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Background: Understanding the interplay between psychopathology of alcohol

withdrawal syndrome (AWS) in alcohol use disorder (AUD) patients may improve

the effectiveness of relapse interventions for AUD. Network theory of mental

disorders assumes that mental disorders persist not of a common functional

disorder, but from a sustained feedback loop between symptoms, thereby

explaining the persistence of AWS and the high relapse rate of AUD. The

current study aims to establish a network of AWS, identify its core symptoms

and find the bridges between the symptoms which are intervention target to

relieve the AWS and break the self-maintaining cycle of AUD.

Methods:Graphical lasso networkwere constructed using psychological symptoms

of 553 AUD patients. Global network structure, centrality indices, cluster coefficient,

and bridge symptom were used to identify the core symptoms of the AWS network

and the transmission pathways between different symptom clusters.

Results: The results revealed that: (1) AWS constitutes a stable symptom network

with a stability coefficient (CS) of 0.21-0.75. (2) Anger (Strength = 1.52) and

hostility (Strength = 0.84) emerged as the core symptom in the AWS network

with the highest centrality and low clustering coefficient. (3) Hostility mediates

aggression and anxiety; anger mediates aggression and impulsivity in AWS

network respectively.

Conclusions: Anger and hostility may be considered the best intervention targets

for researching and treating AWS. Hostility and anxiety, anger and impulsiveness

are independent but related dimensions, suggesting that different

neurobiological bases may be involved in withdrawal symptoms, which play a

similar role in withdrawal syndrome.
KEYWORDS

alcohol use disorder, alcohol withdrawal syndrome, network analysis,
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpsyt.2024.1320248/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2024.1320248/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2024.1320248/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2024.1320248/full
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyt.2024.1320248&domain=pdf&date_stamp=2024-08-29
mailto:benjaminlyl@wmu.edu.cn
mailto:fanwang@bjmu.edu.cn
mailto:psychologychenli@163.com
https://doi.org/10.3389/fpsyt.2024.1320248
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://doi.org/10.3389/fpsyt.2024.1320248
https://www.frontiersin.org/journals/psychiatry


Shen et al. 10.3389/fpsyt.2024.1320248
1 Introduction

Alcohol is a widely used and harmful substance globally, with

over two billion people using it and 283 million people experiencing

an alcohol use disorder (AUD) (1, 2). The most effective therapy for

alcoholism and related problems is alcohol withdrawal, but abruptly

ceasing alcohol use often leads to alcohol withdrawal syndrome

(AWS) (3). AWS is a prevalent health issue among individuals with

AUD. It is characterized by hyperactivity of the central nervous

system and autonomic nervous system (4). Approximately more than

half of hospitalized patients with AUD and 35% of community

individuals with AUD are at risk of developing AWS (5). While the

physiological symptoms of acute alcohol withdrawal typically subside

within a few days, certain dysregulations persist, such as blunted

hypothalamic-pituitary-adrenal axis responsiveness (6) and reduced

basal levels of circulating corticosteroids (7). Persistent dysregulations

are thought to contribute to the mood and behavioral symptoms of

AUD (8–10) and play a significant role in maintaining alcohol

consumption and developing AUD. Negative affect and behaviors

during alcohol withdrawal can lead individuals to drink in order to

cope with dysphoria and negative emotions, creating a self-

perpetuating addictive behavior cycle (AUD → Withdrawal →

AWS → Drinking to Cope → AUD) that contributes to relapse

and the continuous cycle of alcohol withdrawal (11, 12). This cycle

helps explain why conventional interventions often limited success

have, with relapse occurring in up to 80% of patients with severe

AUD. Therefore, effectively managing AWS is crucial for breaking the

self-perpetuating cycle of AUD (13).

AWS is not caused by a single mechanism but rather by

multiple mechanisms (14, 15). AWS is characterized by various

symptoms, including irritability, dysphoric mood, and physical

symptoms such as headaches, seizures, and tremors (14–16).

However, previous research has often focused on studying

individual symptoms rather than considering them as part of a

larger set of symptoms. The approach of focusing on a single

symptom neglects the broader mental disorder and the

interconnectedness and propagation of symptoms in mental

disorders (17). Additionally, pharmacological treatments for AWS

such as benzodiazepines and anticonvulsants attempt to restore

balance by enhancing GABAergic inhibition. However, these

medications only provide temporary symptomatic relief and do

not fully address the underlying neurobiological changes from

chronic alcohol exposure (18). Alcohol withdrawal symptoms

frequently reemerge after discharge when medications are

stopped, putting patients at high risk for relapse and recurrence

of AUD (19). While medications can help manage acute withdrawal

episodes, they do not provide a cure or long-term solution. This

emphasizes the necessity for an enhanced comprehension of AWS

mechanisms and symptom interactions develop more targeted and

effective interventions that tackle the underlying causes.

