/clin features. HDRS, Hamilton Depression
Rating Scale.
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participated in the study. Patient inclusion criteria were the

following: (I) age between 18 and 65 years old; (II) a diagnosis of

unipolar MDD (according to the Diagnostic and Statistical Manual

of Mental Disorders version 5 (36)) as assessed by board-certified

psychiatrists and (III) provided written consent. Exclusion criteria

included: (I) any concurrent neurological or psychiatric disorder;

(II) more than 3 previous MDD episodes (excluding the current

one); (III) a current MDD episode lasting longer than 2 years; (IV)

previous electro-stimulation treatment; (V) current substance or

alcohol abuse; (VI) a history of psychosis, autism spectrum

disorder, attention deficit hyperactivity disorder or (mild)

intellectual disability or (VII) any contra-indication for MRI

(non-compatible brain MRI tattoos or implants, pregnancy,

claustrophobia). All demographic and depression-related

information can be found in Table 1.

All patients gave written informed consent to participate

voluntarily in this study minimally a week after being informed

about the study procedures. The study was approved by the Medical

Ethical Review Commission Maxima Medical Centre, Veldhoven,

the Netherlands (W20.054). The clinical study is registered at

clinicaltrials.gov with identifier NCT05701267.
2.2 Study design

This study aims to predict the change in depression severity

after 3 and 6 months, based on fMRI scans of the brain at the start of

the study (t=0). Therefore, at t=0 and from here on referred to as

‘baseline’, each participant underwent an MRI examination

including an anatomical and a task-based functional MRI scan

with an emotional faces matching paradigm. The depression

severity was obtained from on-site assessments by board-certified

psychiatrists at baseline. At 3- and 6-months follow-up, the

depression severity was assessed again by phone to obtain the
Frontiers in Psychiatry 04
change in severity compared to baseline. One MDD patient did

not complete the 6-month follow-up, leaving thirty-one patients for

the 6-months analyses.

2.2.1 Clinical assessments
Depression severity was measured using the 17-items Hamilton

Depression Rating Scale (HDRS) (37). The total score of the items

from this questionnaire reflects the depression severity, ranging from

0 to 52. Higher scores indicate more severe depression symptoms.

At baseline, participants also completed two additional

questionnaires which focus more on specific domains of MDD

symptoms. The state anxiety was measured with the Spielberger

State-Trait Anxiety Inventory Dutch Y-form 1, containing 20 items

related to the current anxiety state (38, 39). Childhood trauma was

assessed using the 28-items childhood trauma questionnaire Dutch

version (40, 41).

Other clinical variables that were obtained at baseline included

the onset of the first depressive episode, number of lifetime episodes

and duration of the current episode.

Participants received treatment as usual, i.e. therapies and

medication were prescribed by their own external clinical experts

(psychologists, psychiatrists) or no treatment at all. Importantly,

this means that during this clinical study there was no intervention

of the clinical treatment strategy.

2.2.2 MRI acquisition
All participants underwent MRI scanning at Expertise center for

epilepsy and sleep disorders Kempenhaeghe (Heeze, the Netherlands)

using a Philips Achieva dStream 3T scanner (Philips Healthcare, Best,

the Netherlands). The anatomical T1-weighted images were acquired

with a 3D turbo field echo sequence with the following parameters:

1mm isotropic voxel resolution (256 x 256 x 180 matrix), repetition

time (TR) = 8.1 ms, echo time (TE) = 3.7 ms, flip angle = 8°C,

compressed SENSE accelerating factor = 4.6. The fMRI images were
TABLE 1 Demographic and clinical information of the subject group at baseline and for both, the positive and negative outcome group at 3-months
and 6-months follow-up.

Baseline 3-month follow-up 6-month follow-up

Variable \
clinical outcome

-
Positive
outcome

Negative
outcome

p
Positive
outcome

Negative
outcome

p

n 32 8 24 – 12 19 –

Age (years) 43.8 ± 13.4 43.1 ± 13.3 44.0 ± 13.7 0.88a 40.3 ± 14.4 46.8 ± 12.3 0.19a

Female/Male 20/12 4/4 16/8 0.40c 9/3 11/8 0.078c

HDRS score at follow-up (and
at baseline)

24.5 ± 4.59
9.88 ± 4.05 (26.9

± 6.66)
20.1 ± 4.94 (23.7

± 3.50)
0.00***

a (0.091a)
10.8 ± 3.36 (26.8

± 5.83)
18.7 ± 4.66 (23.2

± 3.17)
0.00**a

(0.034*a)

Education level (1-5) 1.50 ± 0.88 2.00 ± 0.76 1.33 ± 0.87 0.083b 1.67 ± 0.98 1.31 ± 0.75 0.25b

n lifetime MDD episodes 2.03 ± 0.69 1.88 ± 0.83 2.08 ± 0.65 0.49b 1.75 ± 0.62 2.26 ± 0.65 0.043*b

Duration current
episode (months)

11.5 ± 6.33 9.25 ± 6.30 12.3 ± 6.29 0.25a 10.3 ± 6.69 12.1 ± 6.21 0.45a

First MDD onset (years) 33.8 ± 13.4 29.9 ± 12.5 35.0 ± 13.7 0.21b 32.5 ± 14.8 34.9 ± 13.1 0.56b
fr
Normality of distributions was tested using a Shapiro-Wilk test. ap-value calculated from a two-sample t-test (normal distribution); bp-value calculated from aMann-Whitney U test (non-normal
distribution); cp-value calculated from a c2 test. p-values < 0.05, 0.01 and 0.001 are indicated with *, ** and ***, respectively. Bold text indicates significant group differences. HDRS, Hamilton
Depression Rating Scale; MDD, major depressive episode.
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acquired using an MBME echo-planar imaging sequence with a 2.29 x

2.29 x 2.70 mm3 voxel resolution (96 x 96 x 51 matrix), 380 volumes,

TR = 1350 ms, number of echoes = 3 at TE = 11.3, 31.8, 52.3 ms, flip

angle = 73°C, multiband factor 3, SENSE accelerating factor 2.5. During

MRI acquisition, a photoplethysmographic unit was placed on a finger

and a respiratory belt was placed on the abdomen to externally measure

cardiac and respiratory signals, respectively.

