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Background: Machine learning is a promising tool in the area of suicide

prevention due to its ability to combine the effects of multiple risk factors and

complex interactions. The power of machine learning has led to an influx of

studies on suicide prediction, as well as a few recent reviews. Our study

distinguished between data sources and reported the most important

predictors of suicide outcomes identified in the literature.

Objective: Our study aimed to identify studies that applied machine learning

techniques to administrative and survey data, summarize performance metrics

reported in those studies, and enumerate the important risk factors of suicidal

thoughts and behaviors identified.

Methods: A systematic literature search of PubMed, Medline, Embase, PsycINFO,

Web of Science, Cumulative Index to Nursing and Allied Health Literature

(CINAHL), and Allied and Complementary Medicine Database (AMED) to

identify all studies that have used machine learning to predict suicidal thoughts

and behaviors using administrative and survey data was performed. The search

was conducted for articles published between January 1, 2019 and May 11, 2022.

In addition, all articles identified in three recently published systematic reviews

(the last of which included studies up until January 1, 2019) were retained if they

met our inclusion criteria. The predictive power of machine learning methods in

predicting suicidal thoughts and behaviors was explored using box plots to

summarize the distribution of the area under the receiver operating

characteristic curve (AUC) values by machine learning method and suicide

outcome (i.e., suicidal thoughts, suicide attempt, and death by suicide). Mean

AUCs with 95% confidence intervals (CIs) were computed for each suicide

outcome by study design, data source, total sample size, sample size of cases,

and machine learning methods employed. The most important risk factors

were listed.

Results: The search strategy identified 2,200 unique records, of which 104

articles met the inclusion criteria. Machine learning algorithms achieved good

prediction of suicidal thoughts and behaviors (i.e., an AUC between 0.80 and
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0.89); however, their predictive power appears to differ across suicide outcomes.

The boosting algorithms achieved good prediction of suicidal thoughts, death by

suicide, and all suicide outcomes combined, while neural network algorithms

achieved good prediction of suicide attempts. The risk factors for suicidal

thoughts and behaviors differed depending on the data source and the

population under study.

Conclusion: The predictive utility of machine learning for suicidal thoughts and

behaviors largely depends on the approach used. The findings of the current

review should prove helpful in preparing future machine learning models using

administrative and survey data.

Systematic review registration: https://www.crd.york.ac.uk/prospero/display_

record.php?ID=CRD42022333454 identifier CRD42022333454.
KEYWORDS

death by suicide, suicidal thoughts, suicide attempt, machine learning, predictive
risk factors
Introduction

Suicide is a significant public health problem. In 2019,

approximately 703,000 people died by suicide worldwide, for a

global age-standardized suicide mortality rate of 9.0 per 100,000

population (1). Given this burden, international goals to reduce the

suicide mortality rate have been set. Prevention is critical to

achieving such goals (2, 3). In 2021, the World Health

Organization released the LIVE LIFE: an implementation guide

for suicide prevention in countries, describing four effective

evidence-based interventions to prevent suicide (4). These include

1) limiting access to the means of suicide, 2) interacting with the

media for responsible reporting of suicide, 3) fostering socio-

emotional life skills in adolescents, and 4) early identification,

assessment, management, and follow-up of anyone at-risk of

suicidal behavior. With respect to the latter, identifying those at-

risk of suicidal behaviors (i.e., a target population) is critical. While

it has been suggested that history of suicidal ideation and past

suicide attempts could help predict future suicidal behavior (5), it is

evident that many more factors are involved, which makes

traditional prediction approaches inefficient (6).

While conventional prediction approaches apply statistical

models with a limited number of predictors, mediators, and

interactions, in the last decade, machine learning has become a

valuable tool with a lot of promise in the area of suicide prevention

due to its ability to combine the effects of multiple risk factors and

complex interactions (7). In addition, conventional prediction

techniques depend on the researcher’s definition of the

relationship between predictors and outcomes. However, machine
02
learning approaches can examine all potential relationships

repetitively and detect the most accurate prediction algorithm (7).

Given the power of machine learning for prediction purposes,

many studies have applied this technique to identify risk factors that

are predictive of suicidal thoughts and behaviors in recent years.

Thus, to extract applicable findings, existing systematic reviews

have investigated the extent to which these machine learning

techniques have been used and assessed the predictive validity of

published models (8–10). However, the existing systematic reviews

did not differentiate between data sources and have largely failed to

summarize the most important risk factors listed in the studies.

Considering the accessibility of administrative and survey data, the

current study aimed to identify all existing studies that applied machine

learning techniques to such data to predict suicidal thoughts and

behaviors. The objective was two-fold, to: i) summarize performance

metrics reported in the studies by study design, data source, sample size

and type of machine learning methods; and ii) enumerate predictors

identified in the studies as important contributors to the model

performance at predicting suicidal thoughts and behaviors by study

design, data source, and suicide outcomes.
Methods

The current systematic review is reported according to the

Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) 2020 statement (11). The protocol was

registered with the International Prospective Register of Systematic

Reviews (PROSPERO, registration number CRD42022333454).
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Outcome definitions

