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Background: People living with HIV (PLWHA) smoke at three times the rate of the

general population and respond poorly to cessation strategies. Previous studies

examined repetitive transcranial magnetic stimulation (rTMS) over left

dorsolateral prefrontal cortex (L. dlPFC) to reduce craving, but no studies have

explored rTMS among PLWHAwho smoke. The current pilot study compared the

effects of active and sham intermittent theta-burst stimulation (iTBS) on resting

state functional connectivity (rsFC), cigarette cue attentional bias, and cigarette

craving in PLWHA who smoke.

Methods: Eight PLWHA were recruited (single-blind, within-subject design) to

receive one session of iTBS (n=8) over the L. dlPFC using neuronavigation and,

four weeks later, sham iTBS (n=5). Cigarette craving and attentional bias

assessments were completed before and after both iTBS and sham iTBS. rsFC

was assessed before iTBS (baseline) and after iTBS and sham iTBS.

Results: Compared to sham iTBS, iTBS enhanced rsFC between the L. dlPFC and

bilateral medial prefrontal cortex and pons. iTBS also enhanced rsFC between the

right insula and right occipital cortex compared to sham iTBS. iTBS also

decreased cigarette craving and cigarette cue attentional bias.

Conclusion: iTBS could potentially offer a therapeutic option for smoking

cessation in PLWHA.
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1 Introduction

People living with HIV/AIDS (PLWHA) smoke at three times

the rate of the general population (1). These elevated smoking rates

are associated with greater morbidity and mortality (2). Smoking

impacts the progression and outcome of HIV disease and has been

identified as the leading contributor to premature mortality among

PLWHA (3). Smoking cessation may be the single most important

behavioral health change for PLWHA who smoke (4, 5).

Pharmacotherapy is a pillar of smoking cessation treatment (6).

Evidence regarding pharmacological smoking cessation strategies such

as nicotine replacement therapy, bupropion, and varenicline in

PLWHA is mixed and limited (7, 8). Although nicotine replacement

therapy has been shown to be effective compared to placebo in people

without HIV for smoking cessation for up to six months (9), controlled

trials comparing nicotine replacement therapy to placebo are lacking in

PLWHAwho smoke. There have been no RCTs (Randomized Clinical

Trial) examining efficacy of bupropion for smoking cessation in

PLWHA who smoke. Additionally, bupropion’s pharmacokinetic

interactions with antiretroviral therapy pose a barrier in PLWHA

who smoke (10).While more effective than placebo, quit rates observed

with varenicline remain troublingly low in PLWHA who smoke (11–

14). Elevated rates of smoking in PLWHA, suboptimal treatment

response rates, and lack of adherence to cessation strategies (15)

underscore a significant need for novel or adjunct interventions for

smoking cessation in PLWHA who smoke.

Multiple studies have demonstrated efficacy of repetitive

transcranial magnetic stimulation (rTMS) in decreasing craving

for cigarettes and for smoking cessation (16). Fourteen studies have

tested the effects of TMS (including rTMS and deep TMS) in people

who smoke (17–30). The majority (12) applied excitatory high

frequency rTMS ranging from 10-20 Hz (17–28). The number of

sessions in these studies ranged from 1-18 and cortical targets were

heterogenous. Nine studies targeted the left dorsolateral prefrontal

cortex (L. dlPFC), one study targeted the left superior frontal gyrus,

and two studies targeting the right dlPFC. Moreover, two deep TMS

studies targeted the bilateral dLPFC and insula using H coil. All

studies, save for one (30), reported reductions in clinically relevant

smoking metrics (e.g., subjective craving, number of cigarettes

smoked, abstinence using exhaled CO or cotinine). All nine

studies targeting the L. dlPFC showed reduction in clinically

relevant smoking metrics (17–19, 21–26).

Theta burst stimulation (TBS) was approved by the Food andDrug

Administration (FDA) for treatment of major depressive disorder

(MDD) (31). Intermittent theta burst stimulation (iTBS) has been

shown to be excitatory and 1800 pulses of iTBS has been seminal to a

novel accelerated treatment protocol for MDD (Major Depressive

Disorder) called Stanford Neuromodulation Treatment (32, 33). To

the best of our knowledge, there has been only a single clinical study

that utilized iTBS for smoking cessation (29), which found that four

sessions of iTBS (600 pulses) with cognitive-behavioral therapy (CBT)

was associated with a significantly greater reduction in smoking urges

when compared to sham iTBS with CBT (29).

