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Background: Posttraumatic stress disorder (PTSD) and major depressive

disorder (MDD) comorbidity occurs through exposure to trauma with genetic

susceptibility. Neuropeptide-Y (NPY) and dopamine are neurotransmitters

associated with anxiety and stress-related psychiatry through receptors. We

attempted to explore the genetic association between two neurotransmitter

receptor systems and the PTSD–MDD comorbidity.

Methods: Four groups were identified using latent profile analysis (LPA) to

examine the patterns of PTSD andMDD comorbidity among survivors exposed to

earthquake-related trauma: low symptoms, predominantly depression,

predominantly PTSD, and PTSD–MDD comorbidity. NPY2R (rs4425326), NPY5R

(rs11724320), DRD2 (rs1079597), and DRD3 (rs6280) were genotyped from 1,140

Chinese participants exposed to earthquake-related trauma. Main, gene–

environment interaction (G × E), and gene–gene interaction (G × G) effects for

low symptoms, predominantly depression, and predominantly PTSD were tested

using a multinomial logistic model with PTSD–MDD comorbidity as a reference.

Results: The results demonstrated that compared to PTSD–MDD comorbidity,

epistasis (G × G) NPY2R-DRD2 (rs4425326 × rs1079597) affects low symptoms

(b = −0.66, OR = 0.52 [95% CI: 0.32–0.84], p = 0.008, pperm = 0.008) and

predominantly PTSD (b = −0.56, OR = 0.57 [95% CI: 0.34–0.97], p = 0.037,

pperm = 0.039), whileNPY2R-DRD3 (rs4425326 × rs6280) impacts low symptoms

(b = 0.82, OR = 2.27 [95% CI: 1.26–4.10], p = 0.006, pperm = 0.005) and

predominantly depression (b = 1.08, R = 2.95 [95% CI: 1.55–5.62], p = 0.001,

pperm = 0.001). The two G × G effects are independent.
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Conclusion: NPY and dopamine receptor genes are related to the genetic

etiology of PTSD–MDD comorbidity, whose specific mechanisms can be studied

at multiple levels.
KEYWORDS

PTSD-MDD comorbidity, gene × gene interaction, single nucleotide polymorphism,
neuropeptide Y, dopamine
1 Introduction

According to a survey conducted across 24 countries by the

World Mental Health Organization, approximately 70.4% of adults

have experienced at least one traumatic event (1, 2). Subjects

witnessing traumatic events have a critical risk of suffering from

traumatic stress-related diseases, primarily posttraumatic stress

disorder (PTSD) and major depressive disorder (MDD) (3, 4).

Previous studies have observed that more than 50% of the adults

diagnosed with PTSD have MDD simultaneously (5, 6). Those with

PTSD–MDD comorbidity have more treatment burden, lower

quality of life, and lower income than the ones with PTSD or

MDD alone (6). The mechanism of PTSD–MDD comorbidity has

been insufficiently explored. Some scholars believed that PTSD–

MDD comorbidity was attributed to the diagnosis symptom overlap

between the two (7). Several stable symptoms overlap between

PTSD and MDD. These include diminished interest, sleep

disturbance, and trouble concentrating in revising all Diagnostic

and Statistical Manual of Mental Disorders (DSM) editions, with

unclear evidence. Other scholars believed that PTSD–MDD

comorbidity was a different manifestation of a common genetic

structure depending on trauma susceptibility. Mundy, Hübel (8)

identified that PTSD and MDD could share the genetic structure of

trauma susceptibility through polygenic risk scores (PRS) analysis.

Nievergelt, Maihofer (9) discovered significant positive correlations

between PTSD and MDD genetic variants through PRS. Some

researchers observed that the inheritance between PTSD and

MDD was entirely related (r = 1) (10). A recent meta-analysis

indicated that PTSD andMDD share multiple genomic loci through

cross-trait (11). Various lines of evidence suggest that genetics may

be necessary for PTSD–MDD comorbidity.