The following outcomes were of interest: suicidal ideation, suicide

plan, suicide attempts, and death by suicide; the definitions of which

are in line with those of the Center for Disease Control and

Prevention (12). The term suicidal thoughts is used herein to

capture suicidal ideation and suicide plans. Suicidal ideation was

defined as thoughts of engaging in suicide-related behavior; and

suicide plan was defined as a thought regarding a self-initiated action

that facilitates self-harm behavior or a suicide attempt; this will often

include an organized manner of engaging in suicidal behavior, such

as a description of a time frame and method. Suicide attempt was

defined as a non-fatal self-directed potentially injurious behavior with

any intent to die as a result of the behavior, and death by suicide was

defined as death caused by self-directed injurious behavior with any

intent to die as a result of the behavior.
Search strategy and selection criteria

A systematic literature search of PubMed, Medline, Embase,

PsycINFO, Web of Science, Cumulative Index to Nursing and

All ied Heal th Literature (CINAHL), and All ied and

Complementary Medicine Database (AMED) was performed to

identify all studies that have used machine learning to predict

suicidal thoughts and behaviors with administrative or survey data

(keywords are presented in Appendix 1). The searches were not

limited geographically or by language of publication. Considering

that three recent systematic reviews (8–10) have been published in

this field, we conducted our search for articles published between

January 1, 2019 and May 11, 2022. We retained all articles identified

in the respective systematic reviews, if they met our inclusion criteria.

The citations in all included articles were also manually screened. To

ascertain our findings, we conducted an independent search (i.e.,

ignoring the results of the three systematic reviews) using the same

keywords and including published studies through May 11, 2022.
Inclusion and exclusion criteria

Articles were included if they i) consisted of original,

quantitative research published in a peer-reviewed journal or

scholarly report; ii) used a machine learning method to predict a

suicide outcome (suicidal ideation, suicide plan, suicide attempt,

and/or death by suicide); and iii) used either an administrative or

survey dataset containing individual-level data.

Articles were excluded if they performed a machine learning

technique (e.g., natural language processing) to scan social media

platforms to detect suicidal thoughts and behaviors. There was no

restriction on population or study setting.
Study selection and data extraction

Two investigators performed title and abstract screening and

full-text reviews independently. Conflicts in study identification
Frontiers in Psychiatry 03
were resolved in conjunction with the third investigator. All

screening was completed using EndNote 20, and data extraction

was completed by one investigator using a template created in

Microsoft Excel and cross-checked by the other two investigators.

The following variables were extracted: country, study design, study

duration, data source, study population, sample size, number of

cases and controls, suicidal outcome, validation technique, machine

learning methods, relevant risk factors (or most important

predictive risk factors), and performance statistics, including

accuracy, sensitivity, specificity, positive predictive value, negative

predictive value, and area under the receiver operating

characteristic curve (AUC).
Risk of bias

Two investigators assessed the risk of bias using the Prediction

model study Risk of Bias Assessment Tool (PROBAST) (13). In the

presence of conflicts in evaluating the risk of bias in a study, the

third investigator was consulted, and the discrepancies were

discussed until a unanimous decision was taken. PROBAST

contains twenty signaling questions in four domains: participants,

predictors, outcome, and analysis. It also investigates the

applicability of studies in participants, predictors, and outcome

domains. Based on PROBAST, included studies were classified into

one of three categories: low, high, and unclear risk of bias

and applicability.
Statistical analysis

Our statistical analysis aims to summarize performance metrics

reported in the included studies. Meta-analysis is beyond the scope

here; more details can be found in (14, 15). Our descriptive analysis

includes two different steps. First, we used a box plot of the most

frequently reported performance statistics (i.e., the AUC) to explore

the predictive power of machine learning methods in predicting

suicidal thoughts and behaviors. Box plots were used to summarize

the distribution of the AUC values by suicide outcome and machine

learning method. Additionally, box plots helped identify AUC

values that differed significantly from the rest of the AUCs (i.e.,

outliers). The presence of these outliers may be due to the fact that

we did not consider only the AUCs for the best model – all AUCs in

the selected studies were reported. Note that an AUC of 0.5

indicates that the machine learning method performance is no

better than chance (i.e., random guesses). AUCs above 0.9 indicate

excellent prediction, between 0.80 and 0.89 good prediction, 0.70 to

0.79 fair prediction, 0.60 to 0.69 poor prediction and 0.50 to 0.59

extremely poor prediction (16). AUC interpretation can vary widely

depending on studies objectives and the trade-off between false

positives and false negatives. For example, suppose the objective was

to minimize the false negatives in suicidal thoughts and behaviors.

In that case, one might lower the above thresholds so that more

positive events are classified as positive. However, accounting for

the specific context of each included study is above the scope of this

review as the information was not reported in the included articles.
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We then considered the thresholds abovementioned to assess the

predictive power of each model and compare the models. Second,

we computed mean AUCs for all the models and the mean AUCs

for the best-performing models (i.e., with the higher AUCs) in each

article with 95% confidence intervals (CIs) by suicide outcomes (i.e.,

suicidal thoughts, suicide attempt, and death by suicide, as well as

all suicide outcomes combined) across different study subgroups

and machine learning methods. We regrouped the studies by study

design (cross-sectional and longitudinal), study data source

(administrative, survey, or both), total sample size (≤1,000, 1,000

to 10,000 and >10,000), and sample size of cases (≤200, 200 to 1,000,

and >1,000). We also regrouped the AUCs by machine learning

methods employed, namely Bayesian algorithms (naïve Bayes,

Bayesian network, or Bayesian additive regression trees), boosting

algorithms [gradient boosting tree, adaptive boosting (AdaBoost),

or extreme gradient boosting (XGBoost)], cox regression, decision

tree, K-nearest neighbors, linear discriminant analysis, logistic

regression, neural network, random forest, regularized regressions

(elastic net, least absolute shrinkage and selection operator (LASSO)

