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potential metabolic signatures in
children with autism
spectrum disorder
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Background: Complementary to traditional biostatistics, the integration of

untargeted urine metabolomic profiling with Machine Learning (ML) has the

potential to unveil metabolic profiles crucial for understanding diseases.

However, the application of this approach in autism remains underexplored.

Our objective was to delve into the metabolic profiles of autism utilizing a

comprehensive untargeted metabolomics platform coupled with ML.

Methods: Untargeted metabolomics quantification (UHPLC/Q-TOF-MS) was

performed for urine analysis. Feature selection was conducted using Lasso

regression, and logistic regression, support vector machine, random forest,

and extreme gradient boosting were utilized for significance stratification.

Pathway enrichment analysis was performed to identify metabolic pathways

associated with autism

Results: A total of 52 autistic children and 40 typically developing children were

enrolled. Lasso regression identified ninety-two urinary metabolites that

significantly differed between the two groups. Distinct metabolites, such as

prostaglandin E2, phosphonic acid, lysine, threonine, and phenylalanine, were

revealed to be associated with autism through the application of four different ML

methods (p<0.05). The alterations observed in the phosphatidylinositol and

inositol phosphate metabolism pathways were linked to the pathophysiology

of autism (p<0.05).
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Conclusion: Significant urinary metabolites, including prostaglandin E2,

phosphonic acid, lysine, threonine, and phenylalanine, exhibit associations with

autism. Additionally, the involvement of the phosphatidylinositol and inositol

phosphate pathways suggests their potential role in the pathophysiology of autism.
KEYWORDS
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Introduction

Autism spectrum disorder (Autism) is a diverse range of

neurodevelopmental disorders characterized by early onset

impairments in social interaction and communication, along with

stereotyped or repetitive behaviors and restricted interests (1). The

worldwide prevalence of autism has shown a significant and rapid

increase (2). Despite this, the underlying biological mechanisms

remain incompletely understood (3), and the development of

precise and effective laboratory diagnostic strategies is lacking.

Currently, autism diagnosis heavily relies on clinical interviews

and behavioral assessments. The neurodiversity and phenotypic

heterogeneity (4) of the condition contribute to the challenges in

early diagnosis. Consequently, there is an urgent need for specific

diagnostic biomarkers to enhance early screening, diagnosis, and

our understanding of the pathophysiology of autism.

Metabolomics, an emerging and promising science field, has

proven invaluable in disease diagnosis, elucidating disease

processes, and advancing personalized drug targeting and

treatments (5). Notably, Metabolomics has played a pivotal role in

facilitating swift diagnoses and uncovering unexpected biological

underpinnings in cancer and neuropsychiatric disorders (6, 7). The

untargeted metabolomics approaches provide a diplomatic avenue

for profiling a diverse array of metabolites, offering extensive

information for in-depth investigations into disease mechanisms

and potential diagnostic biomarkers (8). Exploring and categorizing

the metabolic profiles associated with autism holds the potential to

deepen our understanding and refine the precision of autism

diagnoses. Given the non-independence and high multicollinearity

of metabolites, conventional statistical approaches face challenges in

effective control (9). ML emerges as a valuable tool in this context,

demonstrating its efficacy in accurately identifying significantly

differentiated metabolites. ML’s capability to handle high-

dimensional, non-independent, and multicollinear metabolomics

data enhances our ability to discern intricate patterns in autism-

related metabolomic profiles (9).

As such, our aim was to investigate the metabolic profiles of

autism using an extensive untargeted metabolomics platform. The

objective was to identify distinct metabolites and metabolic

pathways associated with autism, thereby fostering exploration
02
and comprehension of the underlying biological mechanisms. The

integration of ML further contributes to gaining insights for the

development of a predictive or diagnostic tool. This holds promise

for enhancing early screening and diagnosis procedures for autism.
Methods

Study participants

The autistic children were enrolled at the Neurology

Department of Guangzhou Women and Children's Medical

Center between September 2018 and October 2020. The typically

developing children without a family history of autism, matched by

age, were also enrolled from kindergarten in Guangzhou. Inclusion

criteria for autistic children were as follows: 1) the Diagnostic and

Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) (1).