PTSD–MDD comorbidity is a complex psychiatric disorder

with multiple neural and molecular pathways. Among them,

neurotransmitter systems, neuropeptide Y (NPY) receptors, and

dopamine play essential roles in mental disorders. Neuropeptide Y

consists of 36 amino acids, is widely distributed, and expressed in

the central nervous system (CNS), such as the prefrontal cortex,

hippocampus, amygdala, etc., and is highly conserved across

various species (12–14). The NPY system adapts to stress

response (15–17). First, the HPA axis is activated to cope with a

stressful situation when people experience a stressful or traumatic

event. Afterward, NPY levels would increase in the brain to balance
02
out an overactive stress response (18). The NPY system was

dysregulated in PTSD and MDD patients (16), primarily

manifested as a decrease. Such downtrend NPY consistently

existed at transcription and protein levels in human and animal

studies (19, 20). NPY activates biological functions primarily

through G protein-coupled receptors, NPY1R, NPY2R, NPY4R,

NPY5R, and NPY6R. Y2R and Y5R are essential in stress response

adaptation and emotional occurrence (21–23). Animal and human

studies have found that NPY2R was upregulated during PTSD and

depression (19, 20). Anxiety and depression symptoms in mice were

relieved after injecting Y2R antagonists (24), indicating that Y2R

may be anxiety-active. Y5R could work with Y1R to inhibit stress-

induced dendritic hypertrophy of basolateral amygdala (BLA)

pyramidal output neurons, demonstrating anxiolytic and

antidepressant effects (25). Therefore, Y2R and Y5R may have

opposite roles in stress response adaptation. We conjecture that

Y2R and Y5R could be associated with the etiological mechanism of

PTSD–MDD comorbidity.

Dopamine is a catecholamine that plays the role of a

neurotransmitter in the brain and involves stress adaptation (26).

Studies have observed that dopamine was downregulated with

reduced activity in MDD and PTSD patients (27, 28). Similar to

NPY, dopamine functions through its receptors. There are two

main types of receptors, D1-like and D2-like receptors, of which

D1-like receptor activation is excitatory (such as D1 and D5

receptors). In contrast, D2-like receptor activation is inhibited

(such as D2, D3, and D4 receptors) (29, 30). Chronic exposure to

mild stress damages the mesolimbic dopamine circuit, an

underlying neurobiological mechanism for anhedonia, a core

MDD symptom (28, 31). Established animal studies identified

that D2/D3 agonists, not D1 receptors, exert rapid antidepressant

effects (32). Early human studies observed that D2/D3 receptor

binding was higher in MDD brains than in controls (33).

Additionally, D2/D3 agonists could decrease the fear response,

indicating significant antidepressant effects in PTSD mice (34).

Thus, D2/D3 receptors could be associated with the etiological

mechanism behind PTSD. Therefore, we hypothesize that D2/D3

could also be related to PTSD–MDD comorbidity.

There is a complex interplay between NPY and dopamine

systems, engaging in the physiological processes of stress

adaptation and exerting an impact on the PTSD–MDD

comorbidity. The study indicated that NPY neurons in the
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arcuate nucleus (ARC) extensively projected to the ventral

tegmental area (VTA) and accumbens (NAc). They interacted

with dopaminergic neural circuits and co-expressed with

dopamine, participating in various physiological processes,

including stress-induced anxiety (35). Several studies have

indicated a positive correlation between NPY activity and

dopamine release. NPY and Y5R agonists have been shown to

facilitate dopamine release in the NAc and striatum. Y2R

antagonists, on the other hand, attenuated NPY-induced

dopamine release (36, 37). Furthermore, studies have found an

antagonistic interplay between dopamine and NPY in depression

and food intake. An increase in dopamine release reduced NPY

mRNA and weakened the biological effects induced by NPY (35,

38). Therefore, the dysfunctional antagonistic interplay between

NPY and the dopamine system would likely to be involved in the

biological mechanisms of related mental disorders. Nevertheless,

the precise mechanisms underlying the interaction between the

dopamine and NPY systems remain elusive. Similar observations

were discerned in relevant genetic studies as well. Genetic

polymorphism within the NPY have been identified in association

with both PTSD and MDD (39, 40). NPY2R gene polymorphism,

which mediated the effects of NPY, have been found to be associated

with stress-induced mental disorders such as MDD (41). The

functional variation rs4425326 in NPY2R has been reported to be

associated with substance abuse (42, 43). Additionally, differential

expression of NPY5R has been identified in relation to fear learning

in PTSD, and lower mRNA levels of NPY5R associated with

elevated anxiety (44, 45). For the dopamine system, a recent

meta-analysis revealed that genetic polymorphism within the

DRD2 exhibited a similar trend in both PTSD and MDD (46).

The DRD3 rs6280 has also been found to be associated with PTSD

and MDD (47, 48). In addition to the direct effects of genetic

variations, the environment is a crucial risk factor influencing the

PTSD–MDD comorbidity. Studies indicated that genetic variations

interacted with the environment to impact PTSD and MDD (49,

50). Therefore, it can be speculated that genetic variations in

receptor genes, namely, NPY2R, NPY5R, DRD2, and DRD3,

within the NPY and dopamine systems may directly influence the

physiological responses of PTSD–MDD comorbidity or interact

indirectly with the environment to impact these responses, but these

remain to be explored.