or ridge regression), super learner (i.e., a combination of machine

learning algorithms), and support vector machine.
Results

Study selection

The search strategy identified a total of 2,200 unique records, of

which 168 full-text articles were retrieved (Figure 1). After full-text
Frontiers in Psychiatry 04
assessment, 64 were excluded (the reasons for their exclusion are

presented in Appendix 2), and 104 articles were included.
Study characteristics

Over 85% (n=90) of eligible studies were published since 2017.

The majority of studies were from the United States (n=43, 41.4%),

followed by South Korea (n=17, 16.4%) and Canada (n=5, 4.81%).

Twenty-six studies used machine learning to predict suicidal

thoughts, 55 studies aimed to predict suicide attempts, and 19

studies predicted death by suicide (it should be noted that some

studies predicted more than one suicide outcome of interest). Survey

data (57.69%) was used more often than administrative data (n=41,

39.4% and n=60, 57.7%, respectively), and three (2.9%) studies used

both types of data. Over 60% (n=63) used a longitudinal study design,

while the remainder used a cross-sectional study design (one study

did not provide sufficient information to determine the study design).

Existing studies applied various machine learning methods, most of

which were supervised learning techniques, including logistic

regression (n=38, 17.9%), random forest (n=37, 17.4%) and

decision tree (n=30, 14.1%). K-fold cross-validation techniques

(with K=5 or 10) were the most used model’s performance

evaluation methods (n=67, 64%), followed by the hold-out method

(n=12, 12%) and bootstrap-based optimism correction methods

(n=6, 6%). 19 (18%) studies did not provide the algorithm

validation method. Cross-validation is usually the preferred method

because it allows the model to train on multiple train-test splits, better

indicating the model performance on unseen data. Please see
FIGURE 1

Flow chart.
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Supplementary Table 1 for more details on the characteristics of each

study included in the Supplemental Material.
Performance of applied machine
learning methods

Different metrics were used to evaluate model performance; of

104 included studies, a total of 84 studies reported the AUC (Mean =

0.807, 95% CI: 0.787-0.826, SD = 0.088, Median = 0.818, Range =

0.588-0.987). Additionally, 49 studies reported Accuracy (Mean =

0.822, 95% CI: 0.782-0.863, SD = 0.168, Median = 0.838, Range =

0.250-0.996). Sixty-four studies reported sensitivity or prediction of

the positive class (Mean = 0.682, 95% CI: 0.628-0.735, SD = 0.215,

Median = 0.742, Range = 0.128-1), and 59 studies described

specificity or prediction of the negative class (Mean = 0.809, 95%

CI: 0.765-0.853, SD = 0.168, Median = 0.820, Range = 0.25-1),

separately. Positive predictive value (PPV), or the percentage of

positively categorized cases that were actually positive was assessed

in 46 articles (Mean = 0.412, 95% CI: 0.315-0.508, SD = 0.325,

Median = 0.385, Range = 0.02-1), and 36 studies reported negative

predictive value (NPV), the proportion of negatively categorized cases

that were actually negative (Mean = 0.911, 95% CI: 0.875-0.947, SD =

0.107, Median = 0.963, Range = 0.600-0.999).

These results suggest that, on average, machine learning

algorithms achieved good prediction of suicidal thoughts and

behaviors. However, machine learning methods’ predictive power

appears to differ across suicide outcomes. Figures 2, 3 present the

distribution of the AUCs by machine learning methods for suicidal

thoughts, suicide attempts, and death by suicide, as well as all

suicide outcomes combined in a box plot. Although the figure

displays a few outliers, the AUCs for boosting algorithms were

closer to 0.9 than the other algorithm’s AUCs when predicting

suicidal thoughts, death by suicide, and all suicide outcomes

combined (Figure 3). Neural network algorithm AUCs were

concentrated around the highest AUC value in predicting suicide

attempts (with nearly all the AUC values between 0.8 and 0.9,

indicating good prediction). This algorithm was the second best at

predicting death by suicide and all suicide outcomes combined.

Random forest and support vector machine were the second-best

algorithms at predicting suicide attempts and suicidal thoughts,

respectively, with the majority of the AUCs between 0.8 and 0.9. It

should be noted that the AUCs of the support vector machine were
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around 0.7 (the smallest) for death by suicide and suicide attempt

prediction. The AUCs of the K-nearest neighbors algorithm were

between 0.6 and 0.79 for suicidal thoughts, suicide attempts, and all

suicide outcomes combined.