Recently, the network theory and approach have been used to

unders tand the interact ions between symptoms and

psychopathology in mental disorders. The Network Theory of

Mental Disorders (NTMD) suggests that mental disorders do not

result from a central functional disorder but rather arise from long-

term, sustained feedback loops formed by the mutual influence of
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multiple mental symptoms (20). When a set of symptoms in a

network structure are closely connected, they tend to synchronize.

This complex system of mutually reinforcing dependencies, which

can be modelled as edges within the network. This network consists

of symptom nodes that activate and deactivate each other over time

(20, 21). The concept of symptom networks has been explored in

various studies (22). Furthermore, symptoms of mental disorders

may have direct or indirect effect on each other and may have

genetic, mental, and psychological bases (23). Therefore,

comprehending the interactions and interconnectedness between

different symptoms of AWS may aid in more effective and efficient

relief or prevention of withdrawal symptoms. The network

approach provides a powerful method for analyzing and

visualizing the complex relationships among symptoms of AWS,

which are related to psychopathology and would otherwise be

challenging to disentangle using traditional approaches. Although

the network approach has been increasingly applied to investigate

the complex structure of various psychiatric disorders, including

posttraumatic stress disorder, depression, and autism spectrum

disorder, there is a dearth of research using this approach in the

context of AWS (24–26).

To address these gaps in the literature on AWS, we conducted a

proof-of-concept exploratory study. Specifically, the present study

constructs a network of AWS symptoms, explores core symptoms

during alcohol withdrawal, and investigates connections between

different mental symptom clusters. Network analysis enhances

understanding of the interactions and interconnectedness between

AWS symptoms. The results could inform treatments that prevent

relapse by disrupting maladaptive AWS cycles, rather than just

temporarily suppressing symptoms. This could ultimately improve

the management and long-term treatment of withdrawal symptoms

in individuals with AUD.
2 Method

2.1 Participants

A total of 553 male AUD patients were recruited from six

psychiatric hospitals in Northern China. Participants ages ranged

from 20 to 67 years-old (M = 41.37, SD = 10.38). Regarding their

education, over half the male patients had a junior high school

education or below, and the average time in schooling was 11.25

years (SD=2.84, range = 5-17 years), see Table 1 for more details.

The inclusion criteria are listed as follows:1) Patients fulfilled the

criteria of the diagnosis of alcohol use disorder based on the

Diagnostic and Statistical Manual of Mental Disorders, fourth

edition (DSM-IV); 2) Patients were diagnosed according to the

DSM-IV diagnostic criteria by at least two qualified psychiatrists; 3)

Actively drinking without extended abstinence periods in the past 3

months; 4) Currently in first 1-4 weeks of abstinence (early

withdrawal stage); 5) Chinese-Han male with good reading and

writing skills. Exclusion criteria were listed: 1) An individual or

family history of other mental disorders; 2) Patients with severe

organic disease such as CNS disease, renal, gastrointestinal system,

and malignancy; 3) Any history of other substance abuse.
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2.2 Procedure

After all enrolled patients provided written informed consent,

the patient was then led to an assessment room under the company

of the hospital psychiatrist and asked to complete psychiatric

symptom assessment questionnaires in addition to the routine

diagnosis process. Once the patient was completed, the

psychiatrist checked to ensure that all sections of assessment

questionnaires had been completed. All procedures contributing

to this work conformed to the ethical standards of the relevant

national and institutional human experimentation committees, as

well as to the 1975 Declaration of Helsinki (revised 2008). All

procedures involved were approved by the IRB of the Inner

Mongolian Medical University on October 30, 2015 (YKD2015003).
2.3 Measurements

2.3.1 Aggression
Aggression was assessed by the Buss-Perry Aggression

Questionnaire (BPAQ), which is one of the most widely used self-

report tools to assess aggression. The BPAQ consists of four

components: anger, hostility, physical aggression and verbal

aggression (27). Physical aggression and verbal aggression

represent the behavioral component of aggression, anger

represents the emotional component, and hostility represents the

cognitive component (28, 29). The questionnaire measures in a 5-

point Likert scale with higher scores reflecting more aggression.

BPAQ has proven to be a reliable indicator of aggression in Chinese

populations with a Cronbach’s alpha of 0.72-0.85 (30).