Latent profile analysis (LPA) or latent class analysis (LCA)

classifies potential categories for continuous or categorical

indicators (51). Traditional factor analysis or disease diagnosis

could ignore the differences in disease phenotypes exhibited by

heterogeneous groups, decreasing the finding validity. In contrast,

LPA considers individual heterogeneity and centers on individuals

with potentially identical response patterns that are classified

together. This could mitigate the adverse effects of potential

individual heterogeneity. Several studies have used LPA to classify

individuals with PTSD-related comorbidity. However, the

phenotype of PTSD comorbidity with other psychiatric disorders

can vary based on the trauma type (52). Contractor et al. (53) used

LPA to determine the potential structure of PTSD–MDD

comorbidity by analyzing the symptoms of 268 college students

with potential trauma events (PTE). PTSD and depression
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symptoms were divided into three sub-categories: high severity,

lower PTSD–higher depression, and higher PTSD–lower

depression. The results indicated that PTSD and depression were

parallel to each other. Armour et al. (54) conducted LPA on 283

Canadian veterans with PTSD and MDD comorbidity and isolated

three similar patterns of comorbidity: high, moderate, and low

symptoms of PTSD andMDD. Hruska et al. (55) conducted LPA on

249 motorcycle accident victims with combined PTSD, current

MDD, and alcohol or other drug use disorders (MDD/AoDs) and

delved into four categories: resilient, mild, moderate, and severe

psychopathology. We cannot use these PTSD–MDD patterns

directly due to the large sample variation and inconsistent

classification results for discerning PTSD and MDD patterns.

Therefore, LPA helps determine PTSD and MDD patterns in the

current study.

We explored the mechanisms of NPY and dopamine receptors

in PTSD–MDD comorbidity in the Chinese population exposed to

earthquake-related trauma from a genetic perspective. We analyzed

the gene main effects, gene × environment interaction effects (G ×

E), and gene × gene interaction effects (G × G) to decipher the

genetic mechanism in PTSD–MDD comorbidity. The receptor

genes NPY2R, NPY5R, DRD2, and DRD3 were selected as

candidate genes. We recruited 1,140 participants from the 2008

Wenchuan earthquake survivors to determine their earthquake-

related trauma, PTSD, and depressive symptoms. The participants

were divided into four groups through LPA based on the measured

PTSD and depressive symptoms. The four categories were low

symptoms, predominantly depression, predominantly PTSD, and

PTSD–MDD comorbidity.
2 Materials and methods

2.1 Participants and procedures

All the participants were recruited from people who had

survived the 2008 Wenchuan magnitude 8.0 earthquake in

Sichuan Province, China. We went to Hanwang District in

Mianzhu City, the largest rebuilding community post-earthquake,

in November 2013 to obtain the data. Our investigators included

trained clinical psychologists, psychiatrists, psychotherapists, and

postgraduate psychology students. Sampling procedures were

detailed in our previous studies (23). The inclusion criteria were

as follows (1): Each family selects one of the most suitable

candidates to participate in our study with the family as a

research unit (a person in the household born closest to the

investigation date). (2) Participants must have experienced the

Wenchuan earthquake first-hand. (3) Participants should be at

least 16 years of age. (4) Participants should not have suffered

from any previous mental disorders. Based on the inclusion criteria,

we informed participants of the purpose of our study. We ensured

that everyone understood our objectives and obtained their written

informed consent. Later, we obtained self-reported questionnaire

data from participants, amounting to 1,196 people.

Specialist nurses collected blood samples from these

participants for subsequent genotyping. Among them, 24
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participants refused to provide blood, 26 failed DNA extraction, and

6 failed genotyping. Finally, we obtained the data for 1,140

participants. The demographic data of participants are

demonstrated in Table 1. The participants were between 16 and

73 years (M = 48.1, SD = 10.0), except for two minors (one aged 16

and one aged 17). The rest were adults, with 363 men (31.8%) and

777 women (68.2%), and approximately 99.6% were Han Chinese.

This study was conducted by the Declaration of Helsinki and

received an ethical committee approval on 12 June 2013

(Institutional Review Board of the Institute of Psychology,

Chinese Academy of Sciences, study registered under number

H13010). All the participants understood the objectives and

signed the written informed consent. The experimental methods

were performed following the relevant guidelines.
2.2 Measurement

Demographic data were collected using our questionnaire,

including the gender, age, marital status, education level, and

ethnicity of the participants.