2) the Autism Diagnostic Observation Schedule (ADOS) (10) and

the Autism Diagnostic Interview-Revised (ADI-R) (11), both of

which have demonstrated high reliability and validity in diagnosing

autism in children. 3) aged between 1 and 14 years, with those

diagnosed before two years of age followed up to confirm the

diagnosis by at least two years old. 4)Children associated with

neurologic, genetic, metabolic, degenerative, or childhood

disintegrative disorders were excluded. In addition, demographic

information was collected, and the clinical phenotypes of autistic

children were assessed. Written consent was obtained for the

recruitment of participants. The study was approved by the

Guangzhou Women and Children’s Medical Center Ethics

Committee (2018031402).

Covariate data were collected at enrollment and included

information such as gender, race, age (in years), birth weight (in

kilograms), birth height (in centimeters), gestational week, delivery

mode, maternal age at birth (in years), and paternal age at birth (in

years). Gender was categorized as male or female. Gestational age was

divided into preterm (< 37 weeks) and full-term (37 to less than 42

weeks). Delivery mode was categorized as either vaginal birth or

cesarean. Additionally, information on gender, race, age, birth weight,

birth height, maternal age, and paternal age at birth were treated as

continuous variables.
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Sample collection

The urine of the subjects was collected after fasting for more

than 4 hours. Following centrifugation, 150ml of each sample was

stored in an Eppendorf tube and rapidly frozen at -80°C.
Untargeted metabolomic analysis

All samples were acquired by the LC-MS auto-sampling system

with random orders in the positive and negative ion modes. The

analytical conditions were as follows, Ultra-Performance Liquid

Chromatography (UPLC): column, Waters ACQUITY UPLC HSS

T3 C18 (1.8mm, 2.1 mm*100 mm); column temperature, 35°C; flow

rate, 0.3 mL/min; injection volume, 1mL; solvent system, water

(0.01% methanolic acid):acetonitrile; gradient program of positive

ion, 95:5V/V at 0 min, 79:21 V/V at 3.0 min, 50:50 V/V at 5.0

min,30:70 V/V at 9.0 min, 5:95 V/V at 10.0 min, 95:5 V/V at 14.0

min; gradient program of negative ion, 95:5 V/V at 0 min, 79:21 V/

V at 3.0 min, 50:50 V/V at 5.0 min, 30:70 V/V at 9.0 min, 5:95 V/V

at 10.0 min, 95:5 V/V at 14.0 min. The Proteo Wizard software

transformed the raw data file from LC-MS analysis into mzML

format. The XCMS program was manipulated for peak extraction,

alignment, and retention time correction. Filter the peaks with a

defect rate > 50% in each group of samples. Finally, the metabolic

identity information was acquired by matching the laboratory’s self-

built database and the public database and metDNA. In the study,

quality control (QC) samples (the mixed samples) were inserted

into the line to assess the repeatability and reliability of the

instrument in every 15 samples. The total ion flow diagram (TIC

diagram) of different QC samples presented the instrument’s

stability. The higher the overlap of the TIC diagram, the better

the stability of the mass chromatogram signal to the same sample at

different times.
Statistical analysis

Following the previous study (12), we meticulously processed

the data. The categorical variables underwent comparison through

the chi-squared test. Non-normally distributed continuous

variables were assessed using the Wilcoxon rank-sum test.

Normally distributed continuous variables were compared using

the T-test. Employing multivariate statistical analyses, including

principal component analysis (PCA), partial least squares

discriminant analysis (PLS-DA), and orthogonal partial least

squares discriminant analysis (OPLS-DA), we delved into the

metabolite profiles distinguishing autistic children from typically

developing children. Utilizing criteria such as Fold Change (FC)

variations and Variable Importance in Projection (VIP) values

(FC≥2/≤ 0.5 and VIP ≥1.0), we identified metabolites that

significantly differed between the two groups.