2.3.2 Impulsivity
Impulsivity were measured by the Barratt Impulsiveness Scale

(BIS) (31), which is a 30-item self-report scale with three factors:1)

cognitive impulsivity, the tolerance for cognitive complexity and

persistence; 2) motor impulsivity, the tendency to act on the spur of

the moment; 3) non-planning impulsivity, the lack of sense of the

future (32). The questionnaire measures in a 5-point Likert scale
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with higher scores reflecting more aggression. BIS has satisfactory

reliability and validity when applied in clinical studies, with a

Cronbach’s alpha of 0.83 (33).

2.3.3 Negative emotions
Negative emotions were measured by Self-Rating Anxiety Scale

(SAS) and Self-Rating Depression Scale (SDS). SAS and SDS are

widely used questionnaires in alcohol use disorder, the Chinese

version of which was used in previous studies (34). Both scales

have 20 items, and all items are rated on a 4-point scale (1 = a little

time to 4 = most of the time (35). The total score is multiplied by 1.25

and is then converted into a standardized score ranging from 25 to

100, higher total scores indicate more severe symptoms of depression

or anxiety. The SAS and SDS has been validated have great internal

consistency with a Cronbach’s alpha of 0.79 to 0.82 (36, 37).

2.3.4 Self-control
Self-control was assessed using the 13-item Brief Self-Control

Scale (SCS), scored on a response scale from 1 (very much) to 5

(none at all) with higher scores indicate a lower level of self-control.

SCS Has been previously shown to provide a reliable and valid

explanation for self-control in individuals (38).
2.4 Statistical analysis

R 4.2.1 software was used to construct the network of AWS.

First, we calculated the partial correlations between all items to

investigate the edges weight of the withdrawal network. Specifically,

the edge weights are estimated using a Gaussian Graphical Model

(GGM), a widespread network model (39). To reduce the likelihood

of spurious connections, a Graphical Least Absolute Shrinkage and

Selection Operator (GLASSO) was applied with an Extended

Bayesian Information Criterion (EBIC) (40). EBIC is a common

goodness-of-fit measure which select the best network from many

possible networks under different “g” (41). In present study, the ‘g’
was set to 0.5, has been found to produce accurate network

estimates, striking a good balance between sensitivity and

specificity in identifying true positive margins (42). The network

was visualized by the “qgraph” package, where thicker lines

represented stronger relationship between symptoms, green lines

represent positive relationships and red lines represents negative

relationships (39). Node placement is determined by the

Fruchterman-Reingold (FR) algorithm, it places nodes such that

all edges have the same length, while avoiding edge crossings, and

places nodes with strong average associations to the center of the

graph (43). We also use the Multidimensional scaling (MDS)

algorithm to place the nodes, which helps to represent complex

data in a low-dimensional space, which coincides with the goal of

visual presentation of complex mental networks (44).

Second, we calculated the centrality indices (node strength,

closeness, betweenness, expected influence) to identify central or

most important symptoms in the network via the R package

“networktools”. Strength is the absolute value of the weight on
TABLE 1 Demographic characteristics of participants (N = 553).

Variable Range/
Categories

M SD N Percentage

Age 20-67 41.37 10.38

Educational
years

5-17 11.25 2.84

Marital status

Married 389 70.34%

Divorced/Separated 164 29.66%

Living status

Live with family 435 78.66%

Live without family 118 21.34%
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the edge connected to the node. Closeness is defined as how close a

node is to the average edge distance of all other nodes. Betweenness

is the number of times a node is on the shortest path between any

other two nodes. Expected influence is a new centrality metric

proposed by Robinaugh et al., which aims to assess a node’s

influence with its immediate neighbors (45). In addition to

network centrality, the clustering coefficient of network nodes is

also important for identifying core network importance, which is

usually neglected (39, 46). The clustering coefficient can be

interpreted as an indicator of the redundancy of nodes in their

neighborhoods. A high clustering coefficient indicates that the

neighboring nodes of the node have strong connections with each

other, so removing or changing this node would not significantly

affect the other nodes, which would greatly reduce the node’s

importance in the network structure.

Third, we examined the stability of the edge weight and

centrality indices of the network to ensure that the network is

stable enough. We conducted bootstrap approach to calculate 95%

confidence intervals (CIs) to assess the accuracy of the centralities

and estimated the correlation stability coefficients (C S-coefficient)

via the “bootnet” package in R (39).