In addition, logistic regression displayed relatively lower AUCs

and more variability than the other machine learning methods

overall, except for death by suicide. However, boosting algorithms

and neural network performed better than the logistic regression at

predicting death by suicide (Figure 2). The mean AUCs in Table 1

indicate that overall, logistic regression, neural network, boosting

algorithms, neural network, K-nearest neighbors, regularized

regressions, and random forest had an average AUC of between

0.80 and 0.89 (i.e., good prediction of suicidal thoughts and

behaviors). Table 1 also shows heterogeneity in the performance

of machine learning methods across suicide outcomes.
The average performance of machine
learning methods for predicting suicidal
thoughts and behaviors by study design,
data source, and sample size

The performance of machine learning methods at predicting

suicidal thoughts and behaviors, on average, was similar across the
B CA

FIGURE 2

Box plot of machine learning method area under the receiver operating characteristic curve for (A) suicidal thoughts, (B) suicide attempt and
(C) death by suicide.
FIGURE 3

Box plot of machine learning method area under the receiver
operating characteristic curve for suicidal thoughts and
behaviors combined.
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type of study design and suicide outcomes, with mean AUCs

ranging from 0.75 to 0.84 (Table 1). However, machine learning

methods achieved the highest average AUC (0.915, 95% CI: 0.880-

0.949) at predicting suicidal thoughts with administrative data (vs

0.801, 95% CI: 0.777-0.826 with survey data). The average

performance of machine learning methods was similar in

predicting death by suicide and suicide attempt across the two

data sources, with mean AUCs between 0.75 and 0.80. Overall, the

prediction of suicidal thoughts and suicide behaviors displayed

higher AUCs on average as the sample size increased (Table 1).

Similar results were found with the target sample size (i.e., the

sample of individuals with suicidal thoughts or suicide behaviors).
Frontiers in Psychiatry 06
The best-performing machine learning
methods average performance in
predicting suicidal thoughts and behaviors
by study design, data source, and
sample size

Overall, the average best-performing methods for higher AUC

were support vector machine, random forest, boosting algorithms,

neural network, regularized regressions and super learner with

AUCs greater than 0.8 (Table 2). Logistic regression had the

lowest AUC (0.789, 95% CI: 0.737-0.841). However, logistic

regression performed better than the support vector machine in
TABLE 1 The mean AUC of all the models (95% confidence interval) for predicting suicide outcomes by study design, data source, sample size, and
type of machine learning methods.

Suicidal thoughts Suicide attempt Death by suicide Overall

Study design

Cross-sectional 0.844 (0.821 - 0.868) 0.808 (0.777 - 0.840) 0.750 (0.671 - 0.828) 0.801 (0.780 - 0.823)

Longitudinal 0.833 (0.798 - 0.867) 0.790 (0.774 - 0.807) 0.799 (0.780 - 0.818) 0.800 (0.788 - 0.812)

Data source

Administrative 0.915 (0.880 - 0.949) 0.792 (0.774 - 0.810) 0.799 (0.780 - 0.818) 0.816 (0.802 - 0.830)

Survey 0.801 (0.777 - 0.826) 0.802 (0.777 - 0.826) 0.750 (0.671 - 0.828) 0.788 (0.771 - 0.805)

Administrative & Survey – 0.788 (0.746 - 0.829) – 0.788 (0.746 - 0.829)

Total Sample size

≤1,000 0.847 (0.815 - 0.879) 0.764 (0.735 - 0.793) – 0.768 (0.744 - 0.792)

1,001-10,000 0.839 (0.810 - 0.867) 0.787 (0.770 - 0.804) 0.777 (0.709 - 0.846) 0.805 (0.789 - 0.821)

>10,000 0.771 (0.640 - 0.903) 0.859 (0.826 - 0.892) 0.794 (0.774 - 0.814) 0.816 (0.798 - 0.833)

Target sample size

≤200 0.885 (0.845 - 0.925) 0.775 (0.756 - 0.794) 0.797 (0.732 - 0.862) 0.797 (0.780 - 0.815)

201-1,000 0.803 (0.780 - 0.826) 0.829 (0.792 - 0.866) 0.767 (0.730 - 0.804) 0.794 (0.776 - 0.813)

>1,000 0.771 (0.640 - 0.901) 0.828 (0.796 - 0.859) 0.813 (0.792 - 0.834) 0.813 (0.795 - 0.831)

Machine learning method

Bayesian algorithms – 0.804 (0.552 - 1.055) – 0.764 (0.698 - 0.829)

Boosting algorithms 0.767 (0.682 - 0.853) – 0.864 (0.678 - 1.050) 0.775 (0.694 - 0.855)

Cox regression 0.828 (0.794 - 0.861) 0.741 (0.685 - 0.797) 0.789 (-0.491 - 2.069) 0.762 (0.731 - 0.793)

Decision tree 0.746 (0.699 - 0.793) 0.660 (0.609 - 0.711) 0.795 (0.713 - 0.877) 0.729 (0.682 - 0.777)

K-nearest neighbors 0.828 (0.793 - 0.864) – – 0.828 (0.793 - 0.864)

Linear discriminant analysis 0.794 (0.686 - 0.902) 0.717 (0.673 - 0.761) – 0.746 (0.713 - 0.778)

Logistic regression 0.883 (0.780 - 0.985) 0.866 (0.828 - 0.905) 0.800 (0.764 - 0.835) 0.850 (0.819 - 0.881)

Neural network 0.860 (0.822 - 0.899) 0.842 (0.814 - 0.870) 0.808 (0.755 - 0.861) 0.846 (0.826 - 0.866)

Random forest 0.810 (0.679 - 0.941) 0.816 (0.793 - 0.839) 0.828 (0.793 - 0.863) 0.804 (0.784 - 0.825)

Regularized regressions 0.833 (0.719 - 0.948) 0.790 (0.718 - 0.862) 0.776 (0.728 - 0.825) 0.819 (0.793 - 0.846)