2.2.3 Emotion processing paradigm
During the fMRI scan, participants performed an adapted version

of the Hariri task: an emotion face-matching task (42). Participants

were presented with blocks of either a cross (rest period), shapes or

angry/fearful faces. They were instructed to match shapes or faces

using a button press (left and right button). In total, there were 7 rest,

6 shapes and 6 faces blocks, lasting 27 seconds each (20 fMRI

volumes). During each shapes and faces block, 4 seconds of

instructions (cue) were shown, followed by 6 stimuli lasting 3

seconds each with an inter-stimulus interval of 1 second. An

illustration of the task is shown in Supplementary Figure 1.
2.3 MRI preprocessing

The preprocessing was performed using Statistical Parametric

Mapping software (SPM12, https://www.fil.ion.ucl.ac.uk/spm/,

RRID : SCR_007037) in Matlab R2022b (The MathWorks Inc,

Natick, Massachusetts, RRID : SCR_001622) and additional

functions from the FMRIB Software Library v6.0 (FSL, RRID :

SCR_002823) package (43). First, minimal preprocessing was

performed before echo time-series combination, as described

previously (44). This included the following steps:
Fron
• Slice timing correction on each separate echo time-

series (SPM12)

• Realignment transformation (6 degrees-of-freedom)

estimation on the echo 2 (TE = 31.8 ms) time-series using

the first volume as reference image (FSL’s MCFLIRT function)

• Applying these estimated realignment parameters to all

echo time-series (FSL’s FLIRT function)
Subsequently, the three echo time-series were combined based

on the ‘optimal combination’ algorithm (45), which takes into

account the varying transverse relaxation time T2* that depends

on the location of the brain (46). To combine the time-series, a

weighted average was applied using weights that were calculated for

each voxel according to Equation 1.

wn   =
TEn ∗ e

−TEn
T2 ∗

o3
i=1TEi ∗ e

−TEi
T2 ∗

, (1)

Where wn = the voxel’s weight for echo n, TEn = echo time of

echo n and T2* = the voxel’s relaxation time, estimated by fitting a

log function of signal decay over TE.

Following multi-echo combination, the T1-weighted scan was

coregistered to the functional reference image using a normalized

mutual information cost function. The coregistered anatomical image
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was then segmented into six separate classes (white and gray matter,

cerebral spinal fluid, bone, soft tissue and air) based on prior tissue

probabilities from a brain template in Montreal Neurological Institute

standard space. During the segmentation process, linear 12 degrees-of-

freedom transformation matrices for spatial normalization to Montreal

Neurological Institute space were estimated. Next, spatial

normalization was performed by applying these transformation

matrices to the functional images. The coregistration, segmentation,

and spatial normalization steps were all performed in SPM12. A

conservative bandpass filter with 0.01 and 0.2 Hz cutoffs was applied

to the time-series as the TR is relatively small (i.e. less aliasing) and

artifact-like components will be removed at a later stage. This was

implemented in a custom-made Matlab function using a second order

zero-phase digital Butterworth filter (based on the butter and filtfilt

functions). Finally, spatial smoothing with a 5 mm full-width at half-

maximum kernel was applied to the functional images in SPM12.
2.4 Feature extraction

2.4.1 Demographic and clinical features
Three demographic variables were obtained: age, sex and

education (level 1-5). Clinical variables included the depression

history (number of previous episodes and onset of the first episode),

current depressive episode information (duration and baseline

severity (HDRS) of the current episode) and questionnaires scores

(regarding anxiety and childhood trauma).

Furthermore, treatment and medication information was obtained

at baseline, 3-months and 6-months follow-up. Only the baseline

information was used for classification as the purpose of this study is

to predict future clinical outcome at the same day of scanning instead

of navigating or altering treatment or medication at several intervals.

Medication feature vector elements were the following: patients

received any type of antidepressant treatment at baseline during the

last month (yes or no); patients received selective serotonin reuptake

inhibitors (SSRIs), serotonin and norepinephrine reuptake inhibitors

(SNRIs), noradrenaline and specific serotonergic antidepressants

(NASSAs), tricyclic antidepressants (TCAs) and/or serotonin

antagonist and reuptake inhibitors (SARIs) during the last month

(yes or no for each separately). Other treatment feature vector elements

were the following: patients received any type of non-antidepressant

treatment during the last month (yes or no); patients received cognitive

behavioral therapy (CBT) (yes or no); individual (psycho)therapy

(including conversations with a psychologist/psychiatrist,

psychotherapy, Eye Movement Desensitization and Reprocessing,

systemic therapy) or group (psycho)therapy (yes or no); paramedical

profession (psychomotor or expressive therapy) (yes or no); support

from a mental health institution or parental support (yes or no) during

the last month.

A total of 20 elements were extracted for demographic and

clinical combined feature vector.

2.4.2 Brain activation
For each participant, a design matrix was assembled to obtain the

activation contrast maps. First, for the physiologically-derived

regressors, the externally measured cardiac and respiratory signals
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were used as input to the RETROICOR software tool (47). This tool

models the physiological signals and derivations thereof, while taking

into account the phase changing nature, yielding input regressors.

Twenty-eight RETROICOR regressors were included in total: the 3

task conditions, 6 cardiac, 8 respiratory, 4 multiplicative, 1

respiration-volume-per time x respiratory response function and 6

motion regressors. By modeling the fMRI signal in a design matrix,

including BOLD signals originating from the task but also the

expected artifacts and noise, it is possible to estimate the explained

fMRI signal contribution by the three conditions of interest (rest,

shapes and faces). After modeling the design matrix, whole-brain t-

value maps were calculated from the task regressors for the Faces >

Shapes and Faces > Rest contrasts. Mean contrasts were calculated for

the following ROIs: The bilateral amygdalae and hippocampi (from

the Harvard-Oxford atlas, available within FSL https://fsl.fmrib.ox.ac.

uk/fsl/fslwiki/Atlases), and the bilateral parahippocampal and

fusiform gyri, as well as the ventromedial prefrontal cortex,

anterior cingulate cortex (ACC) and subgenual ACC [from the

automated Anatomical Labelling Atlas 3 (48)]. Previous studies

have demonstrated altered activity in these regions for MDD

patients compared to healthy controls during the Hariri task (49,

50) or are associated with regulating emotion by acting directly on the

amygdala, the primary target brain region of the Hariri task. A total of

22 activation feature elements were extracted (11 ROIs for 2 contrasts

of interest).

2.4.3 Functional brain network extraction
and selection

Group independent component analysis (ICA) was applied to

extract FBNs. The Group ICA of fMRI Toolbox (GIFT v3.0c, http://

icatb.sourceforge.net/, RRID : SCR_001953) was implemented. First,

principal component analyses reduced the data dimensions of the

fMRI time-series. The Infomax algorithm (51), which maximizes the

information from the input to the output of a network non-linearly,

was applied to the concatenated dimensionality-reduced data,

resulting in 30 spatially independent components (ICs) on a group

level. The value of 30 ICs was chosen such that there was a minimum

amount of subnetworks or merged networks within a single

component (52). Group ICA back-reconstruction was applied to

the group components to obtain the individual subject spatial maps

and time-series of the ICs (53). The time-series were converted to z-

scores. A goodness-of-fit approach was used between each IC and

each FBN from the Smith et al. (54) FBN atlas (54) to identify the

corresponding FBN. The average z-score of voxels of an extracted IC

that fall outside of the FBN template was subtracted from the average

z-score of voxels that fall within the FBN template (25). For each IC,

the largest distance, reflecting more correspondence between the

extracted IC and FBN template, was used to select the most similar

FBN. Visual inspection was used to verify the automated

identification process. Nine out of the ten FBNs from the atlas

were identified among the ICs: the DMN, left and right

frontoparietal network, auditory network, sensorimotor network

(SMN), primary visual network (pVN), two lateral visual networks

(lVN1 and lVN2) and the cerebellum network (CN). The DMN was

separated into the anterior and posterior components (aDMN and
Frontiers in Psychiatry 06
pDMN). Additional networks that are not part of the Smith et al. atlas

were found. The salience network, basal ganglia network (BGN) and

DAN were identified based on previous FBN studies (55–58).