Fourth, we used the R package “networktools” to analyze bridge

symptoms reflected by bridge centrality (47), which includes bridge

strength (total connectivity of nodes and other symptom cluster

nodes), bridge closeness (the average distance from a node to all

nodes outside of its disorder, with distance based upon the inverse

of the edge weights in a weighted network) and bridge betweenness

(the number of times a node lies on the shortest path between any

two nodes from two distinct symptom clusters). In current study,

AWS can be regarded as a collective system of 4 symptom clusters

(self-control symptom clusters containing only one node were not

included in the bridge symptom analysis).
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3 Result

3.1 Descriptive analytics

Correlation analysis among AUD patients revealed significant

relationships between demographic factors and key variables

(Table 2). Age was positively correlated with non-planning

impulsivity (r = 0.14, p < 0.01), motor impulsivity (r = 0.14, p <

0.01), cognitive impulsivity (r = 0.13, p < 0.01), verbal aggression (r

= 0.14, p < 0.01), anger (r = 0.20, p < 0.001), hostility (r = 0.15, p <

0.001), anxiety (r = 0.14, p < 0.01). Educational years were

negatively correlated with non-planning impulsivity (r = -0.27, p

< 0.001), motor impulsivity (r = -0.20, p < 0.001), cognitive

impulsivity (r = -0.25, p < 0.001), physical aggression (r = -0.23, p

< 0.001), verbal aggression (r = -0.22, p < 0.001), anger (r = -0.23, p

< 0.001), hostility (r = -0.21, p < 0.001), anxiety (r = -0.20, p <

0.001), and self-control (r = -0.10, p < 0.05). t-test results indicated

that divorced or separated AUD patients had significantly higher

levels of physical aggression compared to married individuals (t =

2.06, p = 0.04, Cohen’s d = 0.19), with no significant differences in

other symptoms (p > 0.05). No significant differences were observed

in AWS related symptoms based on whether AUD patients lived

with family members (p > 0.05).
3.2 AWS network structures

Table 3 provides the descriptive statistics and edge weight of all

the AWS network nodes. Figures 1, 2 display the network of AWS

with FR algorithms and MDS algorithms respectively. As is shown

in Figures 1, 2, the network of AWS consists of four symptom

clusters containing ten symptom nodes, 37.8% (17/45) of network
TABLE 2 Correlations of demographic factor and alcohol withdrawal syndrome.

Variables 1 2 3 4 5 6 7 8 9 10 11 12

1.Age 1

2.Educational years -0.44*** 1

3. Non-
planning Impulsivity

0.14** -0.27*** 1

4. Motor Impulsivity 0.14** -0.20*** 0.34*** 1

5.
Cognitive Impulsivity

0.13** -0.25*** 0.77*** 0.26*** 1

6. Physical Aggression 0.05 -0.23*** 0.24*** 0.46*** 0.13** 1

7. Verbal Aggression 0.14** -0.22*** 0.19*** 0.50*** 0.09* 0.67*** 1

8. Anger 0.20*** -0.23*** 0.30*** 0.62*** 0.20*** 0.66*** 0.75*** 1

9. Hostility 0.15*** -0.21*** 0.24*** 0.57*** 0.16*** 0.61*** 0.69*** 0.67*** 1

10. Anxiety 0.14** -0.20*** 0.25*** 0.38*** 0.17*** 0.28*** 0.32*** 0.40*** 0.45*** 1

11. Depression 0.02 -0.04 0.14** 0.13** 0.08 0.11** 0.12** 0.19*** 0.15*** 0.17*** 1

12. Self-control 0.02 -0.10* 0.19*** 0.24*** 0.13** 0.29*** 0.25*** 0.32*** 0.30*** 0.14** 0.08 1
fron
*P < 0.05, **P < 0.01, ***P < 0.001.
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edges were set to zero, and the mean edge weight of the network was

0.08. First, the connection of network edges is analyzed within four

symptom clusters. The two strongest connections were found

between “non-planning impulsivity” and “cognitive impulsivity”

(edge weight = 0.72) within the impulsivity symptom cluster, and

between “anger” and “verbal aggression” (edge weight = 0.39)

within the aggression symptom cluster. Secondly, the connection

of network edges is analyzed among four symptom clusters. The

two strongest connections were found between “anger” from the

aggression symptom cluster and “motor impulsivity” (edge weight

= 0.29) from the impulsivity symptom cluster, and between

“Hostility” from the aggression symptom cluster and “anxiety”

(edge weight = 0.20) from the negative emotion symptom cluster.

Additionally, self-control was found to be connected with both

aggressive and impulsive symptom clusters (edge weight = 0.06 to

0.09), but not with mood-related symptoms.
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3.3 The core psychopathology of AWS

The network centrality indices for the AWS network are

depicted in Figure 3 and Table 4. First, anger showed the highest

strength (Strength = 1.52), expected influence (Expected Influence =

1.58), betweenness (Betweenness = 1.92) and closeness (Closeness =

1.28) in the AWS network, it suggested that anger has the most

important functional interactions in the network structure, has the

shortest path connecting with other nodes and acts as a mediator

associated with other nodes. Secondly, the strength and expected

influence of hostility (Strength = 0.84; Expected Influence = 0.89)

are second only to anger in the network structure, which indicates

hostility is another key feature of alcohol withdrawal syndrome.