Super learner 0.862 (0.720 - 1.005) 0.712 (0.616 - 0.808) 0.799 (0.756 - 0.841) 0.771 (0.699 - 0.843)

Support vector machine 0.862 (0.720 - 1.005) 0.712 (0.616 - 0.808) 0.660 (0.471 - 0.849) 0.771 (0.699 - 0.843)
AUC, Area under the receiver operating characteristic curve.
The symbol "-" means no data is available to compute the summary statistics in the cell.
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the prediction of suicide attempts. Regarding suicidal thoughts, the

best-performing method remained the support vector machine

(AUC=0.930, 95% CI: 0.040-1.819) on average. Table 2 also

indicated that the performance of the best-performing models

was, on average, similar across the study design, the data source,

and the sample size for all the suicide outcomes. However, we found

no evidence of an upward trend of AUCs over time, suggesting that

our study did not observe the positive influence of technological and

model improvements over time on the machine learning model’s

predictive power.
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The most important predictive risk factors
of suicidal thoughts and behaviors
reported in the included studies

The best-performing algorithm was used in each study to

identify important predictive risk factors for suicide outcomes.

The methods used depend on the algorithms. For support vector

machine, decision tree, boosting algorithms and random forest to

evaluate the importance of each predictor, the criteria used was the

mean decrease in accuracy values, which represents the reduction in
TABLE 2 The mean AUC of the best-performing models (95% confidence interval) for predicting suicide outcomes by study design, data source,
sample size, and type of machine learning methods.

Suicidal thoughts Suicide attempt Death by suicide Overall
Best-performing
algorithms

Study design

Cross-sectional 0.884 (0.859 - 0.909) 0.866 (0.822 - 0.911) 0.815 (0.014 - 1.615) 0.862 (0.835 - 0.889) Regularized regressions

Longitudinal 0.846 (0.799 - 0.892) 0.836 (0.813 - 0.858) 0.827 (0.798 - 0.854) 0.829 (0.813 - 0.846) Support Vector Machine

Data source

Administrative 0.885 (0.801 - 0.968) 0.829 (0.783 - 0.875) 0.826 (0.780 - 0.854) 0.838 (0.816 - 0.861) Support vector machine

Survey 0.849 (0.819 - 0.878) 0.857 (0.830 - 0.884) 0.815 (0.014 - 1.615) 0.842 (0.822 - 0.862) Regularized regressions

Administrative & Survey – 0.822 (0.695 - 0.950) – 0.822 (0.695 - 0.950) Regularized regressions

Total Sample size

≤1,000 0.882 (0.818 - 0.947) 0.847 (0.799 - 0.894) – 0.840 (0.804 - 0.792) Regularized regressions

1,001-10,000 0.874 (0.845 - 0.904) 0.826 (0.801 - 0.851) 0.824 (0.669 - 0.979) 0.841 (0.819 - 0.863) Support vector machine

>10,000 0.771 (0.640 - 0.903) 0.874 (0.828 - 0.921) 0.825 (0.795 - 0.856) 0.839 (0.815 - 0.862) Regularized regressions

Target sample size

≤200 0.910 (0.873 - 0.947) 0.838 (0.810 - 0.866) 0.819 (0.645 - 0.993) 0.843 (0.819 - 0.867) Support vector machine

201-1,000 0.845 (0.822 - 0.868) 0.859 (0.811 - 0.906) 0.831 (0.787 - 0.874) 0.844 (0.821 - 0.866) Regularized regressions

>1,000 0.771 (0.640 - 0.901) 0.862 (0.793 - 0.930) 0.822 (0.771 - 0.873) 0.829 (0.800 - 0.859) Gradient boosting

Machine learning method

Bayesian algorithms – – – 0.764 (0.698 - 0.829) –

Boosting algorithms – – 0.864 (0.678 - 1.050) 0.864 (0.827 - 0.900) –

Cox regression – – 0.789 (-0.491 - 2.069) 0.762 (0.731 - 0.793) –

Decision tree – 0.760 (0.252 - 1.268) – 0.729 (0.682 - 0.777) –

K-nearest neighbors – – – – –

Linear discriminant analysis – – – – –

Logistic regression 0.812 (0.569 - 1.054) 0.823 (0.701 - 0.945) 0.788 (0.630 - 0.945) 0.789 (0.737 - 0.841) –

Neural network 0.823 (0.676 - 0.970) 0.858 (0.750 - 0.965) 0.838 (0.741 - 0.935) 0.841 (0.803 - 0.879) –

Random forest 0.874 (0.846 - 0.901) 0.879 (0.848 - 0.909) 0.841 (0.801 - 0.881) 0.870 (0.852 - 0.889) –

Regularized regressions 0.795 (-0.412 - 2.002) 0.851 (0.807 - 0.894) 0.805 (0.100 - 1.511) 0.841 (0.801 - 0.879) –

Super learner 0.860 (0.720 - 1.005) 0.802 (0.708 - 0.896) – 0.835 (0.796 - 0.875) –

Support vector machine 0.930 (0.040 - 1.819) 0.712 (0.616 - 0.808) – 0.877 (0.589 - 1.164) –
AUC, Area under the receiver operating characteristic curve.
The symbol "-" means no data is available to compute the summary statistics in the cell.
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accuracy if a predictor were randomly permuted (also known as

permutation feature importance methods). The most important

predictors had a more considerable mean decrease in accuracy. For

regularized regressions, the magnitude of the estimated weights

associated with a predictor indicated how influential the predictor is

in predicting the outcome. The neural networks also used weight-

based methods – predictors with higher weights contributed more

to the final predictions of the model.