Moreover, a network that comprised part of the amygdalae,

hippocampi and brain stem will be referred to as the medial

temporal network (MTN). Thus, in total 14 FBNs were found as

shown in Figure 2 below.
2.4.4 Static and dynamic functional connectivity
Static and dynamic FC was calculated between the time-series of

all possible FBN pairs (n = 91), excluding identical network pairs

and double pairs. For the sFC, a custom made Matlab script was

implemented which calculated Pearson correlation between the

time-series for the 91 pairs. The Pearson correlations were

converted to z-scores. The GIFT toolbox was used to extract dFC

scores between the pairs. The dFC was calculated by using a time-

sliding window approach, see Figure 3. The window was obtained

by convolution of a rectangle function of width = 30 TRs = 40.5 s

[which has been found as a good balance between capturing

sufficient dynamic changes and obtaining reliable dFC (59)] with

a Gaussian function (s = 3 TRs) and sliding steps of 1 TR. This

yielded 350 windows in total per subject. Per FBN pair, the dFC was

calculated by taking the standard deviation over the correlations

between the 350 windows. A total of 91 sFC and 91 dFC feature

elements were extracted (all 91 unique FBN combinations).
2.4.5 Wavelet coherence analysis
Finally, a WCA was performed on the FBN pairs to assess

different types of time-varying interactions between network pairs,

see Figure 3. Here, we use the two WCA-derived features from a

previous study which showed high accuracy of discriminating

between depressed and non-depressed patients (26). The first

feature, lead coherence (leadCoh), is an indicator of causality

between FBNs. It is calculated from a WCA map by summing the

time periods of a phase lead of the time-series of an FBN with

respect to the time-series of another FBN and averaging over the

frequency bins. The second metric, the number of coherence

clusters (nCC), reflects the activation discontinuity and is

calculated by counting the number of clusters in the whole WCA

map of any type of coherence. Initially, the WCA map gets

binarized, assigning the pixels that have any type of coherence the

label 1 and all with no coherence as 0. Subsequently, a cluster is

defined as a region of pixels with label 1 which have at least one

adjacent pixel with label 1. The total number of clusters represents

the nCC value for that pair of networks. With an increasing number

of clusters, the more frequently the two networks display any type of

coherence (turn on or off coherence). See Cır̂stian et al. (26) for

more details of how these features were extracted (26). A total of 50

periods were obtained for the analysis. For the WCA features, the

bins with periods< 5 s (> 0.2 Hz) were discarded because of the

previously applied bandpass filter. A total of 182 leadCoh (all 182

non-self FBN combinations; for leadCoh the matrix is not

symmetrical) and 91 nCC feature elements were extracted (all 91

unique FBN combinations).
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FIGURE 3

A schematic of the extraction of all dynamic functional features. The left shows the extraction of the dynamic functional connectivity (dFC) feature.
For each pair of network time-series, correlations between sliding windows are obtained using Pearson correlation (step 1). This results in a
correlation time-series. Subsequently, the standard deviation of this correlation time-series is obtained (step 2), representing the dFC. For the
wavelet coherence feature (right side), a wavelet coherence map is obtained between each network pair (step 1). This map represents the phase
relation between the two time-series for each time and period. For the number of coherence clusters (nCC), the map is binarized (step 2a): label 1
for each pixel with any type of coherence and 0 for no coherence) after which the number of clusters is counted (step 3a). Lead coherence
(leadCoh) is extracted by selecting all pixels with the time-series of network 1 leading compared to network 2 (step 2b). Then, all pixels are summed
over time for each period bin after which the average over bins is calculated (step 3b), representing the total average time that network 1 leads.
FIGURE 2

All 14 functional brain networks identified by the independent component analysis and used for the functional connectivity analyses. pDMN/aDMN,
posterior/anterior default mode network; lFPN/rFPN, left/right frontoparietal network; DAN, dorsal attention network; AN, auditory network; MTN,
medial temporal network; BGN, basal ganglia network; SN, salience network; SMN, sensorimotor network; pVN, primary visual network; lVN1/lVN2,
lateral visual network 1/2; CN, cerebellum network.
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2.5 Clinical outcome prediction

Following feature extraction, clinical outcome was predicted. This

was conducted using a binary classification and a continuous

regression-based approach. For the binary method (step 4a and 4b

in Figure 1), two clinical outcome classes were defined based on the

change in depression severity (details in section 2.5.1 below). The

predictive value of separating the classes was assessed independently

for each of the feature categories and for the 3- and 6-months

prediction using a linear support vector machine (SVM) classifier

with leave-one-out cross-validation (LOOCV). Because a binary

approach does not take into account subjects whose severity

change is close to the cutoff value of 50%, multiple linear

regression with LOOCV is implemented, predicting the HDRS

change on a continuous scale, see step 5 in Figure 1. Finally, the

potentially added value of demographic and clinical information to

the fMRI features was evaluated using an ensemble of binary and

continuous classifiers, see step 6 in Figure 1. For each ensemble of two

binary linear SVM classifiers, soft-voting was implemented, averaging

the class probability from both classifiers. For each ensemble of two

regression models, the average predicted HDRS change from both

classifiers was calculated.

2.5.1 Binary classification
For the binary classifications, participants were labeled into two

classes with different clinical outcomes. First, changes in the total

HDRS score (reflecting depression severity) with respect to total

baseline HDRS score were calculated according to Equation 2.

D  HDRS =  
HDRSFU −  HDRSbaseline

HDRSbaseline
∗ 100% (2)

With HDRSFU = total HDRS-17 score at either the 3- or 6-

months follow-up and HDRSbaseline = total HDRS-17 score at

baseline. Then, participants with a DHDRS ≤ 50% were labeled as

‘positive outcome’ and the others as ‘negative outcome’ as this cutoff
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has been accepted and validated as the golden standard for

evaluation of clinically significant improvement (60, 61). The

binary classification was done separately for the 3-months and 6-

months predictions. After 3-months, n = 8 versus n = 24 subjects

were labeled as positive and negative outcome, respectively. After 6-

months, n = 12 versus n = 19 subjects were labeled as positive and

negative outcome, respectively. To assess the robustness of our

findings, we also analyze the results of the predictive value of each of

the feature categories when using the absolute change in HDRS as

dependent variable.

SVM classifiers with a linear kernel were trained on vectors of

different feature categories, separately, see Table 2 below. Validation

was performed by LOOCV for which one subject is left out for

testing in each fold. The other (N-1) subjects are used to train the

SVM model. For classification, a higher penalty was applied for

incorrectly classifying the minority class by incorporating a cost

function that was proportional to the ratio between the sample sizes

of the two classes.

Because the number of components is higher (range 20 – 182)

compared to the number of subjects (n = 32) for most feature

categories, overfitting could occur, thereby significantly reducing

the generalization of the prediction model. In order to alleviate this

problem, strict feature selection was performed. For each feature

category, a number of K feature elements, ranging from 1 to 20

elements, was implemented. A maximum number of K = 20

elements was chosen as the clinical and demographic feature

vector contained the least number of elements of all feature

categories and fair comparison between the different categories is

required (62). For each round of LOOCV, K was fixed while the

feature elements differed within each fold. For clarity, the first

LOOCV procedure was run with K = 1. For each fold, the top K = 1

element was selected based on feature ranking of the training set of

that fold. After LOOCV with K = 1, a new LOOCV procedure with

K = 2 was performed. Again, the top K = 2 elements was selected for

each fold. This was repeated until K = 20. Accuracy, sensitivity,
TABLE 2 All features that were used for clinical outcome prediction.