Previous studies have shown resting state functional

connectivity (rsFC) changes following iTBS between the target
Frontiers in Psychiatry 02
site and other brain regions (34–40). Three studies have shown rsFC

changes when iTBS was applied over L. dlPFC (41–43). The

application of three trains of iTBS (600 pulses at 80% resting

motor threshold [RMT]) at five-minute intervals reduced L.

dlPFC to right anterior insula rsFC when compared to sham iTBS

in healthy controls (n=28) (41). Another study applied a single train

of iTBS (600 pulses at 90-120% RMT) over L. dlPFC to 18 healthy

controls and found that rsFC increased (from baseline) between the

L. dlPFC and bilateral caudate (42). iTBS in ten healthy volunteers

(600 pulses at 80% RMT) over the L. dlPFC revealed increased rsFC

between the bilateral superior frontal gyri, and bilateral, middle

frontal, inferior frontal, and orbitofrontal gyri immediately after

iTBS, compared to rsFC before iTBS (43).

Although neuroimaging correlates of iTBS in people who

smoke cigarettes have not been explored, two published studies

investigated neural correlates of 10Hz rTMS in people who smoke

cigarettes (44, 45). One study delivered one session of 10Hz rTMS

(3000 pulses) over the L. dlPFC in eleven people who smoked

cigarettes and showed reductions in blood oxygen level dependent

(BOLD) activity during a cigarette cue reactivity task in the left

nucleus accumbens and right medial orbitofrontal cortex (OFC)

when compared to sham rTMS (45). The other study compared

one session of 10Hz rTMS versus sham rTMS over the L. dlPFC in

ten participants who smoked cigarettes and showed decreased

resting fractional amplitude of low frequency fluctuation (fALFF)

in the right insula (44), which suggests reduced activity in

this region.

Cigarette cue attentional bias (AB) offers a behavioral paradigm

to monitor rTMS effects in smokers (46, 47). This bias (AB) is

quantified using fixation time on cigarette and neutral cues, via an

eye tracker. It can predict the severity of cigarette smoking as well as

the chances of relapse (48–50). Two previous studies comparing

3600 pulses of continuous theta burst stimulation (cTBS) and sham

cTBS over the left medial prefrontal cortex (MPFC) when viewing

alcohol and cocaine cues, showed decreased seed based functional

connectivity (MPFC as seed) with cTBS compared to sham cTBS

(51, 52). In recent years, fMRI studies have also shown the right

insula to be important for interoceptive awareness, cigarette cue

reactivity and craving in participants who smoke (53–55).

To the best of our knowledge, no published studies have

examined the effects of iTBS on rsFC in participants who smoke

cigarettes. No studies have examined the effects of iTBS of the L.

dlPFC on cigarette cue attentional bias, and no studies have

evaluated the effects of iTBS among PLWHA who smoke. The

following pilot study aimed to examine within subject effects of a

single session of iTBS (1800 pulses at 120% RMT) administered to

L. dlPFC using individualized neuronavigation on rsFC, cigarette

cue attentional bias, and cigarette craving. In line with previous

studies, our study hypotheses were as follows: 1) iTBS would alter

rsFC between L. dlPFC and the right insula when compared to sham

iTBS; 2) iTBS would alter rsFC between right insula and the dorsal

cingulate cortex when compared to sham iTBS; 3) iTBS would

decrease fixation time on cigarette cues and cigarette cue AB when

compared to sham iTBS, and; 4) iTBS would decrease craving for

cigarettes when compared to sham iTBS.
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2 Methods

2.1 Participants

Eight participants were recruited from the Bluegrass Care Clinic

within the University of Kentucky Medical Center. The average age

of participants (comprising seven males and one female) was 42.88

years (standard error of the mean [SEM] 3.45 years). All five

participants who returned to receive sham iTBS were male.

Average Fagerstrom Test for Nicotine Dependence (FTND) score

was 5.75 (SEM 0.96) for the sample and participants endorsed

smoking an average of 22.75 cigarettes daily (SEM 2.4). All

participants were right-handed.

[Table 1 – Demographics]
2.2 Experimental protocol

The study protocol was approved by Medical Institutional

Review Board (IRB) at University of Kentucky (IRB#64473) and

was registered on clinical trials.gov (NCT04936594). Participants

were recruited from the Bluegrass Care Clinic affiliated with

University of Kentucky Medical Center. Supplementary Material
Frontiers in Psychiatry 03
Figure 1 summarizes the three-day experimental protocol. See

Supplementary Material Section 1 for details regarding the

number of patients who screened eligible for the study or

dropped out. For a list of inclusion/exclusion criteria, please see

Supplementary Material Section 2. After completing a phone screen

to determine eligibility, participants were scheduled for Day 1

procedures, which consisted of informed consent, collection of

demographic details, measuring carbon monoxide (CO) using a

Smokerlyzer Breath CO Monitor (Bedfont Scientific Ltd.,

Rochester, England), measuring blood alcohol level (BAL) using a

Breathalyzer, administering Fagerstrom Test for Nicotine

Dependence (FTND) and an attentional bias screen (AB Screen).

All study participants were scheduled to receive iTBS a week from

Day 1 (Day 2) and sham iTBS five weeks from Day 1 (Day 3). iTBS

and sham iTBS sessions were separated by four weeks to limit

carryover effects. Day 2 consisted of 1) resting state fMRI brain

scans before and after iTBS (rs-fMRI Time 1 and rs-fMRI Time 2

respectively), 2) attentional bias before and after iTBS (AB Time 1

and AB Time 2 respectively) and 3) cigarette craving assessment

using the short form version of tobacco craving questionnaire

before and after iTBS (TCQ-SF Time 1 and TCQ-SF Time 2

respectively). Day 3 was procedurally the same as Day 2 except

sham iTBS was administered instead of iTBS and rs-fMRI scan were
TABLE 1 Resting state functional connectivity (rsFC) changes with iTBS/Sham iTBS (two seeds - left dorsolateral prefrontal cortex or L. dlPFC and
right insular cortex to all voxels).

Seed
Region

Between Conditions
Contrast Applied

Voxel
Number

MNI coordinates
T
Statistic

Beta*

Changes in seed -voxel rsFC between rs-fMRI Time 2 and rs-fMRI Time 3 (n=5)

L. dlPFC
GLM (rs-fMRI Time 1, rs-fMRI Time 2, rs-fMRI
Time 3; 0, 1, -1) (n=5)

96
(+6, -2, -24) bilateral medial prefrontal cortex, bilateral
temporal poles, and pons.

28.87 0.18

R. Insula
GLM (rs-fMRI Time 1, rs-fMRI Time 2, rs-fMRI
Time 3; 0, 1, -1) (n=5)

49
(+30, -92, -10) right occipital pole and inferior division of
right lateral occipital cortex

15.40 0.29

Changes in seed -voxel rsFC between rs-fMRI Time 1 and rs-fMRI Time 2 (n=8)

L. dlPFC
GLM (rs-fMRI Time 1, rs-fMRI Time 2;
-1,1 (n=8))

79
(+14, +50, +22) right frontal pole and right
paracingulate gyrus

10.75 0.21

R. Insula
GLM (rs-fMRI Time 1, rs-fMRI Time 2;
-1,1 (n=8))

64
(+24, -20, +66) right precentral gyrus and right
postcentral gyrus

9.34 0.15

61
(-40, -14, +34) left precentral gyrus and left
postcentral gyrus

11.18 0.15

L. dlPFC
GLM (rs-fMRI Time 1, rs-fMRI Time 2;-1,1; **
Fixation on Cigarette Cues AB Time 1, Fixation on
Cigarette Cues AB Time 2; -1,1), (n=8)

No significant results

R. Insula
GLM (rs-fMRI Time 1, rs-fMRI Time 2;-1,1; **
Fixation on Cigarette Cues AB Time 1, Fixation on
Cigarette Cues AB Time 2; -1,1), (n=8)

181
(-38, -38, +48) right superior parietal lobule, right
postcentral gyrus, right anterior division of
supramarginal gyrus.

-8.07 -0.0023

79
(+26, -36, +46) left superior parietal lobule, left
postcentral gyrus, left anterior division of supramarginal
gyrus, left posterior division of supramarginal gyrus.

-12.37 -0.0018
front
rsFC, resting state functional connectivity.
GLM, general linear model.
All results thresholded at false discovery rate (FDR) corrected cluster threshold p value <0.05 and uncorrected voxel threshold p value <0.0001.
*- Beta represents the regression coefficient displaying the average difference in connectivity between two or three conditions (measured with Fisher-transformed correlation coefficients),
depending on the comparison being done. Connectivity measured is between the seed (L. dlPFC or right insula) and respective significant voxel cluster in each row.
** - Between-subjects’ contrast.
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only completed after sham iTBS (rs-fMRI Time 3). All participants

received iTBS first and sham iTBS subsequently but were blinded

regarding treatment.
2.3 Attentional bias

We used a visual probe task to measure AB, adapted for

cigarette cues (56, 57)(Supplementary Material Figure 2). We

used a Tobii Pro Fusion 120 Hz eye tracker (Tobii Technology,

Sweden) to monitor fixation time on cigarette and neutral cues,

which helped calculate cigarette cue AB. For each AB trial, images of

a cigarette I and a matched neutral (N) cue were presented on a

laptop screen, 3 cm (about 1.18 in) apart. Upon offset of the image

pairs, a visual probe (X) appeared on either the left side or right side

of the screen, in the same location as one of the previously presented

images. Firstly, twenty trials showed images of cues encompassing

people smoking cigarettes and matched neutral cues for 2000

milliseconds (ms) (about 2 seconds). Secondly, twenty trials

showed images of cues encompassing cigarette paraphernalia and

matched neutral cues for 2000 ms.

For each set of twenty cigarette cue AB trials, twenty filler trials

consisting of twenty pairs of additional neutral cue images (N-N)

were intermixed to generate a total of 40 trials. Filler trials were also

presented for 2000 ms. Intervals between C-N and N-N cue pairs

were 2000 ms. Average fixation time was calculated separately for

each set of AB trials by summing the total fixation time for each cue

type across all trials and then dividing by the total number of critical

trials (i.e., 20). Cigarette cue AB for each set of AB trials was

calculated by average fixation time on cigarette cues minus average

fixation time on neutral cues (56).

fMRI: Neuroimaging acquisition was completed with a 3T

Siemens Magnetom PRISMA Scanner. Structural MRI images

(MPRAGE) were acquired before iTBS. Multi-slice gradient

echoplanar imaging (EPI) resting state images were acquired

before iTBS (rs-fMRI Time 1), within an hour after iTBS (rs-

fMRI Time 2) and within an hour after sham iTBS (rs-fMRI

Time 3). Specifics of scan sequences are elucidated in

Supplementary Material Section 4.

iTBS and Neuronavigation for Targeting: Structural MRI images

were input into Brainsight software (Rogue Solutions, Montreal,

Canada). The images were then registered to Montreal Neurological

Institute (MNI) space by identifying the anterior commissure and

posterior commissure in Brainsight software (Rogue Solutions,

Montreal, Canada). The registered images were consequently used

to generate a three-dimensional curvilinear brain model for each

subject. This was used to identify the L. dlPFC (Brodmann area 46,

MNI coordinate -44, 40,29) (58, 59). During delivery of iTBS, nine

minutes eleven seconds (1800 pulses) of iTBS (biphasic bursts) at

120% of resting motor threshold (RMT) was administered to the L.

dlPFC using MagVenture MagPro x100 with MagOption and B65

active/placebo (A/P) coil (MagVenture A/S, Denmark). The coil

position was stabilized using a holder, with guidance from

Brainsight Neuronavigation (Rogue Solutions, Montreal, Canada).

Sham iTBS was administered using the sham interface of the B65 A/

P coil. Two stimulation electrodes (Ambu Neuroline 710) were
Frontiers in Psychiatry 04
connected to the coil and placed on the left side of the scalp to

mimic the somatosensory stimulation associated with iTBS. RMT

was measured prior to iTBS and sham iTBS (RMT procedure

described in Section 3 of Supplementary Material).
2.4 Clinical assessments

Tobacco Craving Questionnaire-Short Form (TCQ-SF). The

Tobacco Craving Questionnaire-short form (TCQ-SF) consists of

12 items rated on an 84-point visual analogue scale. Validity and

reliability of the TCQ-SF is comparable to the original 47-item

version (60). The TCQ-SF was administered before and after iTBS

on Day 2 (TCQ-SF Time 1 and TCQ-SF Time 2 in Figure 1) and

sham iTBS on Day 3 (TCQ-SF Time 3 and TCQ-SF Time 4

in Figure 1).

Fagerstrom Test for Nicotine Dependence (FTND). The FTND is

a six-item self-report measure of nicotine dependence severity.

Three yes(1)/no(0) items and three multiple choice items (scored

from 0 to 3) are used to calculate total severity (0-10) (61).
2.5 Data analytic strategy

2.5.1 Resting state functional
connectivity analyses

CONN functional connectivity toolbox (version 21.a) was used

for all preprocessing and neuroimaging analyses using standard

procedures (see Supplementary Material Section 4). Firstly, general

linear model (GLM) analyses explored if rsFC changed from two

seeds (L. dlPFC and right insula) to all voxels following iTBS (rs-

fMRI Time 2) versus sham iTBS (rs-fMRI Time 3) relative to

baseline rsFC (rs-fMRI Time 1) in the five participants who

completed all three days of the study. In first level analyses, a

seed map was created for every subject using respective seeds (L.

dlPFC or right insula). In second level analyses, a between

conditions contrast of (0,1,-1) was used to assess rsFC within-

subject differences across the three time points (rs-fMRI Time 1, rs-

fMRI Time 2, rs-fMRI Time 3). All second level analyses used

cluster level inferences based on Gaussian Random Field Theory

(62). This was done using general linear models (GLM) to generate

a statistical map of t-values, that were subsequently thresholded to

reveal non overlapping clusters (https://web.conn-toolbox.org/

fmri-methods/cluster-level-inferences). Two-sided p-values were

generated using cluster-level false discovery rate (FDR)

correction (63).

Subsequently, rsFC change from two seeds (L. dlPFC and right

insula) to all voxels across from rs-fMRI Time 1 to rs-fMRI Time 2

was examined among the eight participants who only received iTBS.

In first level analyses, a seed map was created for every subject using

respective seeds (L. dlPFC or right insula). In second level analyses,

a GLM with between conditions contrast of (1,-1) for scans (rs-

fMRI Time 1, rs-fMRI Time 2) was used. In these eight participants,

associations between changes in seed based rsFC following iTBS (rs-

fMRI Time 1 versus rs-fMRI Time 2) and changes in fixation time

on cues of people smoking cigarette (AB Time 1 versus AB Time 2)
frontiersin.org
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were explored. A GLM was specified with between conditions

contrast of (-1,1) for rs-fMRI Time 1 and rs-fMRI Time 2,

respectively, and a between subjects’ contrast of (-1,1) for fixation

time on cues encompassing people smoking cigarettes acquired as

part of AB Session 1 and AB Session 2 respectively.

2.5.2 Attentional bias analyses
Cigarette cue AB was calculated separately for each set of AB

trials, by subtracting the average fixation time on neutral cues from

the average fixation time on cigarette cues. Fixation time on

cigarette cues for each session and resultant cigarette cue

attentional bias score were entered into separate linear fixed

effects regression models. Dependent variables for these models

were fixation time on cigarette cue and cigarette cue AB,

respectively. Fixed effects for both models were type of cigarette

cues (people smoking cigarettes versus cigarette paraphernalia),

time (before or iTBS/sham iTBS), intervention arm (iTBS versus

sham iTBS) and FTND scores. Subject ID was a grouping variable in

both models. Further details on regression models can be found in

Supplementary Material Section 5.

2.5.3 Cigarette craving analyses
TCQ-SF scores were entered into a linear fixed effects regression

model. Outcome variables for this model was TCQ-SF score.

Predictor variables for this model were time (before or after iTBS/

sham iTBS), intervention arm (iTBS versus sham iTBS), and FTND

scores. Further details on regression models can be found in

Supplementary Material Section 5.
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3 Results

3.1 Seed-based resting state
functional connectivity

General linear models (GLMs) comparing differences in rsFC

between iTBS (rs-fMRI Time 2) and sham iTBS (rs-fMRI Time 3),

relative to rs-fMRI Time 1, suggested that rsFC significantly

increased between the L. dlPFC and a cluster comprising bilateral

medial prefrontal cortex (MPFC), bilateral temporal poles, and

pons [t(4)=28.87, p=0.0007] (Figure 1, Table 1) and significantly

increased between the right insula and a cluster comprising the

right occipital pole and inferior division of right lateral occipital

cortex [t(4)=15.40, p=0.04] (Figure 1, Table 1). GLMs comparing

change in rsFC from pre-to-post iTBS (rs-fMRI Time 1 and Time

2), suggested that rsFC significantly increased between the L. dlPFC

and a cluster comprising the right frontal pole and right

paracingulate gyrus [t(7)=10.75, p=0.02] (Figure 1, Table 1) and

significantly increased between the right insula and in two voxel

clusters – one comprising the right precentral gyrus and right

postcentral gyrus, [t(7)=9.34, p=0.04] and one comprising the left

precentral gyrus and left postcentral gyrus [t(7)=11.18, p=0.04]

(Figure 1, Table 1).

[Table 1- Resting State Functional Connectivity (rsFC) Changes

with iTBS/Sham iTBS]

[Figure 1 - Comparing resting state functional connectivity

(rsFC) changes between iTBS and sham iTBS (Seeds – L. dlPFC,

right insula)]
FIGURE 1

Images 1 and 5 show seeds used for analyses. Image 1 shows the left dlPFC and image 5 shows the right insula. Images 2 and 3 show a voxel cluster
where resting state functional connectivity (rsFC) with L. dlPFC as a seed increased, with iTBS compared to sham iTBS (n=5). This cluster (red)
encompasses bilateral medial prefrontal cortex (Image 2), bilateral temporal poles and pons (Image 3). Image 4 shows a voxel cluster where rsFC
with L.dlPFC as a seed increased, after receiving iTBS, compared to before (n=8). The voxel cluster (blue) is situated over right frontal pole and right
paracingulate gyrus. Image 6 shows a voxel cluster where rsFC with right insula as a seed increased, after receiving iTBS compared to sham iTBS
(n=5). The voxel cluster (red) is situated in the right occipital pole and right lateral occipital cortex. Image 7 shows a voxel cluster where rsFC with
right insula as a seed changed, after receiving iTBS, compared to before (n=8). The figure shows a voxel cluster (blue) situated over bilateral
precentral and bilateral postcentral gyri.
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3.2 Attentional bias and self-
reported craving

Linear fixed effects models revealed that, across both attention

bias cigarette cues, the severity of nicotine dependence (FTND) was

significantly associated with changes in fixation time on cigarette

cues with iTBS and sham iTBS [t (43) = 2.27, p=0.03]

(Supplementary Material Table 1). FTND was also significantly

associated with changes cigarette cue AB with iTBS and sham iTBS

[t (43) = 17.14, p=0.01] (Supplementary Material Table 2). Severity

of cigarette cravings (TCQ-SF) was not significantly associated with

fixation time on cigarette cues or cigarette cue AB (Supplementary

Material Table 3).

Paired t-tests showed that fixation time and attentional bias to

cues of people smoking cigarettes significantly reduced following

iTBS, [t (15) =4.20, p=0.04] and [t (15) =3.14, p=0.02], respectively.

See Table 2, Figure 2. Similarly, nicotine craving scores reduced

from a mean of 55.88 (SEM 3.95) to 43.13 (SEM 4.68) with iTBS [t

(15) =3.02, p=0.02]. With sham iTBS it reduced from a mean of 53.2

(SEM 4.77) to 48.40 (SEM 6.84) [t (9) =1.24, p=0.28].

[Figure 2 – Changes in Fixation Time and Cigarette Cue

Attentional Bias (AB) with iTBS/Sham iTBS]

[Table 2 – Ad Hoc T-tests to Compare Changes in Fixation

Time and Attentional Bias with iTBS/Sham iTBS]
3.3 Correlation between fixation time on
cigarette cues and seed-based rsFC

A GLM suggested that decrease in fixation time to cues of

people smoking cigarettes was significantly associated with
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increases in rsFC between the right insula and two clusters

comprising right postcentral gyrus [t (7) = -8.07, p=0.000005] and

left postcentral gyrus [t (7) = -12.37, p=0.005] respectively following

iTBS (rs-fMRI 1 and rs-fMRI 2) (Table 1).
4 Discussion

This is the first study to examine the effects of iTBS on rsFC,

cigarette craving, and cigarette cue attentional bias in PLWHA who

smoke cigarettes. We found that, compared to sham iTBS, rsFC

between the L. dlPFC and a voxel cluster comprising the mPFC and

pons increased more following iTBS of the L. dlPFC. Although

unexpected, we also found that rsFC between the right insula and

right occipital cortex increased more following iTBS compared to

sham iTBS.

With iTBS, we also saw increased rsFC between the L. dlPFC

and the right frontal pole, right paracingulate gyrus, as well as

between the right insula and bilateral precentral and postcentral

gyri (somatosensory cortices). Cigarette craving and cigarette cue

attentional bias significantly reduced following iTBS but not

following sham iTBS, though the magnitude of these changes was

not significantly different across the two experimental groups.

Lastly, reductions in cigarette cue fixation time following iTBS

were associated with increases in rsFC between the right insula and

the right and left superior parietal lobules, the right and left

postcentral gyri (somatosensory cortices) and the right and left

supramarginal gyri.

Our results extend literature on functional activation changes

following rTMS of the L.dlPFC in people who smoke. Two previous

studies reported that rTMS of the L.dlPFC in smokers reduced
TABLE 2 Ad hoc t-tests to compare changes in fixation time and attentional bias with iTBS/Sham iTBS.

AB
Session

Cues Encompassing People Smoking Cigarettes Cigarette Paraphernalia Cues

Fixation Time
on
Cigarette Cues
(Milliseconds)
Mean (SEM)

Fixation Time on
Neutral Cues (ms)
Mean (SEM)

Attentional
Bias (ms)
Mean (SEM)

Fixation Time on
Cigarette Cues
(ms)
Mean (SEM)

Fixation Time on
Neutral Cues
(ms)
Mean (SEM)

Attentional
Bias
(ms)
Mean (SEM)

iTBS

AB Time 1 1326.93 (105.77) 319.88 (58.06) 1007.05 (148.70) 1110.33 (88.71) 439.91 (55.40) 670.43 (139.26)

AB Time 2 1026.05 (100.90) 459.16 (50.98) 566.89 (121.70) 919.14 (96.65) 476.05 (54.48) 443.10 (136.37)

p Value 0.004 * 0.097 0.016 * 0.128 0.671 0.266

Effect Size
(Cohen’s
d) **

2.17 1.6

Sham iTBS

AB Time 3 1334.98 (59.10) 450.38 (54.17) 884.60 (112.77) 1025.80 (88.33) 497.42 (54.58) 528.38 (139.39)

AB Time 4 1205.17 (73.06) 546.50 (84.03) 658.67 (148.63) 845.88 (101.54) 538.32 (80) 307.56 (135.26)

p Value 0.191 0.293 0.377 0.164 0.373 0.061
Presented values in cells are the mean values in milliseconds. Within parentheses in every cell is the standard error of the mean (SEM).
*p value ≤ 0.05.
** Cohen’s d was calculated only for comparisons with significant p values.
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BOLD activity in the right medial orbitofrontal cortex (OFC) (45),

and right insula (44). The present findings suggest that rsFC of the

mPFC, which included the medial OFC, and right insula may also

be effected by rTMS of the L.dlPFC; though the present study

utilized iTBS instead of high frequency TMS. Consistent with prior

research (41–43), the present iTBS findings and past TMS research

(including rTMS and deep TMS studies) with people who smoke

suggest that brain stimulation can modulate functional connectivity

and functional activation of regions and networks distal from the

site of stimulation.

Although measurement of cigarette cue attentional bias

provided a behavioral measure to compare effects of iTBS versus

sham iTBS, it is possible that this facet may have unintentionally

increased craving secondary to cue presentation. Since cigarette cue

attentional bias was measured immediately before and after iTBS/

sham iTBS session, it is possible that cigarette cue presentation may

have influenced the brain state at the time of stimulation (64, 65). In

this context, the finding that rsFC between the right insula and right

lateral occipital cortex increased after iTBS is consistent with

cigarette cue reactivity task studies, which reported that

functional activation of the occipital cortex was positively

associated with reactivity towards smoking cues in people who

smoke cigarettes (54, 66). Increased rsFC between L. dlPFC and

right frontal pole and right paracingulate gyrus following iTBS

extends results from a meta-analysis examining neural correlates of

cigarette cue reactivity. This meta-analysis showed the left anterior

cingulate gyrus, paracingulate gyrus and dorsal cingulate cortex to

be instrumental when examining fMRI correlates of reactivity

towards smoking cues in people who smoke (67).

Our regression models suggested that changes in fixation time

(Supplementary Material Table 1), cigarette cue attentional bias

(Supplementary Material Table 2), and cigarette craving

(Supplementary Material Table 3) were not significantly different
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between iTBS and sham iTBS. Nonetheless, we showed a significant

reduction in craving, cigarette cue fixation time and attentional bias

following iTBS and not following sham iTBS. The decrease in

cigarette craving has been shown in previous TMS studies (16)

and one iTBS study (29). However, our study is the first to show

decrease in cigarette cue attentional bias with iTBS. The decrease in

cigarette cue fixation time to cues of people smoking cigarettes

following iTBS was also significantly associated with increases in

rsFC between the right insula and clusters comprising the right and

left somatosensory cortices in addition to the right and left posterior

parietal cortices. This extends the literature on the role of right

insula and parietal cortex in craving. Structural white matter

connectivity between posterior parietal cortex and right insula can

modulate craving (68). Right anterior insula is crucial for

interceptive awareness and salience (69, 70). The posterior

parietal cortices modulate selective attention, in addition to the

somatosensory cortices being important for perceptual awareness

(71, 72). When viewing cigarette and neutral cues for cigarette cue

attentional bias measurement, the lateral posterior parietal cortex in

conjunction with the right anterior insula integrates perceptual

awareness of cues with internal physiological awareness,

consequently modulating sustained attention (73, 74). These

facets become crucial to craving and attentional bias as well (75).

We delivered 1800 pulses of iTBS to L.dlPFC, based on two

seminal studies in major depressive disorder (MDD) which used the

same dosing strategy in an accelerated fashion and showed a

remission rate of approximately 90% in treatment resistant MDD

(32, 33). We used a stimulus intensity of 120% of RMT based on a

previous iTBS trial (31). Prior to this study, neither of these TBS

dosing parameters have been applied to TMS studies in people who

smoke cigarettes (regardless of HIV status). Moreover, the present

study was the first to use neuronavigational targeting with structural

MRI in PLWHA who smoke cigarettes.
FIGURE 2

The first two bars (shades of blue) represent gaze fixation on cues encompassing people smoking cigarettes, acquired before and after iTBS (AB
Time 1 and AB Time 2). The third and fourth bars (shades of blue) represent attentional bias for on cues encompassing people smoking cigarettes
(measured by subtracting gaze fixation on neutral cues from gaze fixation on smoking cues) acquired before and after iTBS. The fifth and sixth bars
(shades of orange) represent gaze fixation on the same cues, acquired before and after sham iTBS (AB Time 3 and AB Time 4). The seventh and
eighth bars represent attentional bias for on cues encompassing people smoking cigarettes acquired before and after sham iTBS. As observed, iTBS
showed a significant decrease in gaze fixation on on cues encompassing people smoking cigarettes and consequently on attentional bias also,
which was not seen with sham iTBS.
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We delivered actual and sham iTBS in a single blind fashion.

Although patient expectations and placebo effects could have

influenced results, we separated active and sham iTBS sessions by

four weeks, which should have limited carryover effects (76).

Nonetheless, replication and extension efforts should include

double blinding. In an ideal design, we would have acquired a

resting state fMRI scan before sham iTBS too. This is a limitation of

our study. Although we measured cigarette cue attentional bias

immediately after iTBS/sham iTBS, there was an average of an

hour’s delay before they got to the scanner, and this may have

influenced our results as well.

Future research using online (with cue presentation) vs. offline

(at rest without prior provocation) iTBS could explore the potential

moderating effects of cue presentation on iTBS in people who

smoke cigarettes.
5 Conclusions and limitations

iTBS to the L. dlPFC in PLWHA who smoke increased rsFC

between L.dlPFC and bilateral medial prefrontal cortex and pons,

and increased rsFC between right insula and right occipital cortex.

Despite a small sample size, iTBS decreased cigarette cue fixation

time, cigarette cue attentional bias and cigarette craving. We also

showed a negative association between change in cigarette cue

fixation time to cues of people smoking cigarettes and rsFC

between the right insula and clusters comprising the right and left

somatosensory cortices in addition to the right and left posterior

parietal cortices.

Our preliminary results are limited by our small sample size and

within group comparisons (77–79). We would like to emphasize

that our pilot study is the first attempt at delivering a high frequency

paradigm like iTBS to PLWHA who smoke at elevated rates. Albeit

preliminary, our results do warrant a powered prospective trial

evaluating iTBS as a therapeutic intervention for smoking cessation

in PLWHA who smoke, along with an optimal rsFC biomarker to

guide treatment response.
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