Administrative data and survey studies
Administrative. Among studies that aimed to predict suicidal

thoughts using administrative data, Peis et al. (17) and McKernan

et al. (18) showed that mental illness, related inpatient utilization,

and previous suicidal thoughts and attempt(s) are common risk

factors in addition to some social factors like shared residence and

living with offspring or siblings. Some somatic factors like low levels

of free thyroxine, free triiodothyronine, temporary disability, feeling

heart race/pound, and polysomatic symptoms (fatigue, dizziness,

weakness) were also reported as risk factors for suicidal thoughts

(17–20). Studies that used administrative data to predict suicide

attempts identified the most important risk factors to be age (21–

24), history of suicidal thoughts and behaviors (23–26), mental

health conditions like anxiety, depression, helplessness,

hopelessness and substance use (18, 21, 24–28), and having an

emergency room visit or inpatient admission (18, 22, 26, 28). When

the aim was to predict death by suicide using administrative data,

the most important risk factors were record/indication of mental or

behavioral disorders such as schizophrenia, antipsychotic

medication use, depression, anxiety, stress disorders, and alcohol

use (26, 29–33), followed by a prior suicide attempt or self-harm

(26, 29, 30, 34), and age (30–33, 35). Four studies predicted suicidal

thoughts and behaviors combined, and based on their findings,

schizophrenia, personality disorders (borderline), depressive

disorder, substance use disorder, family history of these disorders,

related medications (such as antipsychotics and antidepressants),

and intentional self-harm were the most important risk factors (36,

37) (see Supplementary Table 2).

Survey. In studies utilizing survey data, depression (sadness,

hopelessness) (38–44), anger attacks (44), anxiety (41), perceived

burdensomeness (38, 45), post-traumatic stress disorder (43), self-

esteem (39, 42), perceived stress level (41, 46), history of suicidal

ideation, attempt or familial history of suicide (38, 40, 44), and

hours of sleep (40, 42) were the most important predictors

identified for suicidal thoughts. In another study, Burke et al. (47)

found non-suicidal self-injury (NSSI), depression, desire to cease

NSSI, NSSI likelihood, and number of NSSI scars, and revenge

function of NSSI as factors predictive of suicide plans when using

survey data. Kuroki et al. (48) found anxiety disorder, depressive

disorder, family cohesion, and family conflict to be important risk

factors for suicidal ideation. Some studies predicted suicidal

thoughts and suicide attempts together. However, the identified

risk factors were similar to those mentioned (49–51)

(Supplementary Table 2). Studies predicting suicide attempts

found that current or past suicide plans (47, 52–55), suicidal

ideation (54–58), suicide attempt(s) (59), non-suicidal self-injury
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(47, 55), and positive familial or friend history of suicide (57, 58, 60–

62) were the established risk factors. In addition, history of mental

or personality disorders such as depression (sadness/hopelessness)

(45, 54, 60, 63–67), anxiety (68), was bullied or violated (57, 66, 67),

borderline personality disorder (56, 69, 70), drug abuse or

dependence (62, 63, 67, 71), affective dyscontrol (72), impulsivity

(56, 60), post-traumatic stress disorder (69, 73), number of

hospitalizations (70, 71, 73), demographic characteristics (such as

age (64–66), and being female (57, 63, 68)), alcohol drinking (54, 57,

61, 64, 66), smoking (57, 63, 64, 66) were the other important risk

factors for predicting suicide attempt. Regarding death by suicide,

Choi et al. (74) found anxiety, depression, resilience, and self-

esteem as predictive factors when using survey data.

Study populations
Adolescents. Eleven studies assessed predictive risk factors of

suicidal thoughts and behaviors in children or adolescents (38, 40,

49, 50, 58, 63, 66, 67, 75, 76). Czyz et al. (38) and Hill et al. (40)

reported depressive symptoms and a history of suicidal ideation or

suicide attempts as risk factors for suicidal thoughts among

adolescents. Further, the existing studies identified sadness or

hopelessness (63, 66, 67), stress level (66, 75), number of lifetime

mental disorders (59), violence or fighting (63, 66, 67), substance

abuse (63, 66), cigarette smoking (63, 66), alcohol drinking (66),

prior suicide attempt(s) (59), suicidal ideation (58), familial life (58,

66, 75), and demographic factors such as sex (63, 66), age (66), and

belonging to a minority group (58, 63) as risk factors for suicide

attempt. Three studies (49, 50, 76) investigated predictive risk

factors of suicidal thoughts and suicide attempts together, and

their findings were similar to the aforementioned factors

(Supplementary Table 2).