We performed four methods of ML as follows. Initially, Least

Absolute Shrinkage and Selection Operator (LASSO) was
Frontiers in Psychiatry 03
performed for the feature-selection analysis, leveraging the Lasso

to streamline the number of metabolites based on their future

importance and address the issue of metabolite multicollinearity.

LASSO was a regularization method for linear regression that

introduced an L1 regularization term in the loss function. This

term encouraged some of the model coefficients to become zero,

thereby achieving feature selection. The features selected by LASSO

were referred to as important variables. The study employed 10-fold

cross-validation to select features from the training set. Values of

alpha =0.1 and lambda=0.2 were finally selected as the optimal

regularization solution. Subsequently, we utilized logistic regression

(LR), support vector machine classification (SVM), random forest

(RF), and extreme gradient boosting (XGB) after adjustment for

gender, age, birth weight, birth length, gestational week, delivery

mode, maternal age at birth and paternal age at birth. The ML

models underwent training on 2/3 subsets, while the remaining 1/3

holdout subsets were employed for final model validation. To

ensure robustness and guard against overfitting, we conducted a

tenfold cross-validation repeated 500 times, thereby corroborating

the final results.

The biomarker features of each model were established with a

significance threshold of P<0.05 in logistic regression (LR). In SVM,

RF, and XGB models, metabolites were considered based on being

in the top 10% of the most-weighted features. The final features for

the model were selected by consensus, requiring a feature to be

identified by at least two modeling approaches. In order to

minimize the potential impact of confounding factors as much as

possible, the study also adjusted for the following variables such as

child gender, child’s age, birth weight, birth length, gestational

week, delivery mode, maternal age at birth, and paternal age at

birth. We introduced these confounding variables into the model,

treating them as analogous to a metabolite modeled alongside the

ultimately selected features, eliminating the impact of confounding

variables on the results.

Additionally, a sensitivity analysis was conducted, wherein ML

was employed to identify the most significant metabolites

specifically in males. Subsequent to this, pathway enrichment

analyses were executed, and significant pathway associations with

autism were reported based on a significance threshold of P<0.05.

The analytic flow chart is shown in Figure 1.
Result

The baseline of the study population

A total of 52 autistic and 40 typically developing children were

included. Among the 92 children, the median baseline age was 3.52

years, with 84.8% being male,89% identifying as Han ethnicity,

89.1% born at full term, and 67.4% of the children were delivered

vaginally. The mean birth weight was 3.27 ± 0.60 kg, and the mean

birth height was 49.97 ± 6.08 cm. Maternal age at birth was 30.89

years, while paternal age at birth averaged 32.99 years (Table 1).

The age distribution of all participants is shown Figure S1.
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Metabolic profiling using
untargeted metabolomics

The present study was conducted utilizing an integrated

platform capable of detecting 8949 compounds in positive ion

mode and 7866 compounds in negative ion mode. Specifically,

186 compounds were examined in positive ion mode, while 181

were examined in the negative ion mode.

In this study, the Total Ion Chromatogram (TIC) diagram from

mass chromatogram analysis of quality control samples

demonstrated excellent stability of the instrument, ensuring the

repeatability and reliability of the data (Figure 2). Principal

Component Analysis (PCA) assessed the extent of variation and

the overall metabolic differences. Notably, in our investigation, the

QC samples did not exhibit separation, indicating the robust

stability of the instrument (Figure S2).
Identification of differential metabolites by
traditional methods

The metabolomic data were illustrated through the score map of

Partial Least-Discriminant Analysis (OPLS-DA) in both positive and

negative ion mode, clearly demonstrating the distinctions between

the autism and control group (Figures 3A, B). Model permutation

tests were conducted in positive ion mode (R2X=0.275, R2Y=0.835,

Q2 = 0.723) and negative ion mode (R2X=0.233, R2Y= 0.746, Q2 =

0.556), indicating robustness (Figures 3C, D).