The environmental variable, earthquake-related trauma

exposure, was assessed using a questionnaire with 10 questions

(23): during the earthquake, (1) Were you trapped under the

rubble? (2) Were you injured? (3) Were you disabled due to

injuries? (4) Did you participate in rescue efforts? (5) Did you

witness the death of someone? (6) Did you see mutilated bodies? (7)
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Did any family members die during the disaster? (8) Were any

family members injured? (9) Did any friend or neighbor die during

the disaster? (10) Did you lose your livelihood because of the

disaster? Each question was scored at two points; 0 meant no

experience, and 1 implied experience. Scores represented the level of

earthquake-related trauma exposure. The total score ranged from 0

to 10; the higher the score, the more severe the trauma exposure.

PTSD diagnosis is inferred from the diagnostic criteria provided

by the fifth edition of the Diagnostic and Statistical Manual of

Mental Disorders [DSM-5; (56)]. The participant must have

experienced at least one traumatic event, one intrusion symptom,

one avoidance symptom, two negative alterations in cognition and

mood, and two arousal symptoms lasting longer than 1 month.

Participant PTSD symptoms were assessed by the DSM-5 PTSD

checklist [PCL-5, (57)]. The questionnaire has 20 self-reported

items with four dimensions: intrusion, avoidance, negative

alterations in cognition and mood, and hyperarousal. Participants

had to answer this questionnaire depending on their circumstances

and the Wenchuan earthquake. Each item was scored on a Likert

five-point scale from 0 (not at all) to 4 (extremely). The higher

scores represented the severity of the corresponding symptoms. The

final score was determined by adding item scores for each

dimension. The original PCL-5 questionnaire indicated good

reliability and validity (58). The revised Chinese version also

possessed good reliability and validity in existing studies (59).

Cronbach’s a was 0.95 in this study.

MDD was determined through the Center for Epidemiological

Studies–Depression Scale (CES-D) developed by Radloff (60). The

questionnaire had 20 self-reported items, evaluating the severity of

depressive symptoms from four dimensions: positive affect,

depressive affect, somatic complaints, and interpersonal problems.

The four questions to evaluate positive affect were reverse score

questions. Each item was scored on a Likert four-point scale from 0

(rare or none of the time/less than one day) to 3 (most or all the time/

5 to 7 days). The higher scores were related to more severe

depression. The final score was determined by adding item scores

for each dimension. The original CES-D questionnaire indicated

good psychometric properties (61). The Chinese version of CES-D

also had solid reliability and validity (62). Cronbach’s a was 0.87 in

our study.
2.3 SNP selection and genotyping

Four candidate genes, NPY2R, NPY5R, DRD2, and DRD3, and

corresponding functionally significant SNPs were selected for our

study. For NPY2R, rs4425326 was associated with alcohol

dependence and withdrawal (43). For NPY5R, rs11724320 was

related to panic disorder (63). For DRD2, rs1079597 has been

widely reported to be correlated with addictive behaviors (64, 65).

For DRD3, rs6280 was associated with impulsive behavior,

addiction, and schizophrenia (66, 67).

Based on the DNA extraction standard protocol proposed by

Garg (68), DNA was extracted from peripheral blood. The

genotyping of rs4425326, rs11724320, rs1079597, and rs6280 was

performed using a custom-by-design 2 × 48-Plex SNP scan™ Kit
TABLE 1 Demographic information.

Variable n (%)

Gender

Male 363 (31.8%)

Female 777 (68.2%)

Age

16–17 2 (0.2%)

Adult 1132 (99.3%)

Missing 6 (0.5%)

Marital status

Unmarried 148 (13.0%)

Married 990 (86.8%)

Missing 2 (0.2%)

Education level

Junior high school or below 769 (67.5%)

Senior high school or above 371 (32.5%)

Race

Han Chinese 1136 (99.6%)

Others 2 (0.2%)

Missing 2 (0.2%)
N = 1,140.
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(Genesky Bio-technologies Inc., Shanghai, China) through double

ligation and multiplex fluorescence polymerase chain reaction

(PCR). Gene Mapper 4.1 (Applied Biosystems) software helped

analyze the raw data following the fragment size of allele-specific

ligation-PCR products. The genotype call rates exceeded 98%.
2.4 Statistical analysis

In our previous study, a detailed LPA for patterns of PTSD and

depression symptoms has been reported (59). Specifically, using

Mplus 7.0 maximum likelihood estimation with robust standard

errors, an LPA was conducted on the T scores of eight dimensions,

namely, four dimensions of PTSD symptoms (intrusion, avoidance,

negative alterations in cognitions and mood, and hyperarousal) and

four dimensions of depression symptoms (depressive affect, positive

affect, somatic complaints, and interpersonal problems).