Thirdly, non-planning impulsivity is the main feature of

impulsiveness in patients with AWS, its strength (Strength =

0.80) and expected influence (Expected Influence = 0.85) are rank
TABLE 3 Edge weight matrix for AWS network.

Node M SD 1 2 3 4 5 6 7 8 9 10

1. Non-planning Impulsivity 41.42 19.29 1.00

2. Motor Impulsivity 33.99 18.15 0.11 1.00

3. Cognitive Impulsivity 40.28 17.48 0.72 0.02 1.00

4. Physical Aggression 34.70 21.09 0.02 0.00 0.00 1.00

5. Verbal Aggression 34.11 19.90 (–) (–) -0.03 0.27 1.00

6. Anger 34.67 23.27 0.04 0.29 (–) 0.23 0.39 1.00

7. Hostility 27.17 18.90 (–) 0.20 (–) 0.17 0.29 0.13 1.00

8. Anxiety 33.57 9.28 0.07 0.09 (–) (–) (–) 0.07 0.20 1.00

9. Depression 55.16 9.28 0.04 (–) (–) (–) (–) 0.06 0.01 0.08 1.00

10. Self-control 22.68 4.06 0.06 0.01 (–) 0.07 (–) 0.09 0.07 (–) (–) 1.00
front
(–) indicates that there was no connection between two nodes.
FIGURE 1

Network of AWS with FR algorithms, showing network edges and clustering structure. The thickness of the edge reflects the magnitude of the
correlation, green edges represent positive correlations and red edges indicate negative correlations.
iersin.org
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third in the network structure and first in the impulsive symptom

cluster. Fourthly, motor impulsivity had the highest closeness

(Closeness = 0.98) in the impulsive symptom cluster, suggesting

that motor impulsivity is a key symptom in the association of the

impulsive symptom cluster with other psychiatric symptom

clusters. Finally, in negative emotion cluster, anxiety shows higher
Frontiers in Psychiatry 06
strength (Strength = -0.72), closeness (Closeness = -0.06) and

expected influence (Expected Influence = -0.72) than depression,

indicating anxiety is the primary negative emotion in the

AWS network.

In order to identify the core symptoms of AWSmore accurately,

the testing of clustering coefficient based on the centrality index in
FIGURE 2

Network of AWS with MDS algorithms, showing the proximity between variables as the distance between the point in a low-dimensional space. The
thickness of the edge reflects the magnitude of the correlation, green edges represent positive correlations and red edges indicate
negative correlations.
FIGURE 3

Centrality indices of network structure of AWS. The figure shows centrality measures (i.e., strength, betweenness, closeness and expected influence)
of all symptoms within the network (z-scores). The full names of the abbreviations can be found in Figure 1. PA, Physical Aggression; VA, Verbal
Aggression; Ang, Anger; Hos, Hostility; Npl, Non-planning Impulsivity; Mtr, Motor Impulsivity; Cgn, Cognitive Impulsivity; Anx, Anxiety; Dep,
depression; SC, Self-control.
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the network was used. As shown in Table 4 and Figure 4, there is no

significant correlation between node centrality and clustering

coefficient in the symptom network model (|r|s < 0.36, ps > 0.30).

The nodes of anger, hostility and non-planning impulsiveness

which are core nodes of the AWS network indicated by the

centrality index analysis did not show high clustering coefficients

in the clustering coefficient validation. It indicates that the centrality

inflation caused by the high clustering coefficient does not exist in

the process of high centrality of these three symptoms.
3.4 AWS network stability

Following previous studies (48, 49), the accuracy and stability of

networks were tested using R package “bootnet” (50) (online

Supplementary Figures S1, S2 in the Supplementary Materials).