Among the detected metabolites, our study examined the

differential compounds based on both Fold Change (FC)

variations (Figures 4A, B) and Variable Importance in Projection

(VIP) values (Figures 4C, D) (FC≥2/≤ 0.5 and VIP ≥1.0).

The screening differential metabolites in the positive and negative

ion modes were visualized in the volcano map (Figures 4E, F).
FIGURE 1

The analytic flow chart for identifying differential metabolites associated with autism. UHPLC/Q-TOF-MS, ultra-high performance liquid
chromatography-quadrupole time-of-flight mass spectrometry; OPLS-DA, orthogonal partial least square discriminant analysis; LR, Logistic
regression; RF, Random forest; SVM, support vector machine; XGB, Extreme gradient boosting; ROC-AUC, receiver-operator area-under-the-curve;
PR-AUC, precision-recall area-under-the-curve; MCC, Matthews correlation coefficient; KEGG, Kyoto Encylopedia of Genes and Genomes.
TABLE 1 Baseline characteristics of participants.

Characteristic

case chil-
dren

(n=52)

typical
children
(n=40)

total
(n=92)

male,n(%)a* 38(73.1) 40(100.0) 78(84.8)

race,n(%)a

Han 50(96.2) 39(97.5) 89(96.7)

Others 2(3.8) 1(2.5) 3(3.3)

age,median(IQR)a * 2.84(1.95) 3.69(0.44)
3.52

(1.22)

birthweight,mean(SD)c 3.24(0.57) 3.31(0.63)
3.27

(0.60)

birthlength,mean(SD)c 50.67(4.84) 49.05(7.35)
49.97
(6.08)

Gestational Weeks

Preterm 3(5.8) 7(17.5) 10(10.9)

fullterm 49(94.2) 33(82.5) 82(89.1)

Delivery Modea

cesarean delivery 15(28.8) 15(37.5) 30(32.6)

vaginal delivery 37(71.2) 25(62.5) 62(67.4)

maternal age at birth,
median(IQR)b * 28.74(4.75) 32.61(3.76)

30.89
(5.37)

paternal age at birth,
median(IQR) b* 30.72(5.39) 35.10(4.08)

32.99
(6.61)
IQR, interquartile range; SD, standard deviation.
aCategoric variables were compared by a chi-squared test.
bContinuous variables without normal distribution were compared by Wilcoxon rank-
sum test.
cContinuous variables with normal distribution were compared by T-test.
*There was a significant difference between autistic children and typically developing
children, p<0.05.
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A

B

FIGURE 2

Total ion flow diagram (TIC) of mass chromatograms analysis of quality control samples. (A) in positive ion mode; (B) in negative ion mode.
A B

DC

FIGURE 3

All the detected metabolites were presented as (A) OPLS-DA score map, positive ion mode; (B) OPLS-DA score map, negative ion mode; (C)
Permutation test, positive ion mode; (D) permutation test, negative ion mode.
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FIGURE 4 (Continued)

Differential metabolites between autistic children and typically
developing children were shown by: (A) Fold change, positive ion
mode; (B) Fold change, negative ion mode; (C) VIP value, positive
ion mode; (D) VIP value, negative ion mode; (E) Volcano plot,
positive ion mode; (F) Volcano plot, negative ion mode.
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Identification of differential metabolites
by ML

Lasso feature selection
Lasso regression was employed to filter candidate metabolites,

resulting in the selection of 92 metabolites (Table S1). The various

parameters during LASSO feature selection are presented in Table

S2. Ultimately, we chose alpha=0.1 and lambda=0.2 as the optimal

regularization solution.

The most significant features were chosen based on their

significance in three out of the four modeling approaches.