Comprehensive evaluation of fit indices, parsimony, and

interpretability was conducted to select the optimal class model.

An LPA model that had a lower Bayesian Information Criterion

(BIC), a lower Akaike Information Criterion (AIC), a higher

entropy, a significant Lo-Mendell-Rubin likelihood ratio test

(LMR LRT), a significant Lo-Mendell-Rubin adjusted likelihood

ratio test (ALMR LRT), and a significant bootstrap likelihood ratio

test (BLRT) would be the optimal class model. After analyzing, the

four-class model exhibited a lower BIC and a lower AIC than the

one-, two-, and three-class model, as well as a higher entropy than

the five-class model. Simultaneously, the four-class model had

significant LMR LRT, ALMR LRT, and BLRT. In accordance with

this optimal class model, the collected phenotypic data were

synthesized into four groups: low symptoms (n = 616, 53.9%),

predominantly depression (n = 203, 18.2%), predominantly PTSD

(n = 219, 18.9%), and PTSD–MDD comorbidity (n = 102, 9.0%).

We analyzed the variance of each SNP in demographic

statistical variables (gender, age, marital status, and education)

and earthquake-related trauma exposures using R 4.2.0 (https://

www.r-project.org/) to classify the LPA information.

To test whether the main, G × E, and G × G effects among

NPY2R,NPY5R, DRD2, andDRD3 genes were significantly different

between PTSD–MDD comorbidity and other groups, multinomial

logistic regression was conducted with adjustment for gender, age,

marital status, and education level. The independent variables

included SNPs, earthquake-related trauma, SNP × SNP, and SNP

× earthquake-related trauma. In contrast, the dependent variables

were different groups from LPA. In each SNP genotype, the major
Frontiers in Psychiatry 05
allele homozygous was coded as 0, heterozygous was coded as 1, and

the minor allele homozygous coded as 2. The p-values of logistic

regression were bidirectional in the analysis. We conducted a

permutation test (number of permutations = 100,000) to correct

the possible deviation caused by insufficient sample size and

multiple comparisons. The results were reported as p < 0.05 and

permutation p < 0.05.
3 Results

Based on the descriptive statistical analysis, the mean score of

earthquake-related trauma was 3.46 (SD = 1.80, score range: 0–10). The

mean total score of PTSD was 18.77 (SD = 13.46, score range: 1–77),

and that of depression was 37.02 (SD = 8.63, score range: 20–68), with

details in Table 2. The analysis of variance revealed that rs4425326,

rs11724320, and rs1079597 showed no significant differences in gender,

age, marital status, and education. Rs6280 possessed significant

differences in age and education level (Supplementary Table S1). All

the SNP genotypes conformed to the Hardy–Weinberg equilibrium in

the all samples, female patients, and male patients, respectively

(Supplementary Tables S2-S4).

The distribution of SNP genotype in each group is represented in

Table 3. Multinomial logistic regression analysis of G × G interactions

between PTSD–MDD comorbidity and other groups was significant.

As described in Table 4, NPY2R-DRD2 (rs4425326 × rs1079597) and

NPY2R-DRD3 (rs4425326 × rs6280) interaction effects were

significant {(b = −0.66, OR = 0.52 [95% CI: 0.32–0.84], p = 0.008,

pperm = 0.008) and (b = 0.82, OR = 2.27 [95% CI: 1.26–4.10],

p = 0.006, pperm = 0.005)} when low symptoms were compared

with PTSD–MDD comorbidity. When predominantly PTSD was

compared with PTSD–MDD comorbidity, the NPY2R-DRD2

(rs4425326 × rs1079597) interaction effect was significant

(b = −0.56, OR = 0.57 [95% CI: 0.34–0.97], p = 0.037,

pperm = 0.039). The NPY2R-DRD3 (rs4425326 × rs6280) interaction

effect was significant (b = 1.08, OR = 2.95 [95% CI: 1.55–5.62],

p = 0.001, pperm = 0.001) when predominantly depression was

compared with PTSD–MDD comorbidity.

After putting all the SNPs, G × E, and G × G into one regression

model and PTSD–MDD comorbidity was set as the reference, the

NPY2R-DRD2 of the rs4425326 × rs1079597 genotype interaction

was significant when compared with low symptoms (b = −0.68,

OR = 0.51 [95% CI: 0.31–0.83], p = 0.007, pperm = 0.007) and

predominantly PTSD (b = −0.59, OR = 0.55 [95% CI: 0.33–0.94],

p = 0.029, pperm = 0.032). Moreover, the NPY2R-DRD3 of the
TABLE 2 Summary of earthquake-related trauma, depression, and PTSD scores.