SVM
model

Feature
category

Abbreviation Vector elements + description
Number

of
elements

Max K features
after

feature
reduction

1
Demographics

+ clinical
Demo+clin

Age, sex, education, baseline questionnaire scores (k = 2), depression
history (k = 2), current depressive episode information (k =2) and

treatment/medication variables (k = 11)
20 20

2
Activity
contrast

Act Mean t-values for 11 ROIs and 2 contrasts 22 20

3 Static FC sFC sFC for all unique pairs of 14 FBNs 91 20

4 Dynamic FC dFC dFC for all unique pairs of 14 FBNs 91 20

5 Lead coherence leadCoh
leadCoh for all non-self pairs of 14 FBNs (matrix values are not

symmetrical for leadCoh)
182 20

6
Number of
coherence
clusters

nCC nCC for all unique pairs of 14 FBNs 91 20
All different fMRI feature categories were used to classify clinical outcome in separate prediction models. Before prediction, each feature set was used as input to the feature reduction approach to
select a maximum of K= 20 features. FC, functional connectivity; nCC, number of coherence clusters; ROIs, regions-of-interest; FBNs, functional brain networks; sFC, static FC; dFC,
dynamic FC.
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specificity, precision, F1-score and area under the curve (AUC)

performance metrics were obtained. The optimal K was defined as

K at which LOOCV reached the highest accuracy. The total

occurrence of each feature element over all folds was counted. For

feature ranking and selection, two algorithms were implemented:
Fron
1. Linear SVM recursive feature elimination (SVM-RFE): An

SVM-RFE fits linear SVM models on all elements in the

feature vector and iteratively drops the least class-separable

element. It has been previously been found to show high

performance with a linear SVM in MDD diagnosis (63).

2. Kruskal-Wallis test: The Kruskal-Wallis test is a non-

parametric procedure that compares the medians of

feature elements between two or more groups to

determine whether the samples come from the same

population distribution. It does not assume normal

distributions. It has been found to be an effective feature

selection method in combination with SVM classifiers (64).
2.5.2 Continuous clinical outcome prediction
For the prediction of HDRS severity change on a continuous

scale, again, an LOOCV procedure was implemented. For each

feature category and follow-up, a multiple linear regression model

was fit on the data of all but one subject, i.e. training set. The values

of the feature vector of the test subject were then used as input to the

model to obtain the predicted change in HDRS for the left-out

subject as in Equation 3:

DHDRSFU  ∼   xc,1 ∗ b c,1 +   xc,k ∗ bc,k … +   xc,K ∗ bc,K , (3)

with DHDRSFU the relative percentage change in HDRS score

after 3 or 6 months as dependent variable and the top K = 20

elements (index k) of each feature category (index c) xc,k as

independent variables, together with their corresponding beta-

coefficient bc,k. This process was repeated for each fold. Similar as

the binary classifications, feature selection was applied within each

fold. Multiple LOOCV procedures were run, each time changing the

number of feature elements k. k was kept constant for each fold

within an LOOCV procedure. Twenty LOOCV procedures were

run for k = 1 to K = 20. The performance with an optimal number of

elements was reported. For each test subject, the predicted HDRS

change was compared to the actual HDRS change. RMSE, mean

absolute error and correlation between the predicted and actual

HDRS change were reported. The correlation was tested for

significance and the corresponding p-values were corrected with

the Holm-Bonferroni procedure (65).

2.5.3 Statistical analysis
A statistical analysis was performed to evaluate the extent to

which the feature elements of the top models of the binary

classification relate to HDRS change on a continuous scale in

general. Note, however, that this is different from prediction since

there is no unseen data provided to the model. Moreover, the fitted

models over the data of all subjects give more insights in the impact

and direction of change that each feature element has on a change in
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HDRS, i.e. how much an increase or decrease in a predictor changes

the HDRS change.

For this purpose, a multiple linear regression model was fit

through the data of all subjects for each feature category and follow-

up, separately. The dependent variable was the HDRS severity

change and the predictor variables were the top features of each

feature category. First a base model was defined based on the top

K = 20 features found for the binary classification as in Equation 3.

Then, feature element elimination was performed one-by-one based

on the significance of contribution to the model. That is, the feature

element with the highest p-value was removed and this was

repeated until the last remaining element. Performance of the

most optimal model was reported. The F-statistic of the model

was reported, as well as the goodness-of-fit metrics root mean

square error (RMSE) and the adjusted coefficient of determination

(Adj. R2).

2.5.4 Evaluating the added value of demographic
and clinical parameters

In addition to separately evaluating the fMRI-based and demo+clin

features, we created ensembles of prediction models that combined

both. In this way, the added value of demo+clin information to the

fMRI features was assessed.

For the binary classification, ensemble models were established

by combining two linear SVM models, of which one was fixed: the

demo+clin feature set. The other model varied and comprised one

fMRI feature category. All five possible ensemble combinations of

the demo+clin and each fMRI feature category were evaluated.

From each of the two linear SVM models, the positive CO class

probability was obtained and averaged (soft-voting) to obtain the

ensemble class probability for the positive CO class. If this class

probability ≥ 0.5, the test sample was labeled as positive CO and as

negative CO if it was< 0.5. Similar performance metrics as the

binary prediction were calculated.

For the continuous LOOCV-based HDRS change prediction,

ensemble models of two regression models were created. Again, in

each ensemble model one of the models was the fixed demo+clin

feature set while the other was one of the fMRI-based models. The

predicted change in severity of the ensemble model was calculated

as the average predicted severity change by the two models. All 5

possible combinations were tested.
3 Results

3.1 Classification-based (binary) clinical
outcome prediction

For the binary outcome prediction, the classifiers based on the

nCC feature category outperformed the other demo+clin and fMRI-

based classifiers. A maximum accuracy of 90.6% (area under the

curve (AUC) 0.813, F1-score 0.769) and 77.4% (AUC 0.770, F1-

score 0.720) was obtained, respectively, see Figure 4 and

Supplementary Table 1. In general, SVM-RFE feature selection

showed slightly higher accuracies but similar distributions
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between the feature categories. Nonetheless, SVM-RFE appeared to

predict more subjects as negative clinical outcome than Kruskal-

Wallis, as reflected by the unbalanced sensitivity-specificity scores.