Subsequently, our focus narrowed down to seven key metabolites,

including Prostaglandin E2, Phosphonic acid, Phenylalanine

Phenylalanine Threonine (Phe Phe Thr), Lysine Lysine Threonine

(Lys Lys Thr), and others (Table 2). The models’ performance was

evaluated using four evaluation metrics; four indicators of receiver-

operator area-under-the-curve (ROC-AUC), precision-recall area-

under-the-curve (PR-AUC), F1 score, and Matthews correlation

coefficient (MCC), as presented in Table 3. The difference in

significant metabolites selected by ML between autistic children

and typically developing children was illustrated through Boxplots

(Figure 5). Sensitivity analyses consistently yielded comparable

results, with the most significant metabolites chosen in male

participants by ML aligning with those of the entire population.

(Table S3).

KEGG functional enrichment analysis
KEGG enrichment analysis was conducted to unveil the

metabolic pathways most relevant to autism. Notably, the

Phosphatidylinositol signaling system (P = 0.0002) and Inositol

phosphate metabolism (P = 0.0002) emerged as identified pathways

with potential significance in the context of autism (Figure 6)
Discussion

In this study, machine learning (ML) was utilized to examine

urine metabolite profiles in autistic children in comparison to

typically developing children. Significantly distinct metabolites,

including prostaglandin E2, lysine, and phosphonic acid, were

identified as associated with autism. Additionally, KEGG functional

enrichment analysis highlighted the significantly perturbed metabolic

pathway primarily attributed to phosphatidylinositol and inositol

phosphate metabolism.
A

B

D

E

F

C

FIGURE 4 (Continued)
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Our study suggested a potential role for prostaglandin E2

ethanolamide (PGE2-EA) in the pathogenesis of autism. In our

study, a potential role for PGE2-EA in autistic children was

observed to be lower compared to typically developing children.

PGE2-EA is a naturally occurring neutral lipid derivative of

prostaglandins synthesized in vivo through COX-facilitated

oxygenation of arachidonoyl ethanolamine (anandamide) (13).

Similar to PGE2, PGE2-EA can bind to all four Prostaglandin E

Receptor subtypes (EP1–EP4), implying that PGE2-EA is likely to

exhibit similar biological actions compared to PGE2 (14).

Additionally, PGE2-EA has been reported to restrain the

inflammatory response of human monocytic cells by inhibiting

the level of TNF-a (13) and it can be generated by inflammatory

cells such as human monocytes. However, further exploration is

required to determine if the quantity of PGE2-EA synthesized is

pathophysiologically related to the inflammatory conditions

observed in autism. While few studies have reported the

association between autism and PGE2-EA in urine or blood,

previous studies has linked prostaglandin E2 (PGE2) to autism.

Qasem L et al (15) observed the highest level of PGE2 in the plasma

of neurotypical controls and the lowest level in autistic individuals.

They also reported that the lower level of PGE EP2 in plasma was

associated with the severity of autism, with a lower PGE EP2 level
Frontiers in Psychiatry 07
correlating with lower CARS scores. Furthermore, PGE2 is closely

related to the Wnt signaling pathway, which regulates neuronal

connectivity and may be implicated in the development of autism

(16, 17). PGE2 has also been reported to be associated with the

activation of microglia, a process linked to autism (18). Our study is

the first to observe lower levels of PGE2-EA in the urine of autistic

children compared to healthy controls. However, further

investigation is needed to determine whether the biological

functions of PGE2-EA are similar to those of PGE2 and whether

the unique biological functions of PGE2-EA are related to autism.

Our investigation revealed decreased levels of amino acid

metabolites, including lysine, threonine, and phenylalanine, which

were found to be associated with autism. Autistic children often

experience selective eating habits and gastrointestinal microbiota

imbalances, potentially leading to reduced protein intake, and/or

inadequate digestion and absorption into amino acids. Additionally,

studies have reported a connection between fecal microbiota and

abnormal amino acid metabolism, affecting amino acids such as

histidine, lysine, tyrosine, phenylalanine, and tryptophan (19–23).