Min 1st quartile Median 3rd quartile Max M SD

Earthquake-
related trauma

0 2 3 5 10 3.46 1.80

Depression 20 31 36 42 68 37.02 8.63

PTSD 1 9 16 26 77 18.77 13.46
PTSD, posttraumatic stress disorder.
frontiersin.org

https://www.r-project.org/
https://www.r-project.org/
https://doi.org/10.3389/fpsyt.2024.1257911
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Xu et al. 10.3389/fpsyt.2024.1257911
rs4425326 × rs6280 genotype interaction was significant when

compared with low symptoms (b = 0.85, OR = 2.35 [95% CI:

1.27–4.30], p = 0.005, pperm = 0.005) and predominantly depression

(b = 0.39,OR = 3.09 [95% CI: 1.59–6.03], p = 0.0008, pperm = 0.0009)

(Supplementary Table S5). Therefore, the interactions of NPY2R-

DRD2 and NPY2R × DRD3 were independent.

No SNPs significantly affected PTSD–MDD comorbidity and

other groups (p > 0.05). Moreover, no significant G × E effects

existed between PTSD–MDD comorbidity and other groups

(p > 0.05) (Supplementary Table S6). Additionally, there were no

other significant G × G effects (Supplementary Table S7).
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4 Discussion

The current study performed gene main effects, gene–

environment interaction, and gene–gene interaction analysis on

NPY2R, NPY5R, DRD2, andDRD3 genotypes in Chinese exposed to

earthquake-related trauma. The objective was to explore the

potential genetic mechanism of NPY and dopamine receptors in

PTSD–MDD comorbidity.

The results did not observe any significant gene main effects and

gene–environment interaction. Consistent with previous genome-

wide association study (GWAS) results, rs4425326, rs11724320,
TABLE 4 The G × G effects on PTSD–MDD comorbidity.

B SE p pperm OR (95% CI)

NPY2R × DRD2
(rs4425326 × rs1079597)

Low symptoms −0.66 0.25 0.008** 0.008** 0.52 (0.32, 0.84)

Predominantly depression −0.50 0.27 0.070 0.071 0.61 (0.36, 1.04)

Predominantly PTSD −0.56 0.27 0.037* 0.039* 0.57 (0.34, 0.97)

NPY2R × DRD3
(rs4425326 × rs6280)

Low symptoms 0.82 0.30 0.006** 0.005** 2.27 (1.26, 4.10)

Predominantly depression 1.08 0.33 0.001** 0.001** 2.95 (1.55, 5.62)

Predominantly PTSD 0.35 0.32 0.270 0.277 1.42 (0.76, 2.67)
PTSD–MDD comorbidity was set as reference and compared with low symptoms, predominantly depression, and predominantly PTSD, respectively. The rs4425326 genotype was coded: T/T = 0,
C/T = 1, C/C = 2. The rs1079597 genotype was coded: C/C = 0, T/C = 1, T/T = 2. The rs6280 genotype was coded: T/T = 0, C/T = 1, C/C = 2. Gender, age, marital status, and education were
covariates. PTSD, post-traumatic stress disorder. MDD, major depressive disorder. SE, standard error. pperm, permutation p-value. OR, odds ratio. CI, confidence interval. *p < 0.05, **p < 0.01.
Bold indicates significant result.
TABLE 3 Frequencies of different genotypes of each SNP in four groups divided by latent profile analysis.

Group Low symptom
(n = 616)

Predominantly
depression (n = 203)

Predominantly
PTSD (n = 219)

PTSD–MDD
comorbidity (n = 102)

rs4425326

Ca/C
C/T
T/T

46 (7.5%)
257 (41.7%)
313 (50.8%)

17 (8.4%)
83 (40.9%)
103 (50.7%)

20 (9.1%)
95 (43.4%)
104 (47.5%)

8 (7.8%)
46 (45.1%)
48 (47.1%)

rs11724320

Ca/C
C/T
T/T

51 (8.3%)
249 (40.4%)
316 (51.3%)

19 (9.4%)
84 (41.4%)
100 (49.3%)

21 (9.6%)
96 (43.8%)
102 (46.6%)

10 (9.8%)
39 (38.2%)
53 (52.0%)

rs1079597

Ta/T 103 (16.9%) 36 (17.7%) 44 (20.1%) 23 (22.5%)

T/C 303 (44.2%) 97 (47.8%) 91 (41.6%) 50 (49.0%)

C/C 209 (33.9%) 70 (34.5%) 84 (38.4%) 29 (28.4%)

rs6280

Ca/C 54 (8.8%) 20 (9.9%) 20 (9.1%) 5 (4.9%)

C/T 259 (42.0%) 82 (40.4%) 84 (38.4%) 49 (48.0%)

T/T 303 (49.2%) 101 (49.8%) 115 (52.5%) 48 (47.1%)
N = 1,140. a Minor allele. PTSD, posttraumatic stress disorder. MDD, major depressive disorder.
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rs1079597, and rs6280 have not been found to be significantly

associated with either PTSD or MDD in GWASs (9, 69). However,

this does not necessarily mean that the genotypes of rs4425326,

rs11724320, rs1079597, and rs6280 have no effect on PTSD–MDD

comorbidity. It is possible that their impact on PTSD–MDD

comorbidity is not achieved through a straightforward direct effect.

In line with another discovery in the current study, two significant

gene–gene interaction effects were identified. With PTSD–MDD

comorbidity as a reference group, low symptoms, predominantly

depression, and predominantly PTSD group were compared among

the four phenotypic groups recommended by LPA.We foundNPY2R

× DRD2 and NPY2R × DRD3 interaction effects significantly, even

considering main gene, gene–environment interaction, and gene–

gene interaction effects. Therefore, the NPY and dopamine receptor

genes do not affect PTSD–MDD comorbidity alone. Instead, they

interact with the PTSD–MDD comorbidity mechanism. Consistent

with previous findings by Rezitis (35), NPY could interact with the

dopamine system in stress response. Specifically, the rs4425326 and

rs1079597 allele genotypes interact to put individuals at risk for

PTSD–MDD comorbidity compared to low symptoms. In contrast,

rs4425326 and rs6280 allele genotypes interact to protect individuals

from PTSD–MDD comorbidity. When predominantly PTSD was

compared with PTSD–MDD comorbidity, the interaction between

rs4425326 and rs1079597 alleles put individuals at risk of developing

PTSD–MDD comorbidity. When predominantly depression was

compared with PTSD–MDD comorbidity, the interaction between

rs4425326 and rs6280 alleles protects individuals from PTSD–MDD

comorbidity. These two gene–gene interactions existed after

controlling for all gene main effects, gene–environment interaction,

gene–gene interaction, earthquake-related trauma exposure, and

demographic variables. Our findings established that NPY and

dopamine receptors are associated with the genetic etiology of

PTSD–MDD comorbidity. Moreover, genetics are involved in the

etiology of PTSD–MDD comorbidity (5, 8, 10).

The NPY system is extensively involved in stress response, of

which Y2R has been found to be anxiety-active. The rs4425326

polymorphism is in the exon of NPY2R, 0.2 Mb upstream on the 5′
end. SNPs in this region may potentially influence the

transcriptional regulation of NPY2R, thereby affecting the

expression of NPY2R (70). Studies have shown that Y2R was a

presynaptic autoreceptor involved in the NPY negative feedback

loop, thereby reducing NPY release to promote anxiety (15).

The dopamine system is widely recognized in psychiatry,

manifested by an abnormal decrease of D2/D3 receptors (71). In

fact, DRD2 and DRD3 shared 52% global homology, suggesting the

potential functional similarities in their evolutionary processes, as

both belong to the D2-like receptors (72). The rs1079597 is in the

regulatory and structural coding regions ofDRD2. It has been found

to be associated with schizophrenia and addictive behaviors

(64, 73). The C allele of this SNP was associated with a decreased

density of D2 receptors in the individual’s striatum (74). Studies

indicated that D2 receptor agonists had anxiolytic and

antidepressant effects, alleviating symptoms of PTSD and MDD

(34, 75). D2 receptor antagonists have been observed to induce

emotional blunting and disrupt the motivational system (76). This

phenomenon may be linked to emotional numbness in PTSD and
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anhedonia in MDD. Therefore, the rs1079597 may alter dopamine

release by modulating the density of D2 receptors in the midbrain

dopamine circuit, thus participating in the molecular mechanisms

underlying the PTSD–MDD comorbidity. The rs6280 is in the exon

of DRD3, and is a functional SNP that alters dopamine receptor

binding affinity (77). Like rs1079597 in DRD2, rs6280 was also

related to depression and addictive behaviors (48, 78). The rs6280

induced a substitution of serine with glycine at position 9 in the

polypeptide product, leading to a substantial increase in the binding

affinity of D3 receptors for dopamine (79). This modification

facilitated dopamine release in the striatum, thereby contributing

to the modulation of the stress adaptation.