Soldiers. Seven studies aimed to predict suicidal thoughts and

behaviors among soldiers (19, 43, 44, 53, 68, 77, 78), all of which

were conducted in Canada and the United States. Depression (43),

post-traumatic stress disorder (43), sexual harassment in females

(43), mental disorders (43, 44), taking any medication for mental

disorders (19), somatic complaints (43) [including upset stomach

during last attack (19) or feeling heart race/pound (19)], past

suicidal ideation (44), and violence during deployment (44) were

found to be important risk factors for suicidal thoughts

(Supplementary Table 2). History and number of mental

disorders (68, 77), anxiety disorders (68), self-reported lifetime

suicide plan (68), military service factors (77, 78), and

demographic characteristics (i.e., sex (68), age (77, 78), and racial/

ethnic minority status (77, 78)) as important risk factors for

suicide attempt.

Elderly. In those studies conducted among an elderly

population, quality of life (39, 46), restriction of activity (46),

income level (46), stress level (46), depression (39), self-esteem

(39), satisfaction with family relationships (39), and health status

(39) were found to be risk factors for suicidal thoughts

(Supplementary Table 2). Further, Cho et al. (33) found that

history of taking benzodiazepines, body mass index, age, and

history of taking sleeping pills were significant risk factors for

death by suicide in an elderly population.
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Persons with mental health disorders. Researchers found that in

patients with obsessive-compulsive disorder, previous suicide plans

or thoughts, lifetime depressive episodes, and intermittent explosive

disorder were risk factors for suicide attempts (25). Among

individuals with substance use disorders, males with a brief

psychotic disorder diagnosis or antipsychotic prescription or

females older than 30 with a ‘poisoning diagnosis’ had a higher

risk of death by suicide (31). Antipsychotic and antidepressant

medications, a diagnosis of autistic disorder, schizophrenic

disorder, and substance use disorder were reported by Fan et al.

(37) as risk factors for suicidal thoughts, suicide attempts, or death

by suicide among patients with post-traumatic stress disorder and

bipolar disorder. Hettige et al. (71) reported the number of

hospitalizations, duration of illness, childhood trauma (such as

physical and emotional abuse), and substance abuse or

dependence as risk factors for suicide attempts among individuals

with schizophrenia. In patients with lifetime major depressive

episodes, previous suicide attempts (69), borderline personality

disorder (69), and hospitalization due to depressive symptoms

(69) were identified as risk factors for suicide attempts. Low free

triiodothyronine, low free thyroxine, severity of depressive

symptoms, and work status were found to be important risk

factors for suicidal thoughts (20). Age (21, 23, 79), history of

mental disorder (22) (such as anxiety (21)), having a suicide plan,

intent or positive familial suicidal history (23, 52, 61), number of

outpatient, inpatient, and emergency room visits (22), and

educational level (21, 79) were identified as predictive risk factors

for suicidal thoughts or suicide attempt among individuals with a

history of suicide attempt. Based on the studies that aimed to

predict suicidal thoughts and behaviors among individuals with a

mood disorder, depression (hopelessness and helplessness) (27, 56,

72, 73, 80), borderline personality disorder (56, 80), prior suicidal

ideation, attempt or history of suicide in their family (26, 56, 80),

substance abuse or dependence (26, 62, 73), aggression (56),

affective dyscontrol (72), loss of cognitive control (72), history of

psychosis (73), post-traumatic stress disorder comorbidity (73),

having an emergency department visit or inpatient hospitalization

with a high-lethality diagnosis (28), and a history of physical

illnesses (81) were identified as risk factors for suicide attempts.

In addition, hospitalized for schizophrenia-spectrum and bipolar

disorders (34), previous self-harm (34, 80) or suicidal attempt or

thoughts (26), prior hospitalization or emergency mental health

care (26, 80) and substance abuse (26) were mentioned as risk

factors for death by suicide in this group (Supplementary Table 2).

General population. Fourteen studies sought to predict the most

important risk factors of suicidal thoughts and behaviors among the

general population. Kuroki et al. (48), Ryu et al. (41), and Peis et al.

(17) found that depression (41, 48), anxiety (41, 48), stress (41),

previous suicidal thoughts or suicide attempts (17), and shared

residence or living with siblings or offspring (17) were risk factors

for suicidal thoughts (Supplementary Table 2). Depression (45, 60,

64, 65), impulsivity (60), borderline personality disorder (69), post-

traumatic stress disorder (69), alcohol use disorders identification

test (AUDIT) score (64) or frequency of drinking (64), previous

history of suicide attempt (82) or suicide among family members

(60) or friends (82), lower family support or higher familial conflict
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(48), substance use in the previous two weeks (82), and

demographic characteristics including age (64, 65, 83), lower

educational level (65, 82, 83), and being female (82, 83) were

important when predicting suicide attempt.

Also, age (32, 35), sex (30, 35), depression (29, 30, 74), anxiety

(29, 74), self-esteem (74), alcohol consumption (32), prior self-harm

(29) or suicide attempt (30), stress disorders (30), and

schizophrenia in females or antipsychotics in males were reported

as risk factors for death by suicide among the general population.
Risk of bias

Based on PROBAST, two articles had a high risk of bias, twenty-

seven had an unclear risk of bias (mostly due to unclear information

in the predictors, outcome, and analysis domains), and the others

were classified as having a low risk of bias. Regarding applicability,

all included articles were categorized as being of low concern. The

results of these evaluations are summarized in Appendix 3.
Discussion

The current systematic review summarized studies that applied

machine learning methods to administrative and/or survey data to

predict suicidal thoughts and behaviors. This review included 104

articles, all published within the last 25 years. Although the

predictive power of models differed across suicide outcomes (i.e.,

suicidal thoughts, suicide attempt, and death by suicide), overall,

machine learning algorithms achieved good prediction of suicidal

thoughts and behaviors when using administrative and/or survey

data. Many machine learning algorithms performed better than

logistic regression in predicting suicide outcomes, including

boosting algorithms and neural networks. Additionally, studies

with greater total and target sample sizes reported higher

prediction accuracies. We also found that the risk factors for

suicidal thoughts and behaviors appear to differ depending on the

data source and the population under study.