Liu A et al. specifically highlighted decreased lysine metabolism in

the urine of autistic children (24). Lysine, being an essential amino

acid, is susceptible to degradation during processing. Our findings

align with previous research showing a decreased level of threonine in
TABLE 2 Implicated metabolites based on multiple modeling approaches.

Metabolite Class. I Class. II VIP p-value Fold Change Approaches Implicated

Lys Lys Thr – – 4.526 <0.001 <0.05 LR, RF, SVM

Phosphonic acid Benzenoids
Benzene and
substituted derivatives 4.515 <0.001 <0.05 LR, RF, SVM, XGB

Prostaglandin E2
ethanolamide

Lipids and lipid
-like molecules Fatty Acyls 4.513 <0.001 <0.05 LR, RF, SVM

Phe Phe Thr – – 4.582 <0.001 <0.05 LR, RF, SVM

Icaceine
Lipids and lipid
-like molecules

Steroids and steroid
derivatives 4.553 <0.001 <0.05 LR, RF, SVM

Karacoline
Lipids and lipid
-like molecules Prenol lipids 4.510 <0.001 <0.05 LR, RF, SVM, XGB

5-Nonadecylresorcinol Benzenoids Phenols 4.610 <0.001 <0.05 LR, RF, SVM
VIP, variable importance in projection; Lys Lys Thr, Lysine Lysine Threonine; Phe Phe Thr, Phenylalanine Phenylalanine Threonine; LR, logistic regression; RF, random forest; SVM, support
vector machine classification; XGB, extreme gradient boosting.
TABLE 3 ML model performance exceeds no-skill prediction in 1/3 holdout subsets based on four evaluation metrics.

Model ML Model Performance Metric

ROC-AUC PR-AUC F1 Score MCC

No-skill 0.5 0.5 0.5 0.5

SVM 1 1 1 1

RF 1 1 1 1

XGB 1 1 1 1
The results were not changed before and after adjusting confounding variables. Adjusted confounding variables included child gender, child’s age, birth weight, birth length, gestational week,
delivery mode, maternal age at birth, and paternal age at birth. ROC-AUC may overestimate model performance with a lower case prevalence. PR-AUC excels in disposing of the skewed case
distribution. The F1 score is a harmonic mean of precision and recall, with 0 being equivalent to no-skill and 1 being perfect prediction. Similar to the F1, MCC includes true negatives, with-1
being perfect negative prediction and 0 being perfect positive prediction.
LR, logistic regression; RF, random forest; SVM, support vector machine classification; XGB, extreme gradient boosting; ROC-AUC, receiver-operator area-under-the-curve; PR-AUC, precision-
recall area-under-the-curve; MCC, Matthews correlation coefficient.
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FIGURE 5 (Continued)

The difference in significant metabolite selected by machine
learning between autistic children and typically developing children
Y-axis represents Z-score.
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the urine of autistic children compared to controls (25). Furthermore,

phenylalanine, essential for tyrosine transformation (26), exhibited

decreased levels in the plasma of autistic children compared to

typically developing children (27, 28). The well-established

connection between abnormal phenylalanine metabolism and severe

neurological symptoms, as observed in phenylketonuria, a condition

often associated with symptoms of autism (29, 30), reinforces our data.

Our data suggested a potential association between autism and gut

microbiome-derivedmetabolites. Recent studies have linked abnormal

expression of tyrosine and tryptophan to increased disruptive behavior

in autistic children without regression (31). The altered levels of amino

acid metabolites produced by gut bacteria may serve as potential

markers for autism (32). The abnormal amino acid metabolism found

in this study provides the opinion for early screening and targeted

intervention of autism. Further investigation into the profiles of

microbiome-derived metabolites in autism and their role in autism

development is essential.