These scores were more balanced for the Kruskal-Wallis feature

selection, which still achieved a maximum of 87.5% (for nCC) and

83.9% (for ensemble of demo+clin, s/dFC and nCC) accuracy for

the 3- and 6-months predictions, respectively.
3.2 Continuous clinical outcome prediction

Leave-one-out based HDRS change prediction was performed

for the linear regression models of each feature category models. For

each fold, the predicted severity change on the left-out test subject

was compared to the actual severity change. Only the results

obtained by the Kruskal-Wallis feature selection are reported here

because of higher and more balanced performances. The SVM-RFE

results can be found in Supplementary Table 2. As can be seen in

Table 3, nCC outperformed the other models, demonstrating the

highest correlation between predicted and actual severity changes

for the 3-months (r = 0.561, pcorr< 0.001, see Figure 5) and for the 6-

months (r = 0.383, puncorr< 0.05) follow-up. Of note is the low

performance of leadCoh, which previously demonstrated to be one

of the highest performing feature categories. Potentially, the

leadCoh models were unstable, showing less individual predictive

power, as the effect of removing a single subject for feature selection

and model fitting significantly altered performance.
3.3 Statistical analysis

When the regression models were fit over the data of all subjects,

the two features categories derived from theWCA obtained the highest

goodness-of-fit metrics for both follow-ups. More specifically, nCC

models reached the highest performance (lowest RMSE and adjusted
Frontiers in Psychiatry 10
R2) for both follow-ups, followed by leadCoh, see Table 4. Interestingly,

demo+clin features showed higher performance compared to Act, sFC

and dFC models. The models for the SVM-RFE feature ranking can be

found in Supplementary Table 3.

Furthermore, in the subsection ‘Feature analysis’ the predictors and

corresponding b-coefficients of several feature categories are discussed
to elucidate the directions and significance of change in the regressors.
3.4 Evaluating the added value of
demographic and clinical parameters

The performance metrics of ensembles of binary classifiers with

an accuracy > 75% can be found in Table 5 and those of all ensembles

in Supplementary Tables 4, 5. Ensembles classifiers with Kruskal-

Wallis feature ranking increased the accuracy for each fMRI feature

category at 3-months follow-up. The most notable improvement was

the ensemble of the demo+clin feature set with the leadCoh feature

set. Whereas a single linear SVM predicted clinical outcome with

75.0% based on leadCoh features, the combination with the demo

+clin features improved it to 81.2%. For the 6-month predictions,

none of the ensembles improved the accuracy compared to a single

SVM classifier. However, the ensembles with the nCC classifier still

reached the highest accuracy compared to the other fMRI feature

categories (except for 6-months prediction with SVM-RFE feature

ranking), indicating its significant contribution.

To evaluate the effect of adding demographic and clinical

variables for prediction on a continuous scale, predicted depression

severity change scores were averaged over one of each of the fMRI-

based models and the demo+clin model. This merely improved the

prediction for sFC whereas the effect on other feature categories was

minimal or even led to a decrease, see Table 6. Nonetheless, the

performance of nCC was still the most optimal of all models. The

regression prediction models based on the SVM-RFE feature ranking

can be found in Supplementary Table 6.
FIGURE 4

Linear support vector machine (SVM) binary classification accuracies based on leave-one-out cross-validation for predicting positive versus negative
clinical outcome at 3-months (left) and 6-months (right). Several feature categories were tested, with a maximum of K = 20 features, ranging from
demographic and clinical information to brain activity, static functional connectivity (sFC) and dynamic features. Two feature selection methods were
used, indicated by the two colors: SVM – Recursive Feature Elimination (SVM-RFE, blue) and Kruskal-Wallis (red). demo, demographic; clin, clinical;
act, activity; s/dFC, static/dynamic functional connectivity; leadCoh, lead coherence; nCC, number of coherence clusters.
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3.5 Feature analysis

To assess which parameters contributed most to the highest

prediction models in general, the feature elements importance

was estimated for the demo+clin features and the highest
Frontiers in Psychiatry 11
performing feature nCC. For the demo+clin category, the total

number of occurrences of each parameter in the optimal models

for the binary and both regression approaches was acquired. For

the nCC feature, the count of each network in all the analyses

was reported.
TABLE 3 Comparison between predicted and actual depression severity changes for the multiple linear regression with leave-one-out cross-
validation approach.

3-months follow-up

Feature category Correlation RMSE MAE Optimal k p-value (uncorr.)

Demo/clin 0.489 26.9 21.9 3 < 0.01

Act 0.375 27.8 22.7 1 < 0.05

sFC 0.065 47.9 36.1 10 0.722

dFC 0.071 30.9 25.2 1 0.701

leadCoh -0.127 45.4 39.1 5 –

nCC 0.561 26.4 22.7 5 < 0.001 *

6-months follow-up

Feature category Correlation RMSE MAE Optimal k p-value (uncorr.)

Demo/clin 0.293 38.2 30.0 20 0.110

Act 0.330 26.5 21.9 1 0.0696

sFC 0.075 45.3 37.4 10 0.688

dFC -0.511 35.3 29.3 1 -

leadCoh -0.199 58.4 41.1 7 –

nCC 0.383 30.1 23.7 5 < 0.05
Models were fit on the N-1 training set, which was then used to predict depression severity change after 3 and 6 months of the test subject. This procedure was repeated for all subjects.
Correlation, RMSE and MAE indicate the performance between predicted and actual changes in severity. The p-value corresponds to the correlation between both. Bold p-values marked with *
are significant after multiple comparison correction at p< 0.05. The optimal k features elements of each category were determined by initial Kruskal-Wallis selection (K = 20) and subsequently
removing the lowest significant predictors iteratively until maximum performance was reached. demo, demographic, clin, clinical; Act, activity; nCC, number of coherence clusters; s/dFC, static/
dynamic functional connectivity; leadCoh, lead coherence; RMSE, root mean square error; MAE, mean absolute error.
A B

FIGURE 5

The predicted HDRS change versus the actual HDRS change after 3 months for the feature set number of coherence clusters (nCC). Predicted
scores were obtained via a leave-one-out procedure. This model was established based on Kruskal-Wallis feature selection and stayed significant
following multiple comparison correction (p< 0.05). (A) Per-subject scores of the predicted (red) and actual (blue) HDRS changes. (B) pairs of actual-
predicted scores (blue dots) plotted on top of a perfect prediction as reference (red line). The dotted purple line indicates the linear correlation fit
(r = 0.56) and the purple area indicates the root mean squared error (RMSE) of the data points with respect (w.r.t.) to the perfect fit. ref, reference;
lin, linear; HDRS, Hamilton Depression Rating Scale; FU3M, 3-months follow-up.
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For the demographic and clinical features, the HDRS at

baseline was slightly the most important feature, see Figure 6A.

From the regression analysis, the b-coefficient estimate of the

independent predictor HDRS baseline was -3.9, indicating that a

higher HDRS at baseline in general leads to more improvement,

see Supplementary Table 7. Remarkably, two treatment-related

variables were highly valuable for prediction at 3-months follow-

up: support from a mental health institution and having any type

of psychotherapy in the month before study participation. On the

other hand, more depression history-based predictors were

valuable for the 6-months prediction: first onset of depression,

number of lifetime episodes and total trauma score. These

parameters all had positive b-coefficient estimates, indicating

that higher scores lead to an increase in depression severity

change, and thus less improvement. It has to be noticed that for

the 6-months follow-up predictions, the importance between the

features was more equally distributed.

In terms of nCC networks, two networks were encountered

consistently in the optimal models for both follow-up predictions:

the pDMN and DAN, see Figure 6B. The BGN and lVN2 were the

most dominant for the 3-months and 6-months follow-up,

respectively. Furthermore, the visual networks were relatively
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abundant in total. Especially the pVN and lVN2 were well

represented in the 3- and 6-months predictions.