Considering that many individuals who have attempted suicide

or died by suicide visited their physician or emergency room prior

to (22, 61, 84), the application of machine learning techniques using

administrative data is a promising tool, as it could help improve

early detection of individuals who are at high risk for suicidal

behaviors. There is also the potential for such techniques to relieve

an already over burden healthcare system by providing clinicians

with a tool for suicide risk identification. In fact, it has been shown

that risk stratification via electronic medical records data predicts

suicide risk better than clinical evaluation (28). Thus, a combination

of machine learning and routine triage could optimize clinical

decision-making and conserve human and financial resources.

Further, the application of machine learning techniques on survey

data from a variety of populations could be helpful in detecting and

preventing potential high-risk subpopulations.

To the best of our knowledge, this is the largest (104 included

studies) systematic literature review on the application of machine

learning techniques to predict suicidal thoughts and behaviors.
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Further, this is the first review study to summarize the predictive

power of machine learning in predicting suicidal thoughts and

behaviors by type of method, study design, data source, and sample

size and to summarize extensively the most important risk factors

identified. It should be noted that even though most studies had a

large sample distribution of participants, around 30% of studies had

a sample size of less than 1000, which could escalate the risk of

overfitting and affect the interpretation of their results (investigating

a large number of risk factors in a small sample of participants).

Further, the majority of studies were from the United States (>40%);

thus, studies need to be conducted elsewhere. For instance, very few

studies (n=5) (19, 71, 85–87) used data from Canada to predict

suicidal thoughts and behaviors using machine learning. Only three

of these studies used population-level data from the province of

Alberta. To fill this gap and advance the application of machine

learning in detecting suicide risk, more studies are needed, focusing

on larger and more comprehensive population-based datasets that

can facilitate complex modeling incorporating relevant risk factors.

Furthermore, very few studies (n=5) (30, 31, 36, 43, 88) stratified

their analyses by sex. This represents a significant gap in the literature,

as the gender paradox in suicide (i.e., women tend to attempt suicide

more often, while men tend to die by suicide more often) is well-

known. The gender paradox in suicide is a culture-bound

phenomenon, meaning that cultural expectations about gender and

suicide strongly determine both its existence and magnitude (89, 90).

As such, the risk factors predictive of suicidal thoughts and behaviors

will likely differ for men and women. Gender-specific analyses have

the potential to identify the risk factors that may be predictive of

suicidal thoughts and behaviors in one gender but not the other and

thus can further inform targeted suicide prevention strategies.

Overall, the findings of the current review should prove helpful in

preparing future machine learning models using survey/

administrative data to predict suicide outcomes, their application in

clinical decision-making, and planning prevention interventions. As

indicated by the sheer number of studies available, the application of

machine learning for predicting suicidal thoughts and behaviors

represents an area of research which has seen significant growth.

This growth has significant implications for the prevention of suicide

and, thus, the reduction of the suicide mortality rate globally.

However, in many studies, the complete list of predictors used in

the machine learning algorithms was not available. To advance this

field, we suggest that future studies using machine learning to predict

suicide outcomes enumerate all the predictors in their models (in the

supplement) and the list of the most important predictors identified by

the best-performing model. This will help other researchers to

carefully select their predictors and investigate other variables that

might improve models’ prediction. It will also help decision-makers or

program planners to translate findings into more practical tools to

enhance suicide prevention. Additionally, to improve the model’s

performance, future studies must account for the data imbalance

issues caused by the rarity of suicide outcomes using more

sophisticated sampling methods such as the Synthetic Minority

Over-sampling Technique (91) or ensemble learning techniques

(92). Our study has revealed that most included studies using

longitudinal data have failed to account for the correlation of

individual observations over time. Thus, the assumption that
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training data is independent and identically distributed may be

violated, making supervised machine learning algorithms inefficient.

We recommend that future studies aiming to predict suicide outcomes

with longitudinal data consider using mixed-effect machine learning

algorithms. These algorithms are robust to correlated data and predict

change of a longitudinal outcome with high accuracy (93). Finally,

future studies need to rely on novel causal inference methods based on

machine learning to help understand causal relationships between

important predictors and suicide outcomes (94, 95).

Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding author.

Author contributions

NHS: Conceptualization, Investigation, Methodology, Project

administration, Supervision, Validation, Visualization, Data

curation, Formal analysis, Writing – original draft, Writing – review

& editing. PN: Data curation, Formal analysis, Investigation,

Validation, Writing – original draft. SL: Conceptualization,

Investigation, Methodology, Project administration, Resources,

Supervision, Validation, Visualization, Writing – original draft,

Writing – review & editing.

Funding

The author(s) declare that no financial support was received for

the research, authorship, and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fpsyt.2024.1291362/

full#supplementary-material
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fpsyt.2024.1291362/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpsyt.2024.1291362/full#supplementary-material
https://doi.org/10.3389/fpsyt.2024.1291362
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
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