The significant interaction between NPY2R and DRD2, as well

as the interaction with DRD3, strongly indicates the involvement of

the NPY and dopamine systems in PTSD–MDD comorbidity. The

rs4425326 is implicated in potentially regulating the expression of

NPY2R, while rs1079597 modulates D2 receptor density, and

rs6280 alters the binding affinity of D3 receptors. Consequently,

the interaction between the NPY and dopamine systems in PTSD–

MDD comorbidity is likely mediated through the Y2R, D2, and D3

receptors. Y2R and D2 may interact within the amygdala that

controls emotional memory, especially fear memory. The memory

of traumatic events is a crucial cognitive function influencing PTSD

and MDD. Studies have shown that Y2R and D2/D3 receptor

activation all facilitated the extinction of fear memory in the

amygdala (34, 80). Therefore, Y2R and D2/D3 may exert

synergistic effects on the acquisition and extinction of fear

memory. The interaction between Y2R and D3 is likely to take

place when stress encounters. Studies have shown that when stress

had just occurred, Y2R activated the NPY negative feedback loop to

decrease NPY release while increasing dopamine release (15, 37).

This increased dopamine release may be due to the high affinity of

D3 modulated by the rs6280 that prompted VTA dopaminergic

neurons to release more dopamine in response to stress (81).

Therefore, Y2R and D3 may mobilize the organism in response to

stress through synergistic effects. When stress disappeared, the

persistent overactivation of Y2R and the compensatory reduction

in dopamine within the VTA that failed to disappear may be one of

the molecular mechanisms contributing to PTSD–MDD

comorbidity. Previous studies have consistently identified a

substantial elevation in expression of NPY2R mRNA and a

decline in dopamine levels in PTSD and MDD (20, 28, 34).

Nevertheless, the specific antagonistic or synergistic molecular

mechanisms warrant meticulous experimental validation

and exploration.

In addition, our study also explored the relationship between

NPY5R and PTSD–MDD comorbidity. However, there are no

significant results. NPY5R is not studied enough in PTSD–MDD

comorbidity. There were conflicting results in the remaining

studies, whose function could not be evaluated during stress

adaptation. More research from multiple levels, such as genetics

and neurobiology, should explore the future role of NPY and

dopamine systems in stress adaptation.

There are several limitations to our study. First, after the LPA,

the number of subjects in each group is small, challenging the result

validity. In the future, more extensive sample studies should
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replicate our outcomes. Secondly, the self-reporting method may

bring about biases for self-expectation. In the future, techniques

such as clinical diagnosis or adding physiological indicators can

improve the reliability and validity of the study. Third, the gender

ratio in current samples is not balanced, and previous studies have

observed an interaction between genetic variants and gender,

especially in sexually dimorphic conditions (82). Therefore,

further exploration should be conducted in samples with a

balanced gender ratio, and the role of gender in PTSD–MDD

comorbidity should be further investigated. Finally, our

conclusions are limited to the Chinese population exposed to

earthquake-related trauma. The same genetic variants may be

different in other trauma types or populations. Therefore, the

results should be interpreted and generalized with caution.

Overall, the current study identified NPY and dopamine

receptor genes involved in the genetic etiology of PTSD–MDD

comorbidity. There were significant interactions in two gene pairs,

NPY2R-DRD2 and NPY2R-DRD3, providing a new etiological

explanation of PTSD–MDD comorbidity. The findings expand

the previous research on the anxiolytic and antidepressant effects

of NPY and provide information on the dopamine system in stress-

related disorders. Site-directed mutagenesis can be further

employed to observe the effects of rs4425326, rs1079597, and

rs6280 variations on methylation and gene expression in neural

cell lines. Moreover, future studies should comprehensively explore

the roles of the NPY and dopamine systems in PTSD–MDD

comorbidity at multiple levels, taking into consideration the

antagonistic, synergistic, or other interactive relationships

between NPY and its receptors and dopamine and its receptors.

Utilize gene knockout or gene overexpression animal experiments

to explore effective genes and their underlying mechanisms. Inject

agonists or antagonists to explore specific targets and mechanisms

for promoting or alleviating PTSD–MDD comorbidity symptoms.

Additionally, further genome-wide interaction analyses on a larger

scale are imperative to comprehensively explore and substantiate

the contribution of gene interactions to the PTSD–MDD

comorbidity at the genome-wide level.
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