Second, there was one feature category that performed the most

optimal for all prediction methods and was found to be significant

after multiple comparison correction in the LOOCV continuous

prediction: the nCC model predicting the depression severity

change at 3-months follow-up. For both continuous approaches,

the model was optimal with the identical k = 5 features. The

regression model over the data of all subjects was as follows:

DHDRSFU3M−baseline

= 191 − 4:51� nCC _ SMN _ pVN − 3:24

� nCC _ pDMN _ lVN2 − 2:96� nCC _ SMN _CN

− 2:64� nCC _ pDMN _BGN − 2:54

� nCC _MTN _BGN (4)

With the dependent variable DHDRSFU3M-baseline = HDRS

change after 3-months compared to baseline, and the five

predictors nCC for the SMN-pVN, pDMN-lVN2, SMN-CN,

pDMN-BGN and MTN-BGN pair, in order of strongest predictor

significance to the model.
TABLE 4 Goodness-of-fit statistics for the optimal multiple linear regression models for each of the feature categories relating to the change in 3-
and 6-month depression severity.

3-months follow-up 6-months follow-up

Feature category F-statistic RMSE Adj. R2 Optimal k F-statistic RMSE Adj. R2 Optimal k

Demo/clin 7.74 23.6 0.395 3 4.38 20.0 0.474 8

Act 4.31 24.5 0.348 5 13.3 23.3 0.291 1

sFC 6.38 26.1 0.258 2 3.98 26.3 0.0903 1

dFC 2.83 28.0 0.151 3 2.37 27.0 0.0438 1

leadCoh 9.25 22.6 0.444 3 8.67 18.3 0.561 5

nCC 7.78 21.0 0.522 5 7.23 16.9 0.624 8
The models were fit over all subjects and the optimal k features elements were determined by initial Kruskal-Wallis feature selection (K = 20) and by subsequently removing the lowest significant
predictors iteratively until maximum performance was reached. Bold text indicates the highest obtained performance per column. demo, demographic, clin, clinical; Act, activity; nCC, number of
coherence clusters; s/dFC, static/dynamic functional connectivity; leadCoh, lead coherence; RMSE, root mean square error; Adj. R2, adjusted coefficient of determination.
TABLE 5 Performance of the top (> 75%) ensemble classifiers for the binary 3- and 6-month clinical outcome prediction with SVM-RFE (support
vector machine – recursive feature elimination) or Kruskal-Wallis future ranking.

3-months follow-up

Ensemble Feature selection Acc Sens Spec Prec F1-score AUC

Demo/clin + nCC SVM-RFE 78.1 25.0 95.8 0.667 0.364 0.604

Demo/clin + sFC Kruskal-Wallis 78.1 50.0 87.5 0.571 0.533 0.688

Demo/clin + leadCoh Kruskal-Wallis 81.2 62.5 87.5 0.625 0.625 0.750

Demo/clin + nCC Kruskal-Wallis 87.5 62.5 95.8 0.833 0.714 0.792

6-months follow-up

Ensemble Feature selection Acc Sens Spec Prec F1-score AUC

None reached Acc > 75% – – – – – – –
frontie
Bold text indicates the highest obtained performance per column. demo, demographic, clin, clinical; nCC, number of coherence clusters; sFC, static functional connectivity; leadCoh, lead
coherence; Acc, accuracy; Sens, Sensitivity; Spec, specificity; Prec, precision; AUC, area under the curve.
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From Equation 4 and Supplementary Table 8 it can be derived

that a higher number of clusters for all five pairs contributes to a

decline in HDRS change severity, i.e. more improvement. In

Figure 7, four examples of wavelet coherence maps of the two

most significant network pairs are plotted for two subjects, one with

a positive clinical outcome (Figures 7A, B) and one with a negative

clinical outcome (Figures 7C, D). Here, the sparsity in the wavelet

coherence map can be clearly observed for the subject with a

negative clinical outcome, especially for the SMN-pVN pair.

Moreover, the group means ± std for the nCC of the two

networks pairs are 15.4 ± 2.26 vs. 13.7 ± 3.37 for the SMN-pVN

pair and 14.9 ± 1.73 vs. 11.9 ± 3.79 for the pDMN-lVN2 pair for the

positive vs. negative clinical outcome, respectively. For the 6-month

follow-up prediction, the same pattern was observed: a higher nCC

for 7 out of 8 network pairs (apart from lVN1-lVN2) in the optimal

model were associated with a decrease in depression severity, see

Supplementary Table 8.
4 Discussion

In this study, the potential of dynamic fMRI features for the

prediction of clinical outcome after 3- and 6-months in depression

was evaluated. Activation, static and dynamic features were extracted

from an fMRI dataset of an emotional face-matching task and

compared separately, as well as with the addition of demographic

and clinical parameters. We found that the wavelet coherence based

nCC, a measure of the number of interactions (in-phase, lead, lag or

anti-phase) between a pair of networks during an fMRI session,

achieved the highest prediction performance with 90.6% and 77.4%

accuracy for the 3-month and 6-month clinical outcome, respectively.
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This was demonstrated with a binary classification. Regression

models predicting HDRS change on a continuous level further

demonstrated the potential value of nCC. The networks that

contributed the most were the pDMN, DAN and two visual

networks pVN and lVN2. For leadCoh, a measure of dynamic

causality between brain networks, addition of demographic and

clinical parameters improved the binary prediction at 3-months to

81.2% accuracy.

The fact that nCC outperformed the other categories confirmed

our hypothesis that a dynamical approach would be more valuable for

the prediction of clinical outcome in depression compared to

conventional analysis methods such as task-related brain activity or

sFC. Furthermore, an ensemble of leadCoh with demographic and

clinical information also resulted in the second highest accuracy

achieved in this study. The wavelet coherence maps reveal

comprehensive information, such as the type and duration of

interaction per frequency bin and per time unit. On the contrary,

activation and sFC ignore the temporally complex mechanisms of the

brain. For example, brain studies have shown that network interactions

are fluctuating in a temporally coordinated organization, both in rest

and during tasks (59, 66). Moreover, the time spent in certain states or

patterns of network FC has been found to be subject-specific (66).

Therefore, including dynamic information into the prediction models,

could have enhanced the prediction of depression symptom

improvement on an individual level.

While it was hypothesized that aberrant coherence between

frontal and limbic networks would predict clinical outcome, it was

found that the pDMN, DAN and two visual networks occurred the

most frequently and consistently for both follow-ups. Several

previous studies confirm the current findings of abnormal

dynamic interactions between the DMN, DAN and visual
TABLE 6 Linear regression performance of ensemble models between fMRI and demographic/clinical features using Kruskall-Wallis feature selection.

3-months follow-up

Ensemble Correlation RMSE MAE p-value (uncorr.)

Demo/clin + Act 0.183 42.8 33.2 0.317

Demo/clin + sFC 0.239 38.8 29.1 0.188

Demo/clin + dFC -8.86 • 10-3 47.7 37.2 -

Demo/clin + leadCoh -7.21 • 10-3 46.4 37.5 -

Demo/clin + nCC 0.403 33.4 27.4 < 0.05

6-months follow-up

Ensemble Correlation RMSE MAE p-value (uncorr.)

Demo/clin + Act 0.183 42.9 31.5 0.326

Demo/clin + sFC 0.199 33.0 28.4 0.284

Demo/clin + dFC -0.343 45.4 37.3 -

Demo/clin + leadCoh -0.121 45.6 33.9 -

Demo/clin + nCC 0.252 34.0 26.4 0.172
The metrics in this table are a comparison between predicted and actual depression severity changes using a leave-one-out cross-validation approach. Models were fit on the N-1 training set,
which was then used to predict depression severity change after 3 and 6 months of the test subject. This procedure was repeated for all subjects. Correlation, RMSE and MAE indicate the
performance between predicted and actual changes in severity. The p-value corresponds to the correlation between both. The ensemble predicted severity change was calculated as average
between the separate demo/clin model and the separate fMRI-based models. Bold text indicates the highest obtained performance per column. demo, demographic, clin, clinical; Act, activity;
nCC, number of coherence clusters; s/dFC, static/dynamic functional connectivity; leadCoh, lead coherence; RMSE, root mean square error; MAE, mean absolute error.
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A C

B D

FIGURE 7

Four representative wavelet coherence maps, derived from fMRI scans at baseline, of two network pairs for two subjects with a positive (A, B) and
negative (C, D) clinical outcome after 3 months (-50% and +12% change in depression severity, respectively). The number of coherence clusters of
these two network pairs at baseline were found to be significantly predictive of depression severity change after 3 months in a linear regression
model. A) The maps for a subject with a positive clinical outcome show more periods of coherence (clusters) for the sensorimotor network – primal
visual network pair and for the posterior default mode network – lateral visual network 2 pair. The maps of a subject with a negative 3-months
clinical outcome illustrate the opposite pattern as reflected by the sparsity.
A

B

FIGURE 6

Doughnut charts reflecting the most important demographic/clinical (A) and nCC (B) predictors. The number of predictors was counted by summing
all optimal k predictors (with Kruskal-Wallis feature selection) of the binary and continuous prediction models. demo, demographic, clin, clinical;
nCC, number of coherence clusters; FU3M/6M, follow-up at 3 or 6 months; HDRS, Hamilton Depression Rating Scale; Dur curr eps, duration of
current episode; AD, antidepressant; Pst, psychotherapy; Para Med, paramedical profession; Supp MHI, support from a mental health institution;
CBT, cognitive behavioral therapy; SSRI, selective serotonin reuptake inhibitors; SNRI, serotonin and norepinephrine reuptake inhibitors; NASSA,
noradrenaline and specific serotonergic antidepressants; TCA, tricyclic antidepressants; SARI, serotonin antagonist and reuptake inhibitors; pDMN/
aDMN, posterior/anterior default mode network; lFPN/rFPN, left/right frontoparietal network; DAN, dorsal attention network; AN, auditory network;
MTN, medial temporal network; BGN, basal ganglia network; SN, salience network; SMN, sensorimotor network; pVN, primary visual network; lVN1/
lVN2, lateral visual network 1/2; CN, cerebellum network.
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networks in MDD (19–21, 67). However, these were based on dFC

during resting-state and compared between MDD and healthy

controls. As mentioned earlier, there is one paper that counted

the number of coherence clusters using WCA for classification

between MDD and healthy controls in resting-state (26). The most

important pair that discriminated between MDD and controls was

the CN-lateral motor network pair. An increase in the number of

clusters was found for this pair in MDD, which they attributed to a

disruptive interaction between the cerebellum and control network,

potentially explaining lower motor activity in MDD patients. In our

study, we also found a similar pair, SMN-CN, that was important

for the 3-month follow-up prediction (see Equation 3). The mean

nCC of our MDD group was also higher (mean 13.9 ± 3.1) than the

controls reported in that study (median around 5). Yet, it is hard to

compare as a network pair related to motor control is probably

likely to be more often interactive during task periods than in rest.

Moreover, the MDD subjects with a positive clinical outcome had a

higher nCC (16.8 ± 4.3) than the subjects with a negative clinical

outcome (13.0 ± 2.1). Finally, one study conducted WCA to

differentiate MDD subjects from healthy controls in resting-state

electroencephalography by using the wavelet maps as input to a

convolutional neural network. Wavelet coherence between

electrodes on DMN regions, especially on top of the posterior

located precuneus and lateral parietal cortex, were found to be the

most accurate biomarkers and significantly different between

groups (68). Similarly, we found the pDMN to be a significant

predictor for both follow-ups.

Given that most studies that found abnormal connectivity

between frontal and limbic networks were based on resting-state

fMRI whereas this study implemented a task paradigm involving

attention and sensory processing, the difference in results is not

surprising. There is increasing evidence of cognitive deficits in

depression, involving attention, concentration and goal-directed

behavior (69). The DAN is associated with goal-directed attention

(70), i.e. having sustained focus on a specific task while suppressing

non-relevant stimuli. Furthermore, the posterior cingulate cortex

hub of the pDMN, is involved in emotion and cognition (71). The

significant model contribution of nCC between the pDMN, DAN

and visual networks in the models of may therefore be generally

explained as deficits in sustained attention and visual and affective

processing of emotion-related cues. More specifically, a lower

number of coherence clusters, reflecting network interactions, was

associated with a poorer clinical outcome. This was observed for

predicting the 3-month and 6-month depression severity change.

Perhaps, the lack of interactions between these networks reflects a

diminished capability to remain focused and process the stimuli.

The other dynamic feature category dFC did not appear to have

high predictive value. dFC reflects the fluctuation of activation

synchronicity between networks. The dFC is proportional to the

number and duration of in-phase clusters of the wavelet coherence

(the higher the standard deviation of functional connectivity, the

more and rapidly-changing in-phase clusters). The fact that the dFC

performances was low compared to nCC could be explained by the

fact that the nCC also incorporates the lag-phase and anti-phase

coherences. Thus, instead of in-phase reductions, perhaps there was

a reduction of lag-phase or anti-phase wavelet coherence clusters in
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subjects with a negative clinical outcome. Interestingly, anti-

correlations of the DMN and DAN have been found to be

predictive of clinical outcome following transcranial magnetic

stimulation therapy in depression (72, 73). This was

demonstrated for resting-state and task-based data, even

including the Hariri task (73). Patterns of lag and anticorrelation

may indicate affected regulatory interactions between networks,

such as processes of inhibitory or neurofeedback nature (74).

When comparing the follow-ups, it can be observed that for

most of the feature categories the 3-months prediction was higher

than the 6-months prediction. Potentially, the fMRI-only features

derived from baseline scans provide a more accurate prognosis for

the short-term but loses predictive performance for follow-ups at a

later stage. This theory is supported by the fact that the most

important features for the 6-month predictions include parameters

that are related to the history of depression: the age of onset,

previous number of episodes and the total trauma score. These

parameters were included in the top feature sets for all 6-months

demo+clin prediction models. On the contrary, the top

demographic and clinical variables for the 3-months prediction

are more contemporary variables such as the baseline HDRS,

support from a mental health institution or having received any

form of psychotherapy in the month prior to the study

participation. This further suggests that prediction of short-term

severity change relies more on features that are momentary, i.e. only

having effect on the depression state of a patient for a limited period,

whereas long-term severity change prediction may improve by

including more permanent, i.e. history-based, information. Future

studies could repeat MRI scans after several months and compare to

earlier scans to investigate whether the prediction accuracy

improves. Nonetheless, the addition of demo+clin variables did

not seem to improve the prediction of the change in depression

severity on a continuous level at both follow-ups, except for sFC.

Other follow-up studies are required to evaluate the added value of

demographic and clinical information for prognosis of

depression purposes.

It is noteworthy that the HDRS scale, on which all dependent

variables are based, has been criticized as there has been little

research on the clinical relevance of changes in relative HDRS

scores (75, 76). For example, an absolute reduction of HDRS score

of 10 could be clinically different when the participant changes from

35 to 25 or from 15 to 5. Moreover, a decrease in 50% might be

obtained more easily with a high baseline score. Subsequently,

follow-up studies have been conducted that validated the use of

50% cutoff for relative change in HDRS as measure of clinically

significant improvement (60, 75, 76). For validation purposes, they

compared the absolute and relative changes in HDRS to the Clinical

Global Impressions Scale (77), an instrument often implemented in

clinical practice as it is interpreted as intuitive to clinical experts and

has good inter-rater reliability (76, 77). Their results demonstrate

that absolute change in HDRS, rather than relative change, was

influenced by baseline severity and that the 50% threshold was

clinically justified. Nonetheless, we assessed the predictive value of

the feature categories using absolute change in HDRS as dependent

variable. For this, we implemented the continuous LOOCV

regression-based method. The results (Supplementary Table 9),
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indicate that the nCC category still reached high performance as

well as brain activation. Yet, the demo+clin category scored the

highest for both follow-ups. After further inspection, the HDRS at

baseline was the top predictor in both scenarios, confirming the

findings of these validation studies that absolute changes in HDRS

are more biased by baseline HDRS scores than relative changes.

Therefore, the analyses of this study were conducted based on the

relative change in HDRS with the 50% threshold for the

binary classification.

There are a few limitations to be addressed in this study. The

unbalanced dataset, especially at 3-months follow-up, caused some

bias in the classification performance. This disbalance between two

groups tends models to predict the unseen data rather as the majority

class. However, in this study, the Kruskall-Wallis feature selection

resulted in more balanced sensitivity-specificity ratios. The SVM-RFE

feature selection method is a wrapper-based method which fits a

model on all the training data points taken together. It has already

been shown that the SVM-RFE underperforms compared to

simplistic filter-based methods in classification of unbalanced

datasets (78). In such cases, the trained model often yields skewed

decision boundaries. The Kruskall-Wallis method, however, is a

filter-based method which allows testing between unequal sample

sizes and does not assume a normal distribution. Potentially, these

properties resulted in more balanced performance for the follow-up

predictions. Moreover, the imbalance problem was alleviated by

applying a higher penalty for classifying the minority class

incorrectly. Another limit of the study is the relatively small sample

size. We implemented SVM classification with leave-one-out cross-

validation, which has been shown to be more optimal on smaller

datasets by reducing the potential of overfitting and increasing the

amount of training samples (79, 80). Yet, overfitting can still occur

(80). By strict feature selection, where the number of features was

smaller than the number of subjects, we further endeavored to reduce

the risk of overfitting. Nonetheless, follow-up studies with larger

sample sizes are required to assess whether the current findings

generalize to larger populations. Additionally, the optimal models in

this study were not evaluated on an external independent dataset. The

optimization of k is similar to a grid search where the LOOCV

procedure was repeated over a range of k from 1-20, and in each

iteration its performance was validated over all folds. As the

parameter k was optimized during training and validation

involving all samples of the dataset (there was no sample that was

untouched, i.e. not used for training nor validation), overfitting of the

optimal models to the study’s dataset might still have occurred. To

assess the generalizability and robustness of the predictive nCC

models for MDD prognosis, it is necessary to test the optimal

models on an external independent dataset. Since the sample size

of this study was relatively small, splitting the dataset up into such

independent test set would not provide reliable results. This requires a

dataset with a larger sample size and similar data acquisition

parameters (most importantly, relatively high temporal and spatial

resolution). With the recent and continuous improvements in

acquisition techniques, such repetition study is feasible.

The study also has several strengths. First, multi-echo and

multiband imaging was implemented, which improves the signal-
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to-noise ratio while minimizing signal loss and still achieving

relatively high spatial (2.29 x 2.29 x 2.70 mm3) and temporal

(1.35 s) resolution. This enhances the quality of the fMRI data

and allows for more reliable temporal and spectral analyses, such as

the implemented dFC and WCA. Second, subjects were selected

with strict selection criteria, thereby reducing potentially biased

effects of comorbidities. Even though MDD is known to be a

heterogeneous disease and often presented with comorbidities, it

is priority to comprehend the brain mechanisms of separate

diseases first. Third, the implementation of the continuous HDRS

change prediction further evaluates the predictive value of features

more accurately whereas the performance of a binary method could

be inflated by uncertain samples concentrated around the decision

boundary. Finally, by assessing separate feature models and

combination thereof with ensemble models, we provide a

comprehensive analysis and improved clinical outcome prediction

which in the future may support the clinical decision-making for

subjects with depression.

In conclusion, the majority of functional MRI research related

to depression prognosis is based on static activity or connectivity

measures. In the present study, we analyzed the value of

temporally varying interactions between functional brain

networks on improving the prediction of change in depression

severity on a binary and continuous scale. The number of

interactions during an emotional face-matching fMRI session,

expressed as the number of coherence clusters derived from a

wavelet coherence analysis map, was found to be most predictive

of change in depression severity at 3 and 6 months. The pDMN,

DAN and two visual networks contributed most to the highest

performance. Generally, a lower number of network interactions

was predictive of poorer clinical outcome, suggesting that patients

who did not improve may have more difficulties with remaining

focused on, and processing of emotion-related stimuli. The

performance of predicting change in depression severity was

higher for the 3-months than the 6-months follow-up. Addition

of demographic and clinical variables to the “lead coherence”

wavelet feature improved the binary classification of the 3-months

prediction for this feature category.

Overall, the paper contributions present as threefold:
1) To the authors’ knowledge, for the first time dynamic

WCA clusters have been investigated for depression

prognosis purposes.

2) With this feature, a high accuracy of 87.5% and 77.4% was

obtained for predicting depression severity changes after 3

and 6 months, respectively.

3) The brain networks that were found to be most important

for prediction partially confirm previous findings in

literature, mainly the abnormal interactions of the DMN

and DAN.
These results reflect the complexity and synergy of the rapidly

changing brain states which should be taken into account when

analyzing fMRI data in psychiatric disorders. Larger studies are

required to assess its generalizability to a larger population.
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‘Functional alterations in large-scale resting-state networks of amyotrophic lateral
sclerosis: A multi-site study across Canada and the United States’. PLoS One. (2022) 17:
e0269154. doi: 10.1371/journal.pone.0269154

59. Allen EA, Damaraju E, Plis SM, Erhardt EB, Eichele T, Calhoun VD. Tracking
whole-brain connectivity dynamics in the resting state. Cereb Cortex. (2014) 24:663–
765. doi: 10.1093/cercor/bhs352
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