Our study reveals, for the first time, a correlation between the level

of phosphatidic acid in urine and autism. Phosphatidic acid is a potent

and specific inhibitor of phosphatidylinositol-3 (PI3)-kinase (33), a key

player in the PI3K-AKT-MTOR signaling pathway that may regulate

the pathogenesis of autism. PI3K activation is crucial for cell division

stimulation, apoptosis inhibition, and the proliferation/differentiation

of synaptic and neural circuit development from prenatal to early

postnatal stages (34). In our investigation, phosphatidic acid emerged

as a potential metabolite involved in the etiology of autism.

Phosphatidic acid also acts as a potent and specific inhibitor of

phospholipase A2 (PLA2), an enzyme vital for maintaining

membrane phospholipids. There are three major types of PLA2

enzymes: the calcium-dependent group IV cytosolic PLA2, the group

II secretory PLA2, and the group VI calcium-independent PLA2 (35,

36). Increased PLA2 levels in blood have been associated with

psychiatric disorders such as autism, depression, and bipolar disorder

(37, 38). Previous studies pointed out that there are three single

nucleotide polymorphisms in the gene encoding for cytosolic PLA 2

linked to the etiology of schizophrenia (39, 40). The genes encoding

human calcium-independent PLA 2 and secretory PLA 2 are associated

with autism (41–43). The altered levels of arachidonic acid and DHA in

autistic children may be attributed to abnormalities in PLA 2. Altered

levels of arachidonic acid and DHA in autistic children may be

attributed to abnormalities in PLA2, with elevated activity of type IV

PLA2 reported in children with autism and Asperger’s syndrome (37,

44), suggesting an abnormal lipid signaling pathway in autism.

The variations in urinary metabolites indicate differences in

metabolic mechanisms between autistic children and typically

developing children to some extent. It is noteworthy that this study

did not conduct further non-target or targeted analyses of metabolites

FIGURE 5 (Continued)
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in serum. Future investigations should aim to validate the expression of

differentially screened metabolites in serum between autistic children

and typically developing children. Differential metabolites and their

downstreammetabolites, such as prostaglandin E2, and dopamine, can

significantly impact brain development by crossing the blood-brain

barrier (45, 46). Phenylalanine, crucial for the transformation of

tyrosine, serves as a precursor to dopamine, which is associated with

ASD development (27, 28, 45). Prostaglandin E2 acts as a vital signaling

molecule, exerting its effects through the activation of respective G-

protein-coupled receptors (46). The prostaglandin E2 played important

roles in neurodevelopment including synaptic plasticity and long-term

potentiation or inflammation (47). Arachidonic acid, a precursor of key

lipid mediators like prostaglandin E2, is released by PLA 2 from the sn-

2 position of phospholipids (35, 36), and PLA 2 is considered to play a

pivotal role in neurodevelopment (48).

In addition, karacoline, icaceine, and 5-Nonadecylresorcinol were

also identified as differential metabolites between autistic children and

typically developing children. However, the role of these metabolites in

autism based on experimental studies remains poorly documented.
Frontiers in Psychiatry 09
Future investigations are warranted to explore the connection between

these metabolites and the development of autism.
KEGG functional enrichment

The present study first suggested that the alterations of the

phosphatidylinositol signaling pathway and the inositol phosphate

metabolism pathway might contribute to the pathophysiology of

autism. The phosphoinositide signaling pathway and myoinositol

were also reported to be associated with epilepsy by the action on

gamma amino butyric acid-A receptors (49). Recent literature

reported that epilepsy was one of the most common comorbidities

of autism and the updated pooled prevalence of epilepsy in autistic

individuals was 10% (95% CI: 6%–14%) (50). Our findings indicated

that there might be a possible pathway for autism and epilepsy. In the

present study, we have also identified the increased inositol 1,3-

bisphosphate (1,3-IP 2) and myo-Inositol(I) of urine of autistic

children, which are associated with the phosphatidylinositol
A

B

FIGURE 6

KEGG pathway (A) positive ion mode; (B) negative ion mode KEGG pathway enrichment was performed based on the differential metabolites. The
rich factor is the ratio of the number of differentially expressed metabolites in the corresponding pathway to the total number of metabolites
detected and annotated in the pathway. The larger the value, the higher the enrichment degree. The p-value is closer to 0, the enrichment is more
significant. The size of the dots represents the number of differentially significant metabolites enriched in the corresponding pathway.
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signaling pathway and the inositol phosphate metabolism pathway.