The correlation-stability (CS) coefficient value should preferably be

above 0.5 and not below 0.25 (51). In current study, edge weight was

critically stable [CS (cor = 0.7) = 0.75]. Meanwhile, strength

closeness and expected influence also performed perfectly [CS

(cor = 0.7) = 0.75], reaching the cutoff of 0.5 and indicating that

the metric was stable. In contrast, the CS coefficient of betweenness

[CS (cor = 0.7) = 0.205] indicate that the betweenness of this study

was not stable. Thus, strength closeness and expected influence of

node were most interpretable, while betweenness can be expected to

change when network is re-estimated with fewer nodes or smaller

sample size.
3.5 Symptom connectivity loops in the
AWS network

As shown in Figure 5, bridge centrality indices show that there

are two symptom clusters of bridge symptoms corresponding to

aggression-mood disorder and aggression-impulsivity, respectively.
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For aggression and mood disorder, hostility (bridge strength (rank

2) = 0.20; bridge closeness (rank 1) = 0.13; bridge betweenness (rank

1) = 3) and anxiety (bridge strength (rank 1) = 0.27; bridge closeness

(rank 2) = 0.12; bridge betweenness (rank 3) = 1) had the highest

bridge centrality. In other words, anxiety and hostility link

aggression and mood-related symptoms in alcohol withdrawal

syndrome. For aggression and impulsivity, anger replaces hostility

as a bridge between symptoms. Specifically, in the cluster of

aggressive and impulsive symptoms, anger (bridge strength (rank

2) = 0.32; bridge closeness (rank 2) = 0.10; bridge betweenness (rank

2) = 6) and motor impulsivity (bridge strength (rank 1) = 0.49;

bridge closeness (rank 1) = 0.18; bridge betweenness (rank 1) = 8)

had the highest bridge centrality.
4 Discussion

The present study aimed to explore the psychopathological

characteristics of AWS as a symptom network. Overall, the findings

highlight AWS is a tightly connected and self-sustaining system of

symptoms, anger and hostility were the core symptoms and the best

interventions target of AWS. Additionally, impulsivity among AWS

patients can be characterized by its lack of planning. In terms of mood-

related symptoms anxiety is strongly interconnected with other

withdrawal-related mental symptoms. Between different symptom

groups, hostility-anxiety form a bridge between aggression and

emotional disorder in AWS patients, while anger-motor

impulsiveness forms a bridge between aggression and impulsiveness.

The descriptive results of this study further elucidate the

significant correlations between demographic factors and

symptoms related to AWS. Age positively correlates with several

AWS-related symptoms, including impulsivity, aggression, and

anxiety. This corroborates previous research indicating that older

individuals with AUD experience more severe withdrawal

symptoms (76). Educational years negatively correlate with AWS
TABLE 4 Centrality index and clustering coefficient of nodes in the withdrawal symptoms network.

Centrality Index
Clustering Coefficient

Node Strength Betweenness Closeness Expected Influence

Npl 0.80 1.00 -0.61 0.85 0.01

Mtr -0.12 1.00 0.98 -0.08 0.09

Cgn 0.02 -0.82 -0.87 -0.14 0.04

PA -0.01 -0.82 0.20 0.03 0.21

VA 0.62 -0.3 0.86 0.47 0.16

Ang 1.52 1.92 1.28 1.58 0.09

Hos 0.84 0.32 0.89 0.89 0.10

Anx -0.72 -0.59 -0.07 -0.69 0.09

Dep -1.63 -0.82 -1.55 -1.60 0.07

SC -1.33 -0.82 -1.13 -1.31 0.12
Npl, Non-planning Impulsivity; Mtr, Motor Impulsivity; Cgn, Cognitive Impulsivity; PA, Physical Aggression; VA, Verbal Aggression; Ang, Anger; Hos, Hostility; Anx, Anxiety; Dep, depression;
SC, Self-control.
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symptoms, suggesting a protective effect of higher education. This

aligns with established literature on the inverse relationship

between educational years and alcohol-related problems (77).

Additionally, marital status influenced the manifestation of

withdrawal symptoms. Married patients exhibited lower levels of
Frontiers in Psychiatry 08
physical aggression during withdrawal compared to non-married

patients. This finding aligns with previous research indicating that

married individuals often have more family responsibilities, and the

social cost of physical aggression is higher, which may contribute to

lower levels of aggression during withdrawal (78).
FIGURE 5

Bridge centrality indexes of network structure of AWS. (A) the bridge centrality indexes between aggression and mood disorder. (B) the bridge
centrality indexes between aggression and impulsivity. PA, Physical Aggression; VA, Verbal Aggression; Ang, Anger; Hos, Hostility; Npl, Non-planning
Impulsivity; Mtr, Motor Impulsivity; Cgn, Cognitive Impulsivity; Anx, Anxiety; Dep, depression; SC, Self-control.
FIGURE 4

AWS network centrality index and clustering coefficient, the horizontal and vertical lines indicate the median of the clustering coefficient and
centrality index respectively. PA, Physical Aggression; VA, Verbal Aggression; Ang, Anger; Hos, Hostility; Npl, Non-planning Impulsivity; Mtr, Motor
Impulsivity; Cgn, Cognitive Impulsivity; Anx, Anxiety; Dep, Depression; SC, Self-control.
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4.1 Symptom network of AWS

The first key finding from our network analysis of AWS is that

AWS constitutes a tightly interconnected and self-sustaining system

of symptoms. This network structure provides a novel perspective

on the complex relationships among AWS symptoms, fromNTMD.

The different symptoms form a negative feedback cycle through

tight interconnection and high transmission. This explains well for

why AUD has a very high relapse rate (52) and withdrawal-induced

psychological discomfort can persist in the absence of new stimuli

(8, 9). Specifically, due to the existence of this AWS network,

activation of one symptom node in daily life can be transmitted

to other symptom nodes, leading to the activation of AWS network

and finally leading to drinking again through a negative feedback

mechanism (AWS → Drinking to cope → AUD) (53).
4.2 Core psychological features: anger
and hostility

Network centrality index showed anger and hostility are the

main psychological features of AWS, ranking highest in strength,

closeness, betweenness and expected influence. This is consistent

with previous findings, alcohol as a psychoactive substance can lead

to emotion dysregulation and socio-cognitive impairment when

consumed over a prolonged period of time or in excess (54). Anger,

as a negative emotional experience, has also been shown to be a

potential mediator factor in various mental disorders, including

anxiety disorders, substance dependence, and post-traumatic stress

disorder (55, 56). Previous studies suggest that the relationship

between alcohol and anger may be mediated by the activation of

glutamic acid and GABA receptors, and acute or chronic exposure

to alcohol can significantly affect glutamic acid neurotransmission

in the pre-frontal cortex (PFC), leading to neural adaptation,

suppressing PFC activity (57, 58). The PFC, as a key area for

emotion processing and social cognition, may reduce emotional

control and increase anger when its activity is suppressed. Hostility,

as a cognitive component, has been established as a core symptom

of schizophrenia in previous network analysis studies (59), and an

increase in hostility is associated with more severe positive

symptoms of schizophrenia and greater use of drugs or alcohol

(60). Over the past two decades, hostile cognition has been proven

to be a serious consequence of alcohol use disorder and is associated

with lower social functioning and poorer treatment outcomes,

indicating its crucial role in alcohol-related illnesses (61–63). This

finding also supports the “hostile attribution bias model” of alcohol,

which suggests that alcohol affects the brain’s social-cognitive

processes, leading to increased hostile cognition and impaired

social functioning (63). The results suggest that anger and

hostility play important roles in the network of alcohol

withdrawal syndrome, highlighting the key role of emotional

regulation difficulties and hostile cognition in alcohol withdrawal

syndrome. Meanwhile, these two symptoms (hostility and anger)
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may also be appropriate intervention targets to break the self-

sustaining system of alcohol use disorder.
4.3 Impulsiveness in AWS patients

Non-planning impulsiveness was identified as the primary

characteristic of AWS patients in terms of impulsiveness.

Impulsiveness is a multi-dimensional structure, including

attention, behavior, and cognitive components. This study also

divided impulsiveness into three levels: non-planning

impulsiveness, cognitive impulsiveness, and motor impulsiveness

(31). Non-planning impulsiveness had the highest strength and

expected influence in the entire withdrawal symptom network and

was the main characteristic of impulsiveness. Previous research has

also indicated that long-term alcohol use by patients with alcohol

use disorder can affect the central nervous system, leading to

structural and functional frontal lobe deficits. Alcohol dependent

patients can only control and regulate emotions and behaviors with

limited resources (64, 65), when faced with high-pressure or

challenging events, these individuals have difficulty regulating

impulsive behavior or decisions, resulting in unplanned

reckless behavior.
4.4 Bridge analysis of AWS network

Bridge analysis revealed that anger is the connecting node

between aggression and impulsiveness, further emphasizing the

relationship between a patient’s ability to regulate emotions and

impulsiveness. Ineffective or low-effective emotional regulation

strategies may also promote goal-directed impulsive behavior

without planning. In a study utilizing cognitive-behavioral

measures, Tsukue et al. (66) reported a significant correlation

between more frequent impulsive choices (as measured by the

delay discounting paradigm) and higher sensitivity to unfairness

in patients diagnosed with alcohol use disorder (66). This latter

phenomenon may be interpreted as an emotion regulation strategy

(65). That can be assumed that impulsiveness is closely related to

poor emotional regulation strategies or coping mechanisms during

stress-inducing situations of alcohol withdrawal. Of course, This

cross-sectional study does not infer any causality, but rather focuses

on analyzing a specific path or circuit, where emotional disturbance

may be a trigger for impulsiveness and vice versa in alcohol

withdrawal. As a result, these symptoms enter a vicious cycle,

causing the maintenance of alcohol withdrawal symptoms in the

long term, which in turn leads to recurrent alcohol consumption

(negative reinforcement) and perpetuation of the cycle.

Bridge analysis has also highlighted the notion of hostility as a

bridge node connecting aggression and anxiety. Anxiety has long

been linked to mental illness and plays an important role in

aggression-related behaviors associated with mental illness (66),

yet most models of aggression development fail to consider the role
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of anxiety, which is also overlooked in clinical interventions for

comorbidity of aggression-anxiety (67). Moreover, hostility as a

cognitive-level aggression coupled with anxiety revealed the

correlation between cognitive bias and anxiety in alcohol-

dependent patients during withdrawal. The abnormal

combination of hostility and anxiety emerges as a response to

seemingly unrelated but potentially threatening situations, which

may be particularly evident in those with mental disorders. Stompe

et al.’s empirical study of the dreams of schizophrenic patients

found that they experienced themselves more frequently as victims

of aggression from the outside world in their dreams, which also

corresponded to a high degree of threat anxiety (injury) experienced

in the dream, but value anxiety (guilt and separation) was less

frequent in schizophrenic patients’ dreams (68). Clinical psychology

also points out that hostility, as a powerful social signal, is closely

related to social anxiety (69, 70). Attention studies of cognitive bias

towards hostility focus primarily on the processing tendency of

threatening cues in the environment, while the cognitive model of

social anxiety likewise emphasizes the problem of attention bias,

with extensive processing or cognitive bias towards threatening cues

also promoting or maintaining social anxiety (71). Studies on brain

activation of human faces in social anxiety show that the amygdala

complex is related to the processing of threatening cues, and that

when faced with threatening faces, the metabolic response of these

nuclei increases in people with social anxiety (70). These results

suggest that hostility and anxiety may be the result of neurological

dysfunction during alcohol withdrawal, and that anxiety during

withdrawal may have more to do with cognitive biases (hostility)

than simply emotional regulation problems.
5 Conclusion

To summarize, this research constructed a network of AWS

from the perspective of network theory of mental disorders. In the

network of AWS, different withdrawal symptoms are closely related,

and AWS can be maintained over a long period of time through the

interaction of symptoms. Anxiety and hostility are the core

psychiatric symptoms of patients with AWS and may be the best

intervention points to disrupt the self-sustaining system of AUD.

Impulsiveness is the main feature of the withdrawal period; in terms

of emotional disorders, anxiety is highly associated with other

groups of psychiatric symptoms. In addition, hostility and

anxiety, anger and impulsiveness linked to different clusters of

symptoms through their respective symptom cycles, suggesting that

different mechanisms and neurobiological bases may be involved in

withdrawal symptoms, which play a s imilar role in

withdrawal syndrome.
6 Limitations

Our study had certain limitations that should not be

overlooked, and it provides ideas for future research. First, the

current study is a cross-sectional design, lacking longitudinal data
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to confirm the effectiveness of the AWS clinical intervention targets

(72). This limitation means we cannot establish causal relationships

or track changes over time. Future work should seek to test these

intervention targets over multiple time points of the recovery

process before as well as after treatment to establish whether the

present simulation results can be confirmed. Second, we did not

include sociodemographic factors and motivation-to-change as

nodes in our network, which are important to sustain the system

of withdrawal syndrome (73, 74). The exclusion of these factors may

limit our understanding of the full complexity of AWS and its

underlying mechanisms. Third, this study examined only AWS-

related emotional and behavioral symptoms, lacking relevant

physiological data (75). This omission means we could not

explore the physiological changes that accompany AWS, which

could provide a more comprehensive understanding of the

syndrome. Finally, this study sample was restricted to male

patients only. The decision to include only male participants was

based on the significantly higher prevalence of AUD among men

compared to women, which allowed for more efficient recruitment

of a clinically relevant sample. According to the National Institute

on Alcohol Abuse and Alcoholism (NIAAA), the prevalence of

AUD is approximately 12.4% in men and 4.9% in women in the

United States (79). Additionally, focusing on a single gender helped

to reduce potential confounding variables related to gender

differences in alcohol metabolism and sociocultural factors

influencing alcohol use and withdrawal symptoms. Given the

known sex differences in substance use disorders, this limits the

generalizability of our findings to female alcohol use disorder

populations. Future studies should aim to include a more diverse

participant pool, encompassing both genders, to provide insights

into gender-specific differences in AUD and withdrawal syndrome.
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