Consistent with our findings, recent studies have reported an elevated

myo-inositol level in the autism group compared to the typically

developing (TD) group (51, 52). The autism spectrum disorder group

demonstrated significantly higher myo-inositol/creatine ratios in the

hippocampus-amygdala and cerebellar regions (53). In the TD group,

myo-inositol/creatine ratios in the left and right hippocampus-

amygdalas exhibited an inverse relationship with performance,

verbal, and full-scale IQ scores (53). Myo-inositol, primarily located

in astrocytes, is associated with high myo-inositol/creatine ratios,

indicating an abnormal condition characterized by increased glial

cells or myelin degradation (54). Therefore, the higher myo-inositol

level may explain increased overall cellular growth and size in the

right hippocampus-amygdala of autistic children (53). The upstream

metabolites of IP3 are respective 1,3,4-bisphosphate (1,3,4-IP3) and

inositol 1,3,4,5-bisphosphate (1,3,4,5-IP4), while the downstream are

inositol 1-phosphate (1-IP) and myo-Inositol (I) (55, 56). These

metabolisms involved the PI3K-AKT-MTOR signaling pathway (57,

58). Previous studies demonstrated that the PI3K-AKT-MTOR

signaling pathway might regulate the pathogenesis of autism (59, 60).
Strength and limitation

This study represents the first comprehensive exploration of the

metabolic profiles in the urine of autistic children utilizing ML. ML,

adept at handling high-dimensional, non-independent, and

multicollinear metabolomics data, played a crucial role in

identifying robust associations between differential metabolites

and autism. Pathway enrichment analyses were incorporated to

recognize associated pathways rather than individual metabolites,

leveraging the multicollinearity of metabolites. Additionally, the

diagnosis of autistic children adhered to DSM-5 criteria by two

neuropsychiatrists, complemented by interviews with ADOS and

ADI-R. Furthermore, urine samples were collected at the diagnostic

point from the autistic children cohort, promptly divided, and

frozen at -80°C to mitigate the potential impact of repeated

freeze-thaw cycles, thereby enhancing the study’s validity.

Despite these strengths, several limitations merit consideration.

Firstly, the observational nature of the study introduces the possibility

of residual or unmeasured confounding factors influencing the

associations between differential metabolites and autism. Efforts

were made to adjust for confounding variables, and the results

exhibited good consistency post-adjustment. Secondly, the

observational design restricts causal inference. Thirdly, the absence

of females in the typically developing children cohort is a notable

limitation. However, a sensitivity analysis, including only male

autistic children, yielded consistent results. Fourthly, the lack of a

validation set in the study prevents the independent verification of

results. Fifthly, the small sample size may limit statistical power,

emphasizing the need for large-scale population studies to validate

the findings. Lastly, there was a discordance in age distribution

between autistic children and typically developing children.
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Conclusion

The present study unveiled a spectrum of dysmetabolism profiles

potentially implicated in autism, potentially implicated in autism

prostaglandin E2, phosphonic acid, and so on. The alterations of the

phosphatidylinositol and the Inositol phosphate pathway may

contribute to the pathophysiology of autism. Leveraging

metabolomics and novel analytical approaches not only sheds light

on these dysmetabolic profiles but also paves the way for future

investigations aimed at advancing early screening, precise diagnosis,

and a deeper understanding of the pathophysiological mechanisms

underlying